Description of Device Parameters

Proline Promass 300

HART

Coriolis flowmeter
Table of contents

1 Document information 4
 1.1 Document function 4
 1.2 Target group 4
 1.3 Using this document 4
 1.3.1 Information on the document structure 4
 1.3.2 Structure of a parameter description 6
 1.4 Symbols used 6
 1.4.1 Symbols for certain types of information 6
 1.4.2 Symbols in graphics 7
 1.5 Documentation 7
 1.5.1 Standard documentation 7
 1.5.2 Supplementary device-dependent documentation ... 7

2 Overview of the Expert operating menu 8

3 Description of device parameters 11
 3.1 "System" submenu 14
 3.1.1 "Display" submenu 14
 3.1.2 "Configuration backup" submenu 29
 3.1.3 "Diagnostic handling" submenu 32
 3.1.4 "Administration" submenu 41
 3.2 "Sensor" submenu 47
 3.2.1 "Measured values" submenu 47
 3.2.2 "System units" submenu 60
 3.2.3 "Process parameters" submenu 75
 3.2.4 "Measurement mode" submenu 83
 3.2.5 "External compensation" submenu 85
 3.2.6 "Calculated values" submenu 88
 3.2.7 "Sensor adjustment" submenu 91
 3.2.8 "Calibration" submenu 98
 3.3 "I/O configuration" submenu 99
 3.4 "Input" submenu 102
 3.4.1 "Current input 1 to n" submenu 102
 3.4.2 "Status input 1 to n" submenu 105
 3.5 "Output" submenu 107
 3.5.1 "Current output 1 to n" submenu 108
 3.5.2 "Pulse/frequency/switch output 1 to n" submenu .. 123
 3.5.3 "Relay output 1 to n" submenu 148
 3.5.4 "Double pulse output" submenu 155
 3.6 "Communication" submenu 159
 3.6.1 "HART input" submenu 160
 3.6.2 "HART output" submenu 165
 3.6.3 "Web server" submenu 182
 3.6.4 "WLAN settings" submenu 185
 3.6.5 "Diagnostic configuration" submenu 189
 3.7 "Application" submenu 197
 3.7.1 "Totalizer 1 to n" submenu 198
 3.7.2 "Viscosity" submenu 203
 3.7.3 "Concentration" submenu 203
 3.7.4 "Custody transfer" submenu 203
 3.8 "Diagnostics" submenu 204
 3.8.1 "Diagnostic list" submenu 207
 3.8.2 "Event logbook" submenu 211
 3.8.3 "Custody transfer logbook" submenu 213
 3.8.4 "Device information" submenu 214
 3.8.5 "Mainboard module" submenu 218
 3.8.6 "Sensor electronic module (ISEM)" submenu 218
 3.8.7 "I/O module 1" submenu 219
 3.8.8 "I/O module 2" submenu 219
 3.8.9 "I/O module 3" submenu 220
 3.8.10 "Display module" submenu 221
 3.8.11 "Min/max values" submenu 221
 3.8.12 "Data logging" submenu 232
 3.8.13 "Heartbeat" submenu 241
 3.8.14 "Simulation" submenu 241

4 Country-specific factory settings 252
 4.1 SI units ... 252
 4.1.1 System units 252
 4.1.2 Full scale values 252
 4.1.3 Output current span 253
 4.1.4 Pulse value 253
 4.1.5 On value low flow cut off 253
 4.2 US units ... 254
 4.2.1 System units 254
 4.2.2 Full scale values 255
 4.2.3 Output current span 255
 4.2.4 Pulse value 255
 4.2.5 On value low flow cut off 256

5 Explanation of abbreviated units 258
 5.1 SI units ... 258
 5.2 US units ... 258
 5.3 Imperial units 260

Index .. 261
1 Document information

1.1 Document function
The document is part of the Operating Instructions and serves as a reference for parameters, providing a detailed explanation of each individual parameter of the Expert operating menu.

It is used to perform tasks that require detailed knowledge of the function of the device:
• Commissioning measurements under difficult conditions
• Optimal adaptation of the measurement to difficult conditions
• Detailed configuration of the communication interface
• Error diagnostics in difficult cases

1.2 Target group
The document is aimed at specialists who work with the device over the entire life cycle and perform specific configurations.

1.3 Using this document

1.3.1 Information on the document structure
The document lists the submenus and their parameters according to the structure from the Expert menu (→ 8), which is displayed when the "Maintenance" user role is enabled.
Detailed information concerning:

- Arrangement of the parameters according to the menu structure of the **Operation** menu, **Setup** menu, **Diagnostics** menu along with a brief description, see the Operating Instructions for the device →

- Operating philosophy of the operating menu: "Operating philosophy" chapter of the Operating Instructions for the device →
1.3.2 Structure of a parameter description

The individual parts of a parameter description are described in the following section:

<table>
<thead>
<tr>
<th>Complete parameter name</th>
<th>Write-protected parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
<td>Navigation path to the parameter via the local display (direct access code) or web browser</td>
</tr>
<tr>
<td></td>
<td>Navigation path to the parameter via the operating tool</td>
</tr>
<tr>
<td></td>
<td>The names of the menus, submenus and parameters are abbreviated to the form in which they appear on the display and in the operating tool.</td>
</tr>
</tbody>
</table>

Prerequisite
The parameter is only available under these specific conditions

Description
Description of the parameter function

Selection
List of the individual options for the parameter
- Option 1
- Option 2

User entry
Input range for the parameter

User interface
Display value/data for the parameter

Factory setting
Default setting ex works

Additional information
Additional explanations (e.g. in examples):
- On individual options
- On display values/data
- On the input range
- On the factory setting
- On the parameter function

1.4 Symbols used

1.4.1 Symbols for certain types of information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip </td>
<td>Indicates additional information.</td>
</tr>
<tr>
<td></td>
<td>Reference to documentation</td>
</tr>
<tr>
<td></td>
<td>Reference to page</td>
</tr>
<tr>
<td></td>
<td>Reference to graphic</td>
</tr>
<tr>
<td></td>
<td>Operation via local display</td>
</tr>
<tr>
<td></td>
<td>Operation via operating tool</td>
</tr>
<tr>
<td></td>
<td>Write-protected parameter</td>
</tr>
</tbody>
</table>
1.4.2 Symbols in graphics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3 ...</td>
<td>Item numbers</td>
<td>A, B, C, ...</td>
<td>Views</td>
</tr>
<tr>
<td>A-A, B-B, C-C, ...</td>
<td>Sections</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.5 Documentation

1.5.1 Standard documentation

Operating Instructions

<table>
<thead>
<tr>
<th>Measuring device</th>
<th>Documentation code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promass A 300</td>
<td>BA01482D</td>
</tr>
<tr>
<td>Promass E 300</td>
<td>BA01484D</td>
</tr>
<tr>
<td>Promass F 300</td>
<td>BA01485D</td>
</tr>
<tr>
<td>Promass H 300</td>
<td>BA01486D</td>
</tr>
<tr>
<td>Promass I 300</td>
<td>BA01487D</td>
</tr>
<tr>
<td>Promass O 300</td>
<td>BA01488D</td>
</tr>
<tr>
<td>Promass P 300</td>
<td>BA01489D</td>
</tr>
<tr>
<td>Promass Q 300</td>
<td>BA01490D</td>
</tr>
<tr>
<td>Promass S 300</td>
<td>BA01491D</td>
</tr>
<tr>
<td>Promass X 300</td>
<td>BA01492D</td>
</tr>
</tbody>
</table>

1.5.2 Supplementary device-dependent documentation

Special documentation

<table>
<thead>
<tr>
<th>Contents</th>
<th>Documentation code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information on the Pressure Equipment Directive</td>
<td>SD01614D</td>
</tr>
<tr>
<td>Functional Safety Manual</td>
<td>SD01727D</td>
</tr>
<tr>
<td>Remote display and operating module DKX001</td>
<td>SD01763D</td>
</tr>
<tr>
<td>Web server</td>
<td>SD01662D</td>
</tr>
<tr>
<td>Heartbeat Technology</td>
<td>SD01642D</td>
</tr>
<tr>
<td>Concentration measurement</td>
<td>SD01644D</td>
</tr>
<tr>
<td>Viscosity Measurement</td>
<td>SD01646D</td>
</tr>
<tr>
<td>Custody transfer</td>
<td>SD01688D</td>
</tr>
</tbody>
</table>
2 Overview of the Expert operating menu

The following table provides an overview of the menu structure of the expert operating menu and its parameters. The page reference indicates where the associated description of the submenu or parameter can be found.

<table>
<thead>
<tr>
<th>Expert</th>
<th>Direct access (0106)</th>
<th>→ 11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Locking status (0004)</td>
<td>→ 12</td>
</tr>
<tr>
<td></td>
<td>Access status (0005)</td>
<td>→ 13</td>
</tr>
<tr>
<td></td>
<td>Enter access code (0003)</td>
<td>→ 13</td>
</tr>
<tr>
<td>System</td>
<td></td>
<td>→ 14</td>
</tr>
<tr>
<td></td>
<td>Display</td>
<td>→ 14</td>
</tr>
<tr>
<td></td>
<td>Configuration backup</td>
<td>→ 29</td>
</tr>
<tr>
<td></td>
<td>Diagnostic handling</td>
<td>→ 32</td>
</tr>
<tr>
<td></td>
<td>Administration</td>
<td>→ 41</td>
</tr>
<tr>
<td>Sensor</td>
<td></td>
<td>→ 47</td>
</tr>
<tr>
<td></td>
<td>Measured values</td>
<td>→ 47</td>
</tr>
<tr>
<td></td>
<td>System units</td>
<td>→ 60</td>
</tr>
<tr>
<td></td>
<td>Process parameters</td>
<td>→ 75</td>
</tr>
<tr>
<td></td>
<td>Measurement mode</td>
<td>→ 83</td>
</tr>
<tr>
<td></td>
<td>External compensation</td>
<td>→ 85</td>
</tr>
<tr>
<td></td>
<td>Calculated values</td>
<td>→ 88</td>
</tr>
<tr>
<td></td>
<td>Sensor adjustment</td>
<td>→ 91</td>
</tr>
<tr>
<td></td>
<td>Calibration</td>
<td>→ 98</td>
</tr>
<tr>
<td></td>
<td>I/O configuration</td>
<td>→ 99</td>
</tr>
<tr>
<td></td>
<td>I/O module 1 to n terminal numbers (3902–1 to n)</td>
<td>→ 100</td>
</tr>
<tr>
<td></td>
<td>I/O module 1 to n information (3906–1 to n)</td>
<td>→ 100</td>
</tr>
</tbody>
</table>
Overview of the Expert operating menu

<table>
<thead>
<tr>
<th>I/O module 1 to n type (3901–1 to n)</th>
<th>→ 101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply I/O configuration (3907)</td>
<td>→ 101</td>
</tr>
<tr>
<td>Conversion code (2762)</td>
<td>→ 101</td>
</tr>
<tr>
<td>Input</td>
<td>→ 102</td>
</tr>
<tr>
<td>Current input 1 to n</td>
<td>→ 102</td>
</tr>
<tr>
<td>Status input 1 to n</td>
<td>→ 105</td>
</tr>
<tr>
<td>Output</td>
<td>→ 107</td>
</tr>
<tr>
<td>Current output 1 to n</td>
<td>→ 108</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n</td>
<td>→ 123</td>
</tr>
<tr>
<td>Relay output 1 to n</td>
<td>→ 148</td>
</tr>
<tr>
<td>Double pulse output</td>
<td>→ 155</td>
</tr>
<tr>
<td>Communication</td>
<td>→ 159</td>
</tr>
<tr>
<td>HART input</td>
<td>→ 160</td>
</tr>
<tr>
<td>HART output</td>
<td>→ 165</td>
</tr>
<tr>
<td>Web server</td>
<td>→ 182</td>
</tr>
<tr>
<td>WLAN settings</td>
<td>→ 185</td>
</tr>
<tr>
<td>Diagnostic configuration</td>
<td>→ 189</td>
</tr>
<tr>
<td>Application</td>
<td>→ 197</td>
</tr>
<tr>
<td>Reset all totalizers (2806)</td>
<td>→ 198</td>
</tr>
<tr>
<td>Totalizer 1 to n</td>
<td>→ 198</td>
</tr>
<tr>
<td>Viscosity</td>
<td>→ 203</td>
</tr>
</tbody>
</table>
Overview of the Expert operating menu

Proline Promass 300 HART

- Concentration → 203
- Custody transfer → 203
- Diagnostics → 204
 - Actual diagnostics (0691) → 205
 - Previous diagnostics (0690) → 206
 - Operating time from restart (0653) → 206
 - Operating time (0652) → 207
- Diagnostic list → 207
- Event logbook → 211
- Custody transfer logbook → 213
- Device information → 214
- Mainboard module → 218
- Sensor electronic module (ISEM) → 218
- I/O module 1 → 219
- I/O module 2 → 219
- I/O module 3 → 220
- Display module → 221
- Min/max values → 221
- Data logging → 232
- Heartbeat → 241
- Simulation → 241
3 Description of device parameters

In the following section, the parameters are listed according to the menu structure of the local display. Specific parameters for the operating tools are included at the appropriate points in the menu structure.

<table>
<thead>
<tr>
<th>Expert</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access (0106)</td>
<td>→ 11</td>
</tr>
<tr>
<td>Locking status (0004)</td>
<td>→ 12</td>
</tr>
<tr>
<td>Access status (0005)</td>
<td>→ 13</td>
</tr>
<tr>
<td>Enter access code (0003)</td>
<td>→ 13</td>
</tr>
<tr>
<td>System</td>
<td>→ 14</td>
</tr>
<tr>
<td>Sensor</td>
<td>→ 47</td>
</tr>
<tr>
<td>I/O configuration</td>
<td>→ 99</td>
</tr>
<tr>
<td>Input</td>
<td>→ 102</td>
</tr>
<tr>
<td>Output</td>
<td>→ 107</td>
</tr>
<tr>
<td>Communication</td>
<td>→ 159</td>
</tr>
<tr>
<td>Application</td>
<td>→ 197</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>→ 204</td>
</tr>
</tbody>
</table>

Direct access

Navigation

Expert → Direct access (0106)

Description

Use this function to enter the access code to enable direct access to the desired parameter via the local display. A parameter number is assigned to each parameter for this purpose.

User entry

0 to 65535

Additional information

User entry

The direct access code consists of a 4-digit number and the channel number, which identifies the channel of a process variable: e.g. 0914-1. In the navigation view, this appears on the right-hand side in the header of the selected parameter.
1 Direct access code

Note the following when entering the direct access code:
• The leading zeros in the direct access code do not have to be entered.
 Example: Input of "914" instead of "0914"
• If no channel number is entered, channel 1 is jumped to automatically.
 Example: Enter 0914 → Assign process variable parameter
• If a different channel is jumped to: Enter the direct access code with the corresponding channel number.
 Example: Enter 0914-2 → Assign process variable parameter

Locking status

Navigation

Expert → Locking status (0004)

Description

Displays the active write protection.

User interface

• Hardware locked
• SIL locked
• CT active - all parameters
• CT active - defined parameters
• Temporarily locked

Additional information

User interface

If two or more types of write protection are active, the write protection with the highest priority is shown on the local display. In the operating tool all active types of write protection are displayed.

Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device → 7

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>The access status displayed in the Access status parameter (→ 13) applies . Only appears on local display.</td>
</tr>
<tr>
<td>Hardware locked</td>
<td>The DIP switch for hardware locking is activated on the PCB board. This locks write access to the parameters (e.g. via local display or operating tool).</td>
</tr>
<tr>
<td>(priority 1)</td>
<td></td>
</tr>
<tr>
<td>SIL locked</td>
<td>The SIL mode is enabled. This locks write access to the parameters (e.g. via local display or operating tool).</td>
</tr>
<tr>
<td>(priority 2)</td>
<td></td>
</tr>
</tbody>
</table>
Description of device parameters

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT active - all parameters (priority 3)</td>
<td>Only available for Promass F, O, Q and X.</td>
</tr>
<tr>
<td></td>
<td>The DIP switch for custody transfer mode is activated on the PCB board. This locks write access to all parameters (e.g. via local display or operating tool).</td>
</tr>
<tr>
<td></td>
<td>For detailed information on custody transfer mode, see the Special Documentation for the device → 7</td>
</tr>
<tr>
<td>CT active - defined parameters (Priority 4)</td>
<td>Only available for Promass F, O, Q and X.</td>
</tr>
<tr>
<td></td>
<td>The DIP switch for custody transfer mode is activated on the PCB board. This locks write access to the defined parameters (e.g. via local display or operating tool).</td>
</tr>
<tr>
<td></td>
<td>For detailed information on custody transfer mode, see the Special Documentation for the device → 7</td>
</tr>
<tr>
<td>Temporarily locked (priority 5)</td>
<td>Write access to the parameters is temporarily locked on account of internal processes running in the device (e.g. data upload/download, reset etc.). Once the internal processing has been completed, the parameters can be changed once again.</td>
</tr>
</tbody>
</table>

Access status

Navigation

- Expert → Access status (0005)

Description

Displays the access authorization to the parameters via the local display, Web browser or operating tool.

User interface

- Operator
- Maintenance

Factory setting

- Maintenance

Additional information

Description

Access authorization can be modified via the Enter access code parameter (→ 13).

If additional write protection is active, this restricts the current access authorization even further.

User interface

Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device → 7

Enter access code

Navigation

- Expert → Ent. access code (0003)

Description

Use this function to enter the user-specific release code to remove parameter write protection.
3.1 "System" submenu

Navigation

Expert → System

- System
 - Display
 - Display language (0104)
 - Format display (0098)
 - Value 1 display (0107)
 - 0% bargraph value 1 (0123)
 - 100% bargraph value 1 (0125)
 - Decimal places 1 (0095)
 - Value 2 display (0108)
 - Decimal places 2 (0117)
 - Value 3 display (0110)
 - 0% bargraph value 3 (0124)
 - 100% bargraph value 3 (0126)
 - Decimal places 3 (0118)

- Configuration backup
- Diagnostic handling
- Administration
Display language

Navigation
Expert → System → Display → Display language (0104)

Prerequisite
A local display is provided.

Description
Use this function to select the configured language on the local display.

Selection
- English
- Deutsch *
- Français *
- Español *
- Italiano *
- Nederlands *
- Portuguesa *
- Polski *
- русский язык (Russian) *
- Svenska *
- Türkçe *
- 中文 (Chinese) *
- 日本語 (Japanese) *
- 한국어 (Korean) *
- Bahasa Indonesia *
- tiếng Việt (Vietnamese) *
- čeština (Czech) *

Factory setting
English (alternatively, the ordered language is preset in the device)

* Visibility depends on order options or device settings
Format display

Navigation

Expert → System → Display → Format display (0098)

Prerequisite

A local display is provided.

Description

Use this function to select how the measured value is shown on the local display.

Selection

- 1 value, max. size
- 1 bargraph + 1 value
- 2 values
- 1 value large + 2 values
- 4 values

Factory setting

1 value, max. size

Additional information

Description

The display format (size, bar graph etc.) and number of measured values displayed simultaneously (1 to 4) can be configured. This setting only applies to normal operation.

- The Value 1 display parameter (→ 18) to Value 4 display parameter (→ 24) are used to specify which measured values are shown on the local display and in what order.
- If more measured values are specified than the display mode selected permits, then the values alternate on the device display. The display time until the next change is configured via the Display interval parameter (→ 25).

Custody transfer measurement

Only available for Promass F, O, Q and X.

- Once the measuring device has been enabled for custody transfer mode, depending on the custody transfer approval selected the display can switch between showing the relevant information and the custody transfer counter.
- In addition, a padlock symbol appears in the header of the display (⃗).

For detailed information on custody transfer mode, see the Special Documentation for the device → 7
Possible measured values shown on the local display:

"1 value, max. size" option

![1 value, max. size option]

"1 bargraph + 1 value" option

![1 bargraph + 1 value option]

"2 values" option

![2 values option]

"1 value large + 2 values" option

![1 value large + 2 values option]

"4 values" option

![4 values option]
Value 1 display

Navigation

Expert → System → Display → Value 1 display (0107)

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values to be shown on the local display.

Selection

- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow *
- Carrier mass flow *
- Density
- Reference density
- Concentration *
- Dynamic viscosity *
- Kinematic viscosity *
- Temp. compensated dynamic viscosity *
- Temp. compensated kinematic viscosity *
- Temperature
- Carrier pipe temperature *
- Electronic temperature
- Oscillation frequency 0 *
- Oscillation frequency 1 *
- Oscillation amplitude 0 *
- Oscillation amplitude 1 *
- Frequency fluctuation 0 *
- Frequency fluctuation 1 *
- Oscillation damping 0 *
- Oscillation damping 1 *
- Oscillation damping fluctuation 0 *
- Oscillation damping fluctuation 1 *
- Signal asymmetry
- Exciter current 0 *
- Exciter current 1 *
- HBSI *
- Totalizer 1
- Totalizer 2
- Totalizer 3
- Current output 1 *
- Current output 2 *
- Current output 3 *

Factory setting

Mass flow

* Visibility depends on order options or device settings
Additional information

Description

If several measured values are displayed at once, the measured value selected here will be
the first value to be displayed. The value is only displayed during normal operation.

The **Format display** parameter (→ 16) is used to specify how many measured
values are displayed simultaneously and how.

Custody transfer measurement

Only available for Promass F, O, Q and X.

Once the measuring device has been enabled for custody transfer mode, depending on the
custody transfer approval selected the display can switch to show the relevant information.

For detailed information on custody transfer mode, see the Special Documentation for
the device → 7

Dependency

The unit of the displayed measured value is taken from the **System units** submenu
(→ 60).

Selection

- **Oscillation frequency** option

 Displays the current oscillation frequency of the measuring tubes. This frequency
depends on the density of the medium.

- **Oscillation amplitude** option

 Displays the relative oscillation amplitude of the measuring tubes in relation to the
preset value. This value is 100 % under optimum conditions.

- **Oscillation damping** option

 Displays the current oscillation damping. Oscillation damping is an indicator of the
sensor's current need for excitation power.

- **Signal asymmetry** option

 Displays the relative difference between the oscillation amplitude at the inlet and outlet
of the sensor. The measured value is the result of production tolerances of the sensor
coils and should remain constant over the life time of a sensor.

0% bargraph value 1

Navigation

Expert → System → Display → 0% bargraph 1 (0123)

Prerequisite

A local display is provided.

Description

Use this function to enter the 0% bar graph value to be shown on the display for the
measured value 1.

User entry

Signed floating-point number

Factory setting

Country-specific:

- 0 kg/h
- 0 lb/min
Description of device parameters

Additional information

Description

The **Format display** parameter (→ 16) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the **System units** submenu (→ 60).

100% bargraph value 1

Navigation

Expert → System → Display → 100% bargraph 1 (0125)

Prerequisite

A local display is provided.

Description

Use this function to enter the 100% bar graph value to be shown on the display for the measured value 1.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter (→ 252)

Additional information

Description

The **Format display** parameter (→ 16) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the **System units** submenu (→ 60).

Decimal places 1

Navigation

Expert → System → Display → Decimal places 1 (0095)

Prerequisite

A measured value is specified in the **Value 1 display** parameter (→ 18).

Description

Use this function to select the number of decimal places for measured value 1.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting

x.xx
Additional information

Description

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 2 display

Navigation

Expert → System → Display → Value 2 display (0108)

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values to be shown on the local display.

Selection

- None
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow *
- Carrier mass flow *
- Density
- Reference density
- Concentration *
- Dynamic viscosity *
- Kinematic viscosity *
- Temp. compensated dynamic viscosity *
- Temp. compensated kinematic viscosity *
- Temperature
- Carrier pipe temperature *
- Electronic temperature
- Oscillation frequency 0
- Oscillation frequency 1 *
- Oscillation amplitude 0 *
- Oscillation amplitude 1 *
- Frequency fluctuation 0
- Frequency fluctuation 1 *
- Oscillation damping 0
- Oscillation damping 1 *
- Oscillation damping fluctuation 0
- Oscillation damping fluctuation 1 *
- Signal asymmetry
- Exciter current 0
- Exciter current 1 *
- HBSI *
- Totalizer 1
- Totalizer 2
- Totalizer 3
- Current output 1
- Current output 2 *
- Current output 3 *
- Custody transfer counter *

Factory setting

None

* Visibility depends on order options or device settings
Description of device parameters

Additional information

Description

If several measured values are displayed at once, the measured value selected here will be the second value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 16) is used to specify how many measured values are displayed simultaneously and how.

Custody transfer measurement

Only available for Promass F, O, Q and X.

Once the measuring device has been enabled for custody transfer mode, depending on the custody transfer approval selected the display can switch to showing the custody transfer counter.

For detailed information on custody transfer mode, see the Special Documentation for the device → 7

Dependency

The unit of the displayed measured value is taken from the System units submenu (→ 60).

Decimal places 2

Navigation

Expert → System → Display → Decimal places 2 (0117)

Prerequisite

A measured value is specified in the Value 2 display parameter (→ 21).

Description

Use this function to select the number of decimal places for measured value 2.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx
- x.xxxxx

Factory setting

x.xx

Additional information

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 3 display

Navigation

Expert → System → Display → Value 3 display (0110)

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values to be shown on the local display.
Selection
For the picklist, see the Value 2 display parameter (→ 21)

Factory setting
None

Additional information
Description
If several measured values are displayed at once, the measured value selected here will be the third value to be displayed. The value is only displayed during normal operation.

> The **Format display** parameter (→ 16) is used to specify how many measured values are displayed simultaneously and how.

Selection

> The unit of the displayed measured value is taken from the **System units** submenu (→ 60).

0% bargraph value 3

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Display → 0% bargraph 3 (0124)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>A selection was made in the Value 3 display parameter (→ 22).</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to enter the 0% bar graph value to be shown on the display for the measured value 3.</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>
| Factory setting | Country-specific:
- 0 kg/h
- 0 lb/min |
| Additional information | **Description**
> The **Format display** parameter (→ 16) is used to specify that the measured value is to be displayed as a bar graph.
User entry
> The unit of the displayed measured value is taken from the **System units** submenu (→ 60). |

100% bargraph value 3

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Display → 100% bargraph 3 (0126)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>A selection was made in the Value 3 display parameter (→ 22).</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to enter the 100% bar graph value to be shown on the display for the measured value 3.</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>
Description of device parameters

Proline Promass 300 HART

Factory setting 0

Additional information

- **Description**
 The **Format display** parameter (→ 16) is used to specify that the measured value is to be displayed as a bar graph.

- **User entry**
 The unit of the displayed measured value is taken from the **System units** submenu (→ 60).

Decimal places 3

Navigation
Expert → System → Display → Decimal places 3 (0118)

Prerequisite
A measured value is specified in the **Value 3 display** parameter (→ 22).

Description
Use this function to select the number of decimal places for measured value 3.

Selection
- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting x.xx

Additional information
This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 4 display

Navigation
Expert → System → Display → Value 4 display (0109)

Prerequisite
A local display is provided.

Description
Use this function to select one of the measured values to be shown on the local display.

Selection
For the picklist, see the **Value 2 display** parameter (→ 21)

Factory setting None
Additional information

Description

If several measured values are displayed at once, the measured value selected here will be the fourth value to be displayed. The value is only displayed during normal operation.

The **Format display** parameter (→ 16) is used to specify how many measured values are displayed simultaneously and how.

Selection

The unit of the displayed measured value is taken from the **System units** submenu (→ 60).

Decimal places 4

Navigation

Expert → System → Display → Decimal places 4 (0119)

Prerequisite

A measured value is specified in the **Value 4 display** parameter (→ 24).

Description

Use this function to select the number of decimal places for measured value 4.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting

x.xx

Additional information

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Display interval

Navigation

Expert → System → Display → Display interval (0096)

Prerequisite

A local display is provided.

Description

Use this function to enter the length of time the measured values are displayed if the values alternate on the display.

User entry

1 to 10 s

Factory setting

5 s
Additional information

Description

This type of alternating display only occurs automatically if the number of measured values defined exceeds the number of values the selected display format can display simultaneously.

- The Value 1 display parameter (→ 18) to Value 4 display parameter (→ 24) are used to specify which measured values are shown on the local display.
- The display format of the displayed measured values is specified using the Format display parameter (→ 16).

Custody transfer measurement

Only available for Promass F, O, Q and X.

Once the measuring device has been enabled for custody transfer mode, depending on the custody transfer approval selected the display can switch between showing the relevant information and the custody transfer counter.

For detailed information on custody transfer mode, see the Special Documentation for the device → 7

Display damping

Navigation

Expert → System → Display → Display damping (0094)

Prerequisite

A local display is provided.

Description

Use this function to enter a time constant for the reaction time of the local display to fluctuations in the measured value caused by process conditions.

User entry

0.0 to 999.9 s

Factory setting

0.0 s

Additional information

Use this function to enter a time constant (PT1 element 1) for display damping:

- If a low time constant is entered, the display reacts particularly quickly to fluctuating measured variables.
- On the other hand, the display reacts more slowly if a high time constant is entered.

Damping is switched off if 0 is entered (factory setting).

Header

Navigation

Expert → System → Display → Header (0097)

Prerequisite

A local display is provided.

Description

Use this function to select the contents of the header of the local display.

1) proportional transmission behavior with first order delay
Selection
- Device tag
- Free text

Factory setting
Device tag

Additional information
Description
The header text only appears during normal operation.

![Header text on display](image-url)

1 Position of the header text on the display

Selection
- Device tag
 Is defined in the Device tag parameter (→ 214).
- Free text
 Is defined in the Header text parameter (→ 27).

Header text

Navigation
Expert → System → Display → Header text (0112)

Prerequisite
In the Header parameter (→ 26), the Free text option is selected.

Description
Use this function to enter a customer-specific text for the header of the local display.

User entry
Max. 12 characters such as letters, numbers or special characters (e.g. @, %, /)

Factory setting

Additional information
Description
The header text only appears during normal operation.

![Header text on display](image-url)

1 Position of the header text on the display

User entry
The number of characters displayed depends on the characters used.
Separator

Navigation

Expert → System → Display → Separator (0101)

Prerequisite

A local display is provided.

Description

Use this function to select the decimal separator.

Selection

- . (point)
- , (comma)

Factory setting

. (point)

Contrast display

Navigation

Expert → System → Display → Contrast display (0105)

Prerequisite

A local display is provided.

Description

Use this function to enter a value to adapt the display contrast to the ambient conditions (e.g. the lighting or viewing angle).

User entry

20 to 80 %

Factory setting

Depends on the display

Backlight

Navigation

Expert → System → Display → Backlight (0111)

Prerequisite

One of the following conditions is met:

- Order code for "Display; operation", option F "4-line, illum.; touch control"
- Order code for "Display; operation", option G "4-line, illum.; touch control +WLAN"
- Order code for "Display; operation", option O "remote 4-line display, illum; 10m/30ft cable; touch control"

Description

Use this function to switch the backlight of the local display on and off.

Selection

- Disable
- Enable

Factory setting

Enable
3.1.2 "Configuration backup" submenu

Navigation

[] [] Expert → System → Config. backup

<table>
<thead>
<tr>
<th>Configuration backup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating time</td>
</tr>
<tr>
<td>Last backup</td>
</tr>
<tr>
<td>Configuration management</td>
</tr>
<tr>
<td>Backup state</td>
</tr>
<tr>
<td>Comparison result</td>
</tr>
</tbody>
</table>

Operating time

Navigation

[] [] Expert → System → Config. backup → Operating time (0652)

Description

Use this function to display the length of time the device has been in operation.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

User interface

The maximum number of days is 9999, which is equivalent to 27 years.

Last backup

Navigation

[] [] Expert → System → Config. backup → Last backup (2757)

Description

Displays the time since a backup copy of the data was last saved to the device memory.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Configuration management

Navigation

[] [] Expert → System → Config. backup → Config. management (2758)

Description

Use this function to select an action to save the data to the device memory.
Selection

- Cancel
- Execute backup
- Restore
- Compare
- Clear backup data

Factory setting

Cancel

Additional information

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel</td>
<td>No action is executed and the user exits the parameter.</td>
</tr>
<tr>
<td>Execute backup</td>
<td>A backup copy of the current device configuration is saved from the integrated HistoROM to the memory of the device. The backup copy includes the transmitter data of the device. The following message appears on local display: Backup active, please wait!</td>
</tr>
<tr>
<td>Restore</td>
<td>The last backup copy of the device configuration is restored from the device memory to the device's integrated HistoROM. The backup copy includes the transmitter data of the device. The following message appears on local display: Restore active! Do not interrupt power supply!</td>
</tr>
<tr>
<td>Compare</td>
<td>The device configuration saved in the device memory is compared with the current device configuration of the integrated HistoROM. The following message appears on local display: Comparing files The result can be viewed in Comparison result parameter.</td>
</tr>
<tr>
<td>Clear backup data</td>
<td>The backup copy of the device configuration is deleted from the memory of the device. The following message appears on local display: Deleting file</td>
</tr>
</tbody>
</table>

HistoROM

A HistoROM is a 'non-volatile' device memory in the form of an EEPROM.

Backup state

Navigation

רכים Expert → System → Config. backup → Backup state (2759)

Description

Displays the status of the data backup process.

User interface

- None
- Backup in progress
- Restoring in progress
- Delete in progress
- Compare in progress
- Restoring failed
- Backup failed

Factory setting

None
Comparison result

Navigation

Expert → System → Config. backup → Compar. result (2760)

Description
Displays the last result of the comparison of the data records in the device memory and in the HistoROM.

User interface
- Settings identical
- Settings not identical
- No backup available
- Backup settings corrupt
- Check not done
- Dataset incompatible

Factory setting
Check not done

Additional information

Description

The comparison is started via the **Compare** option in the **Configuration management** parameter (→ 29).

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settings identical</td>
<td>The current device configuration of the HistoROM is identical to the backup copy in the device memory. The settings for the transmitter are not identical.</td>
</tr>
<tr>
<td>Settings not identical</td>
<td>The current device configuration of the HistoROM is not identical to the backup copy in the device memory.</td>
</tr>
<tr>
<td>No backup available</td>
<td>There is no backup copy of the device configuration of the HistoROM in the device memory.</td>
</tr>
<tr>
<td>Backup settings corrupt</td>
<td>The current device configuration of the HistoROM is corrupt or not compatible with the backup copy in the device memory.</td>
</tr>
<tr>
<td>Check not done</td>
<td>The device configuration of the HistoROM has not yet been compared to the backup copy in the device memory.</td>
</tr>
<tr>
<td>Dataset incompatible</td>
<td>The backup copy in the device memory is not compatible with the device.</td>
</tr>
</tbody>
</table>

HistoROM

A HistoROM is a "non-volatile" device memory in the form of an EEPROM.
3.1.3 "Diagnostic handling" submenu

Navigation

Expert → System → Diagn. handling

Alarm delay (0651)

Description

Use this function to enter the time interval until the device generates a diagnostic message. The diagnostic message is reset without a time delay.

User entry

0 to 60 s

Factory setting

0 s

Additional information

This setting affects the following diagnostic messages:

- 046 Sensor limit exceeded
- 140 Sensor signal asymmetrical
- 144 Measuring error too high
- 830 Sensor temperature too high
- 831 Sensor temperature too low
- 832 Electronic temperature too high
- 833 Electronic temperature too low
- 834 Process temperature too high
- 835 Process temperature too low
- 843 Process limit
- 862 Partly filled pipe
- 912 Medium inhomogeneous
- 913 Medium unsuitable
- 944 Monitoring failed

"Diagnostic behavior" submenu

Each item of diagnostic information is assigned a specific diagnostic behavior at the factory. The user can change this assignment for specific diagnostic information in the **Diagnostic behavior** submenu (→ 32).
The following options are available in the **Assign behavior of diagnostic no. xxx** parameters:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>The device stops measurement. The signal outputs and totalizers assume the defined alarm condition. A diagnostic message is generated. The background lighting changes to red.</td>
</tr>
<tr>
<td>Warning</td>
<td>The device continues to measure. The signal outputs and totalizers are not affected. A diagnostic message is generated.</td>
</tr>
<tr>
<td>Logbook entry only</td>
<td>The device continues to measure. The diagnostic message is displayed only in the Event logbook submenu (→ 211) (Event list submenu (→ 212)) and is not displayed in alternation with the operational display.</td>
</tr>
<tr>
<td>Off</td>
<td>The diagnostic event is ignored, and no diagnostic message is generated or entered.</td>
</tr>
</tbody>
</table>

For a list of all the diagnostic events, see the Operating Instructions for the device.

Navigation
 Canonical
 Expert → System → Diagn. handling → Diagn. behavior

Diagnostic behavior

- Assign behavior of diagnostic no. 046 (0709) → 34
- Assign behavior of diagnostic no. 140 (0708) → 35
- Assign behavior of diagnostic no. 144 (0731) → 35
- Assign behavior of diagnostic no. 374 (0710) → 35
- Assign behavior of diagnostic no. 441 (0657) → 36
- Assign behavior of diagnostic no. 442 (0658) → 36
- Assign behavior of diagnostic no. 443 (0659) → 36
- Assign behavior of diagnostic no. 444 (0740) → 37
- Assign behavior of diagnostic no. 543 (0643) → 37
- Assign behavior of diagnostic no. 830 (0800) → 37
- Assign behavior of diagnostic no. 831 (0641) → 38
Assign behavior of diagnostic no. 046 (Sensor limit exceeded)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 046 (0709)

Description

Option for changing the diagnostic behavior of the diagnostic message **046 Sensor limit exceeded**.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning

Additional information

For a detailed description of the options available, see → 32
Assign behavior of diagnostic no. 140 (Sensor signal asymmetrical)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 140 (0708)

Description

Use this function to change the diagnostic behavior of the diagnostic message **140 Sensor signal asymmetrical**.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning

Additional information

For a detailed description of the options available, see → 32

Assign behavior of diagnostic no. 144 (Measuring error too high)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 144 (0731)

Description

Option for changing the diagnostic behavior of the diagnostic message **144 Measuring error too high**.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Alarm

Additional information

For a detailed description of the options available, see → 32

Assign behavior of diagnostic no. 374 (Sensor electronic (ISEM) faulty)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 374 (0710)

Description

Option for changing the diagnostic behavior of the diagnostic message **374 Sensor electronic (ISEM) faulty**.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning

Additional information

For a detailed description of the options available, see → 32
Assign behavior of diagnostic no. 441 (Current output 1 to n)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 441 (0657)

Description
Use this function to change the diagnostic behavior of the diagnostic message
441 Current output 1 to n.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 32

Assign behavior of diagnostic no. 442 (Frequency output 1 to n)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 442 (0658)

Prerequisite
The measuring device has a pulse/frequency/switch output.

Description
Use this function to change the diagnostic behavior of the diagnostic message
442 Frequency output 1 to n.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 32

Assign behavior of diagnostic no. 443 (Pulse output 1 to n)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 443 (0659)

Prerequisite
The measuring device has a pulse/frequency/switch output.

Description
Use this function to change the diagnostic behavior of the diagnostic message
443 Pulse output 1 to n.

Selection
- Off
- Alarm
- Warning
- Logbook entry only
Assign behavior of diagnostic no. 444 (Current input 1 to n)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 444 (0740)

Prerequisite
The device has one current input.

Description
Use this function to change the diagnostic behavior of the diagnostic message 444 Current input 1 to n.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 32

Assign behavior of diagnostic no. 543 (Double pulse output)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 543 (0643)

Description
Use this function to change the diagnostic behavior of the diagnostic message 543 Double pulse output.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 32

Assign behavior of diagnostic no. 830 (Sensor temperature too high)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 830 (0800)

Description
Use this function to change the diagnostic behavior of the diagnostic message 830 Sensor temperature too high.
Description of device parameters

Proline Promass 300 HART

<table>
<thead>
<tr>
<th>Selection</th>
<th>Off</th>
<th>Alarm</th>
<th>Warning</th>
<th>Logbook entry only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory setting</td>
<td>Alarm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional information

For a detailed description of the options available, see → 32

Assign behavior of diagnostic no. 831 (Sensor temperature too low)

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 831 (0641)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to change the diagnostic behavior of the diagnostic message 831 Sensor temperature too low.</td>
</tr>
<tr>
<td>Selection</td>
<td>Off</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Alarm</td>
</tr>
</tbody>
</table>

Additional information

For a detailed description of the options available, see → 32

Assign behavior of diagnostic no. 832 (Electronic temperature too high)

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 832 (0681)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to change the diagnostic behavior of the diagnostic message 832 Electronic temperature too high.</td>
</tr>
<tr>
<td>Selection</td>
<td>Off</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Logbook entry only</td>
</tr>
</tbody>
</table>

Additional information

For a detailed description of the options available, see → 32
Assign behavior of diagnostic no. 833 (Electronic temperature too low)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 833 (0682)

Description

Use this function to change the diagnostic behavior of the diagnostic message 833 Electronic temperature too low.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Logbook entry only

Additional information

For a detailed description of the options available, see → 32

Assign behavior of diagnostic no. 834 (Process temperature too high)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 834 (0700)

Description

Use this function to change the diagnostic behavior of the diagnostic message 834 Process temperature too high.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning

Additional information

For a detailed description of the options available, see → 32

Assign behavior of diagnostic no. 835 (Process temperature too low)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 835 (0702)

Description

Use this function to change the diagnostic behavior of the diagnostic message 835 Process temperature too low.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning

Additional information

For a detailed description of the options available, see → 32
Description of device parameters

Assign behavior of diagnostic no. 862 (Empty pipe)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 862 (0679)

Description
Use this function to change the diagnostic behavior of the diagnostic message 862 Empty pipe.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 32

Assign behavior of diagnostic no. 912 (Medium inhomogeneous)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 912 (0703)

Description
Option for changing the diagnostic behavior of the diagnostic message 912 Medium inhomogeneous.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 32

Assign behavior of diagnostic no. 913 (Medium unsuitable)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 913 (0712)

Description
Option for changing the diagnostic behavior of the diagnostic message 913 Medium unsuitable.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 32
Assign behavior of diagnostic no. 944 (Monitoring failed)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 944 (0732)

Description
Option for changing the diagnostic behavior of the diagnostic message 944 Monitoring failed.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 32

Assign behavior of diagnostic no. 948 (Oscillation damping too high)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 948 (0744)

Description
Option for changing the diagnostic behavior of the diagnostic message 948 Oscillation damping too high.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 32

3.1.4 "Administration" submenu

Navigation

Expert → System → Administration

- Define access code
 → 42
- Reset access code
 → 43
- Device reset (0000)
 → 44
- Activate SW option (0029)
 → 44
"Define access code" wizard

The Define access code wizard (→ 42) is only available when operating via the local display or Web browser.

If operating via the operating tool, the Define access code parameter can be found directly in the Administration submenu. There is no Confirm access code parameter if the device is operated via the operating tool.

Navigation

Expert → System → Administration → Def. access code

Description

Use this function to enter a user-specific release code to restrict write-access to the parameters. This protects the device configuration against any inadvertent modifications via the local display, Web browser, FieldCare or DeviceCare (via CDI-RJ45 service interface).

User entry

Max. 16-digit character string comprising numbers, letters and special characters

Additional information

Description

The write protection affects all parameters in the document marked with the symbol. On the local display, the symbol in front of a parameter indicates that the parameter is write-protected.

The parameters that cannot be write-accessed are grayed out in the Web browser.

User entry

A message is displayed if the access code is not in the input range.

Factory setting

If the factory setting is not changed or 0 is defined as the access code, the parameters are not write-protected and the device configuration data can be modified. The user is logged on in the "Maintenance" role.
Confirm access code

Navigation

Expert \(\rightarrow\) System \(\rightarrow\) Administration \(\rightarrow\) Def. access code \(\rightarrow\) Confirm code

Description
Enter the defined release code a second time to confirm the release code.

User entry
Max. 16-digit character string comprising numbers, letters and special characters

"Reset access code" submenu

Navigation

Expert \(\rightarrow\) System \(\rightarrow\) Administration \(\rightarrow\) Reset acc. code

Reset access code

- Operating time (0652) \(\rightarrow\) 43
- Reset access code (0024) \(\rightarrow\) 43

Operating time

Navigation

Expert \(\rightarrow\) System \(\rightarrow\) Administration \(\rightarrow\) Reset acc. code \(\rightarrow\) Operating time (0652)

Description
Use this function to display the length of time the device has been in operation.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
User interface
The maximum number of days is 9999, which is equivalent to 27 years.

Reset access code

Navigation

Expert \(\rightarrow\) System \(\rightarrow\) Administration \(\rightarrow\) Reset acc. code \(\rightarrow\) Reset acc. code (0024)

Description
Use this function to enter a reset code to reset the user-specific release code to the factory setting.

User entry
Character string comprising numbers, letters and special characters

Factory setting
0x00
Additional information

Description

For a reset code, contact your Endress+Hauser service organization.

User entry

The reset code can only be entered via:
- Web browser
- DeviceCare, FieldCare (via CDI RJ45 interface)
- Fieldbus

Additional parameters in the "Administration" submenu

Device reset

Navigation

Expert → System → Administration → Device reset (0000)

Description

Use this function to choose whether to reset the device configuration - either entirely or in part - to a defined state.

Selection

- Cancel
- To delivery settings
- Restart device
- Restore S-DAT backup

Factory setting

Cancel

Additional information

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel</td>
<td>No action is executed and the user exits the parameter.</td>
</tr>
<tr>
<td>To delivery settings</td>
<td>Every parameter for which a customer-specific default setting was ordered is reset to this customer-specific value. All other parameters are reset to the factory setting.</td>
</tr>
<tr>
<td>Restart device</td>
<td>The restart resets every parameter whose data are in the volatile memory (RAM) to the factory setting (e.g. measured value data). The device configuration remains unchanged.</td>
</tr>
<tr>
<td>Restore S-DAT backup</td>
<td>Restore the data that are saved on the S-DAT. The data record is restored from the electronics memory to the S-DAT.</td>
</tr>
</tbody>
</table>

Activate SW option

Navigation

Expert → System → Administration → Activate SW opt. (0029)

Description

Use this function to enter an activation code to enable an additional, ordered software option.
User entry
Max. 10-digit string consisting of numbers.

Factory setting
Depends on the software option ordered

Additional information

Description
If a measuring device was ordered with an additional software option, the activation code is programmed in the device at the factory.

User entry
To activate a software option subsequently, please contact your Endress+Hauser sales organization.

NOTE!
The activation code is linked to the serial number of the measuring device and varies according to the device and software option.

If an incorrect or invalid code is entered, this results in the loss of software options that have already been activated.

- Before you enter a new activation code, make a note of the current activation code.
- Enter the new activation code provided by Endress+Hauser when the new software option was ordered.
- Once the activation code has been entered, check if the new software option is displayed in the Software option overview parameter (→ 45).
 - The new software option is active if it is displayed.
 - If the new software option is not displayed or all software options have been deleted, the code entered was either incorrect or invalid.
 - If the code entered is incorrect or invalid, enter the old activation code.
 - Have your Endress+Hauser sales organization check the new activation code remembering to specify the serial number or ask for the code again.

Example for a software option
Order code for "Application package", option EA "Extended HistoROM"

The software options currently enabled are displayed in the Software option overview parameter (→ 45).

Web browser
Once a software option has been activated, the page must be loaded again in the Web browser.
Description of device parameters

- Concentration
- Viscosity
- Custody transfer

Additional information

Description
Displays all the options that are available if ordered by the customer.

"Extended HistoROM" option
Order code for "Application package", option EA "Extended HistoROM"

"SIL" option
Order code for "Additional approval", option LA "SIL"

"Heartbeat Verification" option and "Heartbeat Monitoring" option
Order code for "Application package", option EB "Heartbeat Verification + Monitoring"

"Concentration" option
Order code for "Application package", option ED "Concentration" and option EE "Special density"

"Viscosity" option
Only available for Promass I.
Order code for "Application package", option EG "Viscosity"

"Custody transfer" option
The measuring device has an approval for custody transfer measurement.
Detailed information on the national and international approvals for custody transfer that are currently available can be supplied by your Endress+Hauser sales organization.

Reset write protection

Navigation
Expert → System → Administration → Res. write prot.

Prerequisite
The SIL mode has been enabled.

Description
Use this function to enter the SIL locking code to reset write protection and disable the SIL mode.

User entry
0 to 65535

Factory setting
0
Additional information

Prerequisite

For detailed information about enabling and disabling the SIL mode, see the Special Documentation for the device → 7

Description

Once the SIL mode has been activated, the process-related parameters are write protected, and thereby locked, for security reasons. It is still possible to read the parameters. When SIL locking is enabled, restrictions apply on all communication options, such as the service interface, the HART protocol and the local display.

3.2 "Sensor" submenu

Navigation

Expert → Sensor

3.2.1 "Measured values" submenu

Navigation

Expert → Sensor → Measured val.
"Process variables" submenu

Navigation

<table>
<thead>
<tr>
<th>Process variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow (1838)</td>
</tr>
<tr>
<td>Volume flow (1847)</td>
</tr>
<tr>
<td>Corrected volume flow (1851)</td>
</tr>
<tr>
<td>Density (1850)</td>
</tr>
<tr>
<td>Reference density (1852)</td>
</tr>
<tr>
<td>Temperature (1853)</td>
</tr>
<tr>
<td>Pressure value (6129)</td>
</tr>
<tr>
<td>Dynamic viscosity (1854)</td>
</tr>
<tr>
<td>Kinematic viscosity (1857)</td>
</tr>
<tr>
<td>Temp. compensated dynamic viscosity (1872)</td>
</tr>
<tr>
<td>Temp. compensated kinematic viscosity (1863)</td>
</tr>
<tr>
<td>Concentration (1887)</td>
</tr>
<tr>
<td>Target mass flow (1864)</td>
</tr>
<tr>
<td>Carrier mass flow (1865)</td>
</tr>
</tbody>
</table>

Mass flow

Navigation

Description
Displays the mass flow that is currently measured.

User interface
Signed floating-point number

Additional information
Dependency
The unit is taken from the Mass flow unit parameter (→ 61)
Volume flow

Navigation

Description
Displays the volume flow currently calculated.

User interface
Signed floating-point number

Additional information
Description
The volume flow is calculated from the mass flow currently measured and the density currently measured.

Dependency
The unit is taken from the [Volume flow unit parameter](#).

Corrected volume flow

Navigation

Description
Displays the corrected volume flow currently measured.

User interface
Signed floating-point number

Additional information
Dependency
The unit is taken from the [Corrected volume flow unit parameter](#).

Density

Navigation

Description
Displays the density currently measured.

User interface
Signed floating-point number

Additional information
Dependency
The unit is taken from the [Density unit parameter](#).

Reference density

Navigation

Description
Displays the reference density currently calculated.
Description of device parameters

Proline Promass 300 HART

User interface
Signed floating-point number

Additional information
Dependency

Temperature

Navigation

Description
Displays the medium temperature currently measured.

User interface
Signed floating-point number

Additional information
Dependency

Pressure value

Navigation

Description
Displays the fixed or external pressure value.

User interface
Signed floating-point number

Additional information
Dependency

Dynamic viscosity

Navigation

Prerequisite
For the following order code:
Application package, option EG "Viscosity"

Description
Displays the dynamic viscosity currently calculated.

User interface
Signed floating-point number

Additional information
Dependency

Endress+Hauser
Kinematic viscosity

Navigation

Prerequisite

For the following order code:

"Application package", option **EG "Viscosity"

- The software options currently enabled are displayed in the Software option overview parameter (→ 45).

Description

Displays the kinematic viscosity currently calculated.

User interface

Signed floating-point number

Additional information

- **Dependency**

 - The unit is taken from the Kinematic viscosity unit parameter (0578).

Temp. compensated dynamic viscosity

Navigation

Prerequisite

For the following order code:

"Application package", option **EG "Viscosity"

- The software options currently enabled are displayed in the Software option overview parameter (→ 45).

Description

Displays the temperature compensation currently calculated for the viscosity.

User interface

Signed floating-point number

Additional information

- **Dependency**

 - The unit is taken from the Dynamic viscosity unit parameter.

Temp. compensated kinematic viscosity

Navigation

Prerequisite

For the following order code:

"Application package", option **EG "Viscosity"

- The software options currently enabled are displayed in the Software option overview parameter (→ 45).

Description

Displays the temperature compensation currently calculated for the kinetic viscosity.

User interface

Signed floating-point number
Concentration

Navigation

Prerequisite
For the following order code:
Application package, option **ED** 'Concentration'

- The software options currently enabled are displayed in the **Software option overview** parameter (→ 45).

Description
Displays the concentration currently calculated.

User interface
Signed floating-point number

Additional information
- The unit is taken from the **Concentration unit** parameter (0613).

Target mass flow

Navigation

Prerequisite
With the following conditions:
- Order code for "Application package", option **ED** 'Concentration'
- The **WT-%** option or the **User conc.** option is selected in the **Concentration unit** parameter.

- The software options currently enabled are displayed in the **Software option overview** parameter (→ 45).

Description
Displays the mass flow currently measured for the target medium.

User interface
Signed floating-point number

Additional information
- The unit is taken from the **Mass flow unit** parameter (→ 61)
Carrier mass flow

Navigation

Prerequisite

With the following conditions:
- Order code for "Application package", option ED "Concentration"
- The WT-% option or the User conc. option is selected in the Concentration unit parameter.

The software options currently enabled are displayed in the Software option overview parameter (→ 45).

Description

Displays the mass flow currently measured for the carrier medium.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Mass flow unit parameter (→ 61)

"Totalizer" submenu

Navigation

Expert → Sensor → Measured val. → Totalizer

Totalizer value 1 to n (0911–1 to n) → 53

Totalizer overflow 1 to n (0910–1 to n) → 54

Totalizer value 1 to n

Navigation

Expert → Sensor → Measured val. → Totalizer → Totalizer value 1 to n (0911–1 to n)

Prerequisite

A process variable is selected in the Assign process variable parameter (→ 199) of the Totalizer 1 to n submenu.

Description

Displays the current totalizer reading.

User interface

Signed floating-point number
Additional information

Description
As it is only possible to display a maximum of 7 digits in the operating tool, the current counter value is the sum of the totalizer value and the overflow value from the **Totalizer overflow 1 to n** parameter if the display range is exceeded.

In the event of an error, the totalizer adopts the mode defined in the **Failure mode** parameter (→ 202).

User interface
The value of the process variable totalized since measuring began can be positive or negative. This depends on the settings in the **Totalizer operation mode** parameter (→ 200).

The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 199).

Example
Calculation of the current totalizer reading when the value exceeds the 7-digit display range of the operating tool:
- Value in the **Totalizer value 1** parameter: 1968457 m3
- Value in the **Totalizer overflow 1** parameter: $1 \cdot 10^7$ (1 overflow) = 10,000,000 [m3]
- Current totalizer reading: 11968457 m3

Totalizer overflow 1 to n

Navigation
Endress+Hauser → Expert → Sensor → Measured val. → Totalizer → Tot. overflow 1 to n (0910–1 to n)

Prerequisite
A process variable is selected in the **Assign process variable** parameter (→ 199) of the **Totalizer 1 to n** submenu.

Description
Displays the current totalizer overflow.

User interface
Integer with sign

Additional information

Description
If the current totalizer reading exceeds 7 digits, which is the maximum value range that can be displayed by the operating tool, the value above this range is output as an overflow. The current totalizer value is therefore the sum of the overflow value and the totalizer value from the **Totalizer value 1 to n** parameter.

User interface

The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 199).

Example
Calculation of the current totalizer reading when the value exceeds the 7-digit display range of the operating tool:
- Value in the **Totalizer value 1** parameter: 1968457 m3
- Value in the **Totalizer overflow 1** parameter: $2 \cdot 10^7$ (2 overflows) = 20,000,000 [m3]
- Current totalizer reading: 21968457 m3
"Input values" submenu

Navigation
Expert → Sensor → Measured val. → Input values

- Current input 1 to n
 - Measured values 1 to n (1603–1 to n)
 - Measured current 1 to n (1604–1 to n)

'Current input 1 to n' submenu

Navigation
Expert → Sensor → Measured val. → Input values → Current input 1 to n

- Current input 1 to n
 - Measured values 1 to n (1603–1 to n)
 - Measured current 1 to n (1604–1 to n)

Measured values 1 to n

Navigation
Expert → Sensor → Measured val. → Input values → Current input 1 to n
→ Measured val. 1 to n (1603–1 to n)

Description
Displays the current input value.

User interface
Signed floating-point number

Measured current 1 to n

Navigation
Expert → Sensor → Measured val. → Input values → Current input 1 to n → Measur. curr. 1 to n (1604–1 to n)

Description
Displays the current value of the current input.

User interface
0 to 22.5 mA
“Value status input 1 to n” submenu

Navigation

 Witness Expert → Sensor → Measured val. → Input values → Val.stat.inp. 1 to n

Description

Displays the current input signal level.

User interface

- High
- Low

"Output values" submenu

Navigation

 Witness Expert → Sensor → Measured val. → Output values

Output values

- Value current output 1 to n → 56
- Pulse/frequency/switch output 1 to n → 57
- Relay output 1 to n → 59
- Double pulse output → 60

"Value current output 1 to n" submenu

Navigation

 Witness Expert → Sensor → Measured val. → Output values → Value curr.out 1 to n

- Value current output 1 to n
 - Output current 1 to n (0361–1 to n) → 57
 - Measured current 1 to n (0366–1 to n) → 57
Output current 1 to n

Navigation
> Expert → Sensor → Measured val. → Output values → Value curr.out 1 to n → Output curr. 1 to n (0361–1 to n)

Description
Displays the current value currently calculated for the current output.

User interface
0 to 22.5 mA

Measured current 1 to n

Navigation
> Expert → Sensor → Measured val. → Output values → Value curr.out 1 to n → Measur. curr. 1 to n (0366–1 to n)

Description
Use this function to display the actual measured value of the output current.

User interface
0 to 30 mA

’Pulse/frequency/switch output 1 to n’ submenu

Navigation
> Expert → Sensor → Measured val. → Output values → PFS output 1 to n

Output frequency 1 to n

Prerequisite
In the Operating mode parameter (→ 125), the Frequency option is selected.

Description
Displays the actual value of the output frequency which is currently measured.

User interface
0.0 to 12 500.0 Hz
Value per pulse

Navigation

SmartExpert → Sensor → Measured val. → Output values → PFS output 1 to n → Value per pulse (0455–1 to n)

Prerequisite

In the **Operating mode** parameter (→ 125), the Pulse option is selected and one of the following options is selected in the **Assign pulse output** parameter (→ 127):
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow

Description

Use this function to enter the value for the measured value that a pulse is equivalent to.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter → 253

Additional information

User entry

Weighting of the pulse output with a quantity.

The lower the pulse value, the
- better the resolution.
- the higher the frequency of the pulse response.

Switch status 1 to n

Navigation

SmartExpert → Sensor → Measured val. → Output values → PFS output 1 to n → Switch status 1 to n (0461–1 to n)

Prerequisite

The **Switch** option is selected in the **Operating mode** parameter (→ 125).

Description

Displays the current switch status of the status output.

User interface

- Open
- Closed

Additional information

User interface

- Open
 - The switch output is not conductive.
- Closed
 - The switch output is conductive.

* Visibility depends on order options or device settings*
'Relay output 1 to n' submenu

Navigation
Expert → Sensor → Measured val. → Output values → Relay output 1 to n

Switch status

Navigation
Expert → Sensor → Measured val. → Output values → Relay output 1 to n → Switch status (0801–1 to n)

Description
Displays the current status of the relay output.

User interface
• Open
• Closed

Additional information
User interface
• Open
The relay output is not conductive.
• Closed
The relay output is conductive.

Switch cycles

Navigation
Expert → Sensor → Measured val. → Output values → Relay output 1 to n → Switch cycles (0815–1 to n)

Description
Displays all the switch cycles performed.

User interface
Positive integer

Max. switch cycles number

Navigation
Expert → Sensor → Measured val. → Output values → Relay output 1 to n → Max. cycles no. (0817–1 to n)

Description
Displays the maximum number of guaranteed switch cycles.
User interface
Positive integer

"Double pulse output" submenu

Navigation
Expert → Sensor → Measured val. → Output values → Double pulse out

```
Double pulse output

Pulse output (0987) → 60
```

Pulse output

Navigation
Expert → Sensor → Measured val. → Output values → Double pulse out → Pulse output (0987)

Description
Displays the pulse frequency of the double pulse output which is currently output.

User interface
Positive floating-point number

Additional information
For a detailed description and example: Pulse output parameter (→ 130)

3.2.2 "System units" submenu

Navigation
Expert → Sensor → System units

```
System units

Mass flow unit (0554) → 61
Mass unit (0574) → 62
Volume flow unit (0553) → 62
Volume unit (0563) → 64
Corrected volume flow unit (0558) → 64
Corrected volume unit (0575) → 65
Density unit (0555) → 66
```
Mass flow unit

Navigation

| Expert → Sensor → System units → Mass flow unit (0554) |

Description

Use this function to select the unit for the mass flow.

Selection

- **SI units**
 - g/s
 - g/min
 - g/h
 - g/d
 - kg/s
 - kg/min
 - kg/h
 - kg/d
 - t/s
 - t/min
 - t/h
 - t/d

- **US units**
 - oz/s
 - oz/min
 - oz/h
 - oz/d
 - lb/s
 - lb/min
 - lb/h
 - lb/d
 - STon/s
 - STon/min
 - STon/h
 - STon/d

- **Custom-specific units**
 - User mass/s
 - User mass/min
 - User mass/h
 - User mass/d

Factory setting

Country-specific:
- kg/h (DN > 150 (6”): t/h)
- lb/min
Additional information

Result

The selected unit applies for:
- **Target mass flow** parameter (→ 52)
- **Carrier mass flow** parameter (→ 53)
- **Mass flow** parameter (→ 48)

Selection

For an explanation of the abbreviated units: → 258

Customer-specific units

The unit for the customer-specific mass is specified in the **User mass text** parameter (→ 70).

Mass unit

Navigation

[Expert → Sensor → System units → Mass unit (0574)]

Description

Use this function to select the unit for the mass.

Selection

- **SI units**
 - g
 - kg
 - t
- **US units**
 - oz
 - lb
 - STon

Customer-specific units

User mass

Factory setting

Country-specific:
- kg (DN > 150 (6") : t)
- lb

Additional information

Selection

For an explanation of the abbreviated units: → 258

Customer-specific units

The unit for the customer-specific mass is specified in the **User mass text** parameter (→ 70).

Volume flow unit

Navigation

[Expert → Sensor → System units → Volume flow unit (0553)]

Description

Use this function to select the unit for the volume flow.
<table>
<thead>
<tr>
<th>Selection</th>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm³/s</td>
<td>af/s</td>
<td>gal/s (imp)</td>
</tr>
<tr>
<td></td>
<td>cm³/min</td>
<td>af/min</td>
<td>gal/min (imp)</td>
</tr>
<tr>
<td></td>
<td>cm³/h</td>
<td>af/h</td>
<td>gal/h (imp)</td>
</tr>
<tr>
<td></td>
<td>cm³/d</td>
<td>af/d</td>
<td>gal/d (imp)</td>
</tr>
<tr>
<td></td>
<td>dm³/s</td>
<td>ft³/s</td>
<td>Mgal/s (imp)</td>
</tr>
<tr>
<td></td>
<td>dm³/min</td>
<td>ft³/min</td>
<td>Mgal/min (imp)</td>
</tr>
<tr>
<td></td>
<td>dm³/h</td>
<td>ft³/h</td>
<td>Mgal/h (imp)</td>
</tr>
<tr>
<td></td>
<td>dm³/d</td>
<td>ft³/d</td>
<td>Mgal/d (imp)</td>
</tr>
<tr>
<td></td>
<td>m³/s</td>
<td>fl oz/s (us)</td>
<td>bbl/s (imp;beer)</td>
</tr>
<tr>
<td></td>
<td>m³/min</td>
<td>fl oz/min (us)</td>
<td>bbl/min (imp;beer)</td>
</tr>
<tr>
<td></td>
<td>m³/h</td>
<td>fl oz/h (us)</td>
<td>bbl/h (imp;beer)</td>
</tr>
<tr>
<td></td>
<td>m³/d</td>
<td>fl oz/d (us)</td>
<td>bbl/d (imp;beer)</td>
</tr>
<tr>
<td></td>
<td>ml/s</td>
<td>gal/s (us)</td>
<td>bbl/s (imp;oil)</td>
</tr>
<tr>
<td></td>
<td>ml/min</td>
<td>gal/min (us)</td>
<td>bbl/min (imp;oil)</td>
</tr>
<tr>
<td></td>
<td>ml/h</td>
<td>gal/h (us)</td>
<td>bbl/h (imp;oil)</td>
</tr>
<tr>
<td></td>
<td>ml/d</td>
<td>gal/d (us)</td>
<td>bbl/d (imp;oil)</td>
</tr>
<tr>
<td></td>
<td>l/s</td>
<td>kgal/s (us)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>l/min</td>
<td>kgal/min (us)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>l/h</td>
<td>kgal/h (us)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>l/d</td>
<td>kgal/d (us)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hl/s</td>
<td>Mgal/s (us)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hl/min</td>
<td>Mgal/min (us)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hl/h</td>
<td>Mgal/h (us)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hl/d</td>
<td>Mgal/d (us)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ml/s</td>
<td>bbl/s (us;liq.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ml/min</td>
<td>bbl/min (us;liq.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ml/h</td>
<td>bbl/h (us;liq.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ml/d</td>
<td>bbl/d (us;liq.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Custom-specific units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>User vol./s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>User vol./min</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>User vol./h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>User vol./d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factory setting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country-specific:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>l/h (DN > 150 (6°): m³/h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gal/min (us)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Additional information

Result

The selected unit applies for:
Volume flow parameter (→ 49)

Selection

For an explanation of the abbreviated units: → 258

Customer-specific units

The unit for the customer-specific volume is specified in the User volume text parameter (→ 71).

Volume unit

Navigation

Expert → Sensor → System units → Volume unit (0563)

Description

Use this function to select the unit for the volume.

Selection

SI units
- cm³
- dm³
- m³
- ml
- l
- hl
- Ml Mega

US units
- af
- ft³
- fl oz (us)
- gal (us)
- kgal (us)
- Mgal (us)
- bbl (us;oil)
- bbl (us;liq.)
- bbl (us;beer)
- bbl (us;tank)

Imperial units
- gal (imp)
- Mgal (imp)
- bbl (imp;beer)
- bbl (imp;oil)

Custom-specific units

User vol.

Factory setting

Country-specific:
- l (DN > 150 (6\(^{\circ}\)): m³)
- gal (us)

Additional information

Selection

For an explanation of the abbreviated units: → 258

Customer-specific units

The unit for the customer-specific volume is specified in the User volume text parameter (→ 71).

Corrected volume flow unit

Navigation

Expert → Sensor → System units → Cor.volflow unit (0558)

Description

Use this function to select the unit for the corrected volume flow.
Selection

SI units
- Nl/s
- Nl/min
- Nl/h
- Nl/d
- Nm³/s
- Nm³/min
- Nm³/h
- Nm³/d
- Sm³/s
- Sm³/min
- Sm³/h
- Sm³/d

US units
- Sft³/s
- Sft³/min
- Sft³/h
- Sft³/d

Imperial units
- Sgal/s (imp)
- Sgal/min (imp)
- Sgal/h (imp)

Custom-specific units
- UserCrVol./s
- UserCrVol./min
- UserCrVol./h
- UserCrVol./d

Factory setting
Country-specific:
- Nl/h (DN > 150 (6") : Nm³/h)
- Sft³/min

Additional information

Selection

For an explanation of the abbreviated units: → 258

Corrected volume unit

Navigation

Expert → Sensor → System units → Corr. vol. unit (0575)

Description

Use this function to select the unit for the corrected volume.

Selection

SI units
- Nl
- Nm³
- Sm³

US units
- Sft³
- Sgal (us)
- Sbbl (us;liq.)

Imperial units
- Sgal (imp)

Custom-specific units
- UserCrVol.

Factory setting
Country-specific:
- Nl (DN > 150 (6") : Nm³)
- Sft³

Additional information

Selection

For an explanation of the abbreviated units: → 258
Density unit

Navigation
Expert → Sensor → System units → Density unit (0555)

Description
Use this function to select the unit for the density.

Selection

SI units
- g/cm³
- g/m³
- kg/dm³
- kg/l
- kg/m³
- SD4°C
- SD15°C
- SD20°C
- SG4°C
- SG15°C
- SG20°C

US units
- lb/ft³
- lb/gal (us)
- lb/bbl (us,liq.)
- lb/bbl (us,beer)
- lb/bbl (us,oil)
- lb/bbl (us,tank)

Imperial units
- lb/gal (imp)
- lb/bbl (imp;beer)
- lb/bbl (imp;oil)

Custom-specific units
User dens.

Factory setting
Country-specific:
- kg/l
- lb/ft³

Additional information
Result
The selected unit applies for:
- Density setpoint 1 parameter
- Density setpoint 2 parameter
- Density parameter (→ 49)

Selection
- SD = specific density
The specific density is the ratio of the fluid density to the water density at a water temperature of +4 °C (+39 °F), +15 °C (+59 °F), +20 °C (+68 °F).
- SG = specific gravity
The specific gravity is the ratio of the fluid density to the water density at a water temperature of +4 °C (+39 °F), +15 °C (+59 °F), +20 °C (+68 °F).

For an explanation of the abbreviated units: → 258

Customer-specific units
The unit for the customer-specific density is specified in the User density text parameter (→ 73).

Reference density unit

Navigation
Expert → Sensor → System units → Ref. dens. unit (0556)

Description
Use this function to select the unit for the reference density.
Selection

SI units
- kg/Nm³
- kg/Nl
- g/Scm³
- kg/Sm³

US units
- lb/Sft³

Factory setting

Country-dependent
- kg/Nl
- lb/Sft³

Additional information

Result
The selected unit applies for:
- **External reference density** parameter (→ 89)
- **Fixed reference density** parameter (→ 89)
- **Reference density** parameter (→ 49)

Selection

For an explanation of the abbreviated units: → 258

Temperature unit

Navigation

Expert → Sensor → System units → Temperature unit (0557)

Description

Use this function to select the unit for the temperature.

Selection

SI units
- °C
- K

US units
- °F
- °R

Factory setting

Country-specific:
- °C
- °F

Additional information

Result
The selected unit applies for:
- **Maximum value** parameter (→ 223)
- **Minimum value** parameter (→ 223)
- **Maximum value** parameter (→ 224)
- **Minimum value** parameter (→ 224)
- **Maximum value** parameter (→ 225)
- **Minimum value** parameter (→ 225)
- **External temperature** parameter (→ 87)
- **Reference temperature** parameter (6222)
- **Temperature** parameter (→ 50)
- **Reference temperature** parameter (→ 90)

Selection

For an explanation of the abbreviated units: → 258
Pressure unit

- **Navigation**: Expert → Sensor → System units → Pressure unit (0564)
- **Description**: Use this function to select the unit for the pipe pressure.
- **Selection**:
 - **SI units**
 - Pa a
 - kPa a
 - MPa a
 - bar
 - Pa g
 - kPa g
 - MPa g
 - bar g
 - **US units**
 - psi a
 - psi g
 - **Custom-specific units**
 - User pres.
- **Factory setting**: Country-specific:
 - bar a
 - psi a
- **Additional information**:
 - **Result**: The unit is taken from:
 - Pressure value parameter (→ 86)
 - External pressure parameter (→ 86)
 - Pressure value parameter (→ 50)
 - **Selection**: For an explanation of the abbreviated units: → 258
 - **Customer-specific units**: The unit for the customer-specific energy is defined in the User pressure text parameter (→ 74).

Date/time format

- **Navigation**: Expert → Sensor → System units → Date/time format (2812)
- **Description**: Use this function to select the desired time format for calibration history.
- **Selection**:
 - dd.mm.yy hh:mm
 - dd.mm.yy hh:mm am/pm
 - mm/dd/yy hh:mm
 - mm/dd/yy hh:mm am/pm
- **Factory setting**: dd.mm.yy hh:mm
Additional information Selection

For an explanation of the abbreviated units: → 258

"User-specific units" submenu

Navigation Expert → Sensor → System units → User-spec. units

<table>
<thead>
<tr>
<th>User-Specific Units</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>User mass text (0560)</td>
<td>→ 70</td>
</tr>
<tr>
<td>User mass factor (0561)</td>
<td>→ 70</td>
</tr>
<tr>
<td>User mass offset (0562)</td>
<td>→ 70</td>
</tr>
<tr>
<td>User volume text (0567)</td>
<td>→ 71</td>
</tr>
<tr>
<td>User volume factor (0568)</td>
<td>→ 71</td>
</tr>
<tr>
<td>User corrected volume text (0592)</td>
<td>→ 72</td>
</tr>
<tr>
<td>User corrected volume factor (0590)</td>
<td>→ 72</td>
</tr>
<tr>
<td>User corrected volume offset (0602)</td>
<td>→ 73</td>
</tr>
<tr>
<td>User volume offset (0569)</td>
<td>→ 71</td>
</tr>
<tr>
<td>User density text (0570)</td>
<td>→ 73</td>
</tr>
<tr>
<td>User density factor (0572)</td>
<td>→ 73</td>
</tr>
<tr>
<td>User density offset (0571)</td>
<td>→ 74</td>
</tr>
<tr>
<td>User pressure text (0581)</td>
<td>→ 74</td>
</tr>
<tr>
<td>User pressure factor (0579)</td>
<td>→ 74</td>
</tr>
<tr>
<td>User pressure offset (0580)</td>
<td>→ 74</td>
</tr>
</tbody>
</table>
User mass text

Navigation
Expert → Sensor → System units → User-spec. units → Mass text (0560)

Description
Use this function to enter a text for the user-specific unit of mass and mass flow. The corresponding time units (s, min, h, d) for mass flow are generated automatically.

User entry
Max. 10 characters such as letters, numbers or special characters (@, %, /)

Factory setting
User mass

Additional information

- **Result**
The defined unit is shown as an option in the choose list of the following parameters:
 - Mass flow unit parameter (→ 61)
 - Mass unit parameter (→ 62)

- **Example**
If the text CENT for "centner" is entered, the following options are displayed in the picklist for the Mass flow unit parameter (→ 61):
 - CENT/s
 - CENT/min
 - CENT/h
 - CENT/d

User mass factor

Navigation
Expert → Sensor → System units → User-spec. units → Mass factor (0561)

Description
Use this function to enter a quantity factor (without time) for the user-specific mass and mass flow unit.

User entry
Signed floating-point number

Factory setting
1.0

Additional information

- **Example**
Mass of 1 Zentner = 50 kg → 0.02 Zentner = 1 kg → entry: 0.02

User mass offset

Navigation
Expert → Sensor → System units → User-spec. units → Mass offset (0562)

Description
Use this function to enter the zero point shift for the user-specific mass and mass flow unit.

User entry
Signed floating-point number

Factory setting
0
Additional information

Description

Value in user-specific unit = (factor × value in base unit) + offset

User volume text

Navigation

Expert → Sensor → System units → User-spec. units → Volume text (0567)

Description

Use this function to enter a text for the user-specific unit of volume and volume flow. The corresponding time units (s, min, h, d) for volume flow are generated automatically.

User entry

Max. 10 characters such as letters, numbers or special characters (@, %, /)

Factory setting

User vol.

Additional information

The defined unit is shown as an option in the choose list of the following parameters:

- Volume flow unit parameter (→ 62)
- Volume unit parameter (→ 64)

Example

If the text GLAS is entered, the choose list of the Volume flow unit parameter (→ 62) shows the following options:

- GLAS/s
- GLAS/min
- GLAS/h
- GLAS/d

User volume factor

Navigation

Expert → Sensor → System units → User-spec. units → Volume factor (0568)

Description

Use this function to enter a quantity factor (without time) for the user-specific volume and volume flow unit.

User entry

Signed floating-point number

Factory setting

1.0

User volume offset

Navigation

Expert → Sensor → System units → User-spec. units → Volume offset (0569)

Description

Use this function to enter the offset for adapting the user-specific volume unit and volume flow unit (without time).
Description of device parameters

User entry
Signed floating-point number

Factory setting
0

Additional information
Description
Value in user-specific unit = (factor × value in base unit) + offset

User corrected volume text

Navigation
Expert → Sensor → System units → User-spec. units → Corr. vol. text (0592)

Description
Use this function to enter a text for the user-specific unit of the corrected volume and corrected volume flow. The corresponding time units (s, min, h, d) for mass flow are generated automatically.

User entry
Max. 10 characters such as letters, numbers or special characters (@, %, /)

Factory setting
UserCrVol.

Additional information
Result
The defined unit is shown as an option in the choose list of the following parameters:
- Corrected volume flow unit parameter (→ 64)
- Corrected volume unit parameter (→ 65)

Example
If the text GLAS is entered, the choose list of the Corrected volume flow unit parameter (→ 64) shows the following options:
- GLAS/s
- GLAS/min
- GLAS/h
- GLAS/d

User corrected volume factor

Navigation
Expert → Sensor → System units → User-spec. units → Corr. vol. factor (0590)

Description
Use this function to enter a quantity factor (without time) for the user-specific corrected volume unit and corrected volume flow unit.

User entry
Signed floating-point number

Factory setting
1.0
User corrected volume offset

Navigation
Expert → Sensor → System units → User-spec. units → Corr vol. offset (0602)

Description
Use this function to enter the offset for adapting the user-specific corrected volume unit and corrected volume flow unit (without time).

Value in user-specific unit = (factor × value in base unit) + offset

User entry
Signed floating-point number

Factory setting
0

User density text

Navigation
Expert → Sensor → System units → User-spec. units → Density text (0570)

Description
Use this function to enter a text or the user-specific unit of density.

User entry
Max. 10 characters such as letters, numbers or special characters (@, %, /)

Factory setting
User dens.

Additional information

Result

The defined unit is shown as an option in the choose list of the **Density unit** parameter (→ 66).

Example
Enter text “CE_L” for centners per liter

User density factor

Navigation
Expert → Sensor → System units → User-spec. units → Density factor (0572)

Description
Use this function to enter a quantity factor for the user-specific density unit.

User entry
Signed floating-point number

Factory setting
1.0
Endress+Hauser

User density offset

Navigation
Expert → Sensor → System units → User-spec. units → Density offset (0571)

Description
Use this function to enter the zero point shift for the user-specific density unit.

\[\text{Value in user-specific unit} = (\text{factor} \times \text{value in base unit}) + \text{offset} \]

User entry
Signed floating-point number

Factory setting
0

User pressure text

Navigation
Expert → Sensor → System units → User-spec. units → Pressure text (0581)

Description
Use this function to enter a text for the user-specific pressure unit.

User entry
Max. 10 characters such as letters, numbers or special characters (@, %, /)

Factory setting
User pres.

Additional information
Result

The defined unit is shown as an option in the choose list of the Pressure unit parameter (→ 68).

User pressure factor

Navigation
Expert → Sensor → System units → User-spec. units → Pressure factor (0579)

Description
Use this function to enter a quantity factor for the user-specific pressure unit.

User entry
Signed floating-point number

Factory setting
1.0

Additional information
Example

\[1 \text{ Dyn/cm}^2 = 0.1 \text{ Pa} \rightarrow 10 \text{ Dyn/cm}^2 = 1 \text{ Pa} \rightarrow \text{user entry: 10} \]

User pressure offset

Navigation
Expert → Sensor → System units → User-spec. units → Pressure offset (0580)

Description
Use this function to enter the offset for adapting the user-specific pressure unit.
3.2.3 "Process parameters" submenu

Navigation

<table>
<thead>
<tr>
<th>Process parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow damping (1802) → 75</td>
</tr>
<tr>
<td>Density damping (1803) → 76</td>
</tr>
<tr>
<td>Temperature damping (1822) → 76</td>
</tr>
<tr>
<td>Flow override (1839) → 77</td>
</tr>
<tr>
<td>Low flow cut off → 77</td>
</tr>
<tr>
<td>Partially filled pipe detection → 81</td>
</tr>
</tbody>
</table>

Flow damping

Navigation

Expert → Sensor → Process param. → Flow damping (1802)

Description

Use this function to enter a time constant for flow damping (PT1 element). Reduction of the variability of the flow measured value (in relation to interference). For this purpose, the depth of the flow filter is adjusted: when the filter setting increases, the reaction time of the device also increases.

User entry

0 to 100.0 s

Factory setting

0 s
Additional information

Description

The damping is performed by a PT1 element \(^2\).

User entry

- Value = 0: no damping
- Value > 0: damping is increased

Damping is switched off if 0 is entered (factory setting).

Result

The damping affects the following variables of the device:

- Outputs → 107
- Low flow cut off → 77
- Totalizers → 198

Density damping

Navigation

Description

Use this function to enter a time constant for the damping (PT1 element) of the density measured value.

User entry

0 to 999.9 s

Factory setting

0 s

Additional information

Description

The damping is performed by a PT1 element \(^3\).

User entry

- Value = 0: no damping
- Value > 0: damping is increased

Damping is switched off if 0 is entered (factory setting).

Temperature damping

Navigation

Description

Use this function to enter a time constant for the damping (PT1 element) of the temperature measured value.

User entry

0 to 999.9 s

2) Proportional behavior with first-order lag
3) Proportional behavior with first-order lag
Factory setting 0 s

Additional information

* Description
 The damping is performed by a PT1 element 4).

* User entry
 - Value = 0: no damping
 - Value > 0: damping is increased
 Damping is switched off if 0 is entered (factory setting).

Flow override

Navigation

Description
Use this function to select whether to interrupt the evaluation of measured values. This is useful for the cleaning processes of a pipeline, for example.

Selection
- Off
- On

Factory setting
Off

Additional information

* Description
 Flow override is active
 - The diagnostic message diagnostic message C453 Flow override is displayed.
 - Output values
 - Temperature: proceeding output
 - Totalizers 1-3: Stop being totalized
 Positive zero return can also be enabled via the Status input: Assign status input parameter (→ 106).

"Low flow cut off" submenu

Navigation

Expert → Sensor → Process param. → Low flow cut off

<table>
<thead>
<tr>
<th>► Low flow cut off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign process variable (1837) → 78</td>
</tr>
<tr>
<td>On value low flow cutoff (1805) → 78</td>
</tr>
</tbody>
</table>

4) Proportional behavior with first-order lag
Assign process variable

Navigation
Expert → Sensor → Process param. → Low flow cut off → Assign variable (1837)

Description
Use this function to select the process variable for low flow cutoff detection.

Selection
- Off
- Mass flow
- Volume flow
- Corrected volume flow

Factory setting
Mass flow

On value low flow cutoff

Navigation
Expert → Sensor → Process param. → Low flow cut off → On value (1805)

Prerequisite
One of the following options is selected in the Assign process variable parameter (→ 78):
- Mass flow
- Volume flow
- Corrected volume flow

Description
Use this function to enter a switch-on value for low flow cutoff. Low flow cutoff is activated if the value entered is not equal to 0 → 79.

User entry
Positive floating-point number

Factory setting
Depends on country and nominal diameter → 253

Additional information
Dependency
The unit depends on the process variable selected in the Assign process variable parameter (→ 78).
Off value low flow cutoff

Navigation

Expert → Sensor → Process param. → Low flow cut off → Off value (1804)

Prerequisite

One of the following options is selected in the **Assign process variable** parameter

- Mass flow
- Volume flow
- Corrected volume flow

Description

Use this function to enter a switch-off value for low flow cut off. The off value is entered as a positive hysteresis from the on value → 78.

User entry

0 to 100.0 %

Factory setting

50 %

Additional information

Example

![Diagram](A001288)

Q Flow
 t Time
 H Hysteresis
 A Low flow cut off active
 1 Low flow cut off is activated
 2 Low flow cut off is deactivated
 3 On value entered
 4 Off value entered

Pressure shock suppression

Navigation

Prerequisite

One of the following options is selected in the **Assign process variable** parameter

- Mass flow
- Volume flow
- Corrected volume flow

Description

Use this function to enter the time interval for signal suppression (= active pressure shock suppression).

User entry

0 to 100 s

Factory setting

0 s
Additional information

Description

Pressure shock suppression is enabled
- Prerequisite:
 - Flow rate < on-value of low flow cut off
 - Changing the flow direction
- Output values
 - Current output: outputs the current corresponding to zero flow.
 - Flow displayed: 0
 - Totalizer: the totalizers are pegged at the last correct value

Pressure shock suppression is disabled
- Prerequisite: the time interval set in this function has elapsed.
- If the flow also exceeds the switch-off value for low flow cut off, the device starts processing the current flow value again and displays it.

Example

When closing a valve, momentarily strong fluid movements may occur in the pipeline, which are registered by the measuring system. These totalized flow values lead to a false totalizer status, particularly during batching processes.

![Diagram showing flow and time](A0012888)

- **Q** Flow
- **t** Time
- **A** Drip
- **B** Pressure shock
- **C** Pressure shock suppression active as specified by the time entered
- **D** Pressure shock suppression inactive
- **1** Valve closes
- **2** Flow falls below the on-value of the low flow cut off: pressure shock suppression is activated
- **3** The time entered has elapsed: pressure shock suppression is deactivated
- **4** The actual flow value is now displayed and output
- **5** On value for low flow cut off
- **6** Off value for low flow cut off
“Partially filled pipe detection” submenu

Navigation

<table>
<thead>
<tr>
<th>Feature</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign process variable (1860)</td>
<td>81</td>
</tr>
<tr>
<td>Low value partial filled pipe detection</td>
<td>81</td>
</tr>
<tr>
<td>(1861)</td>
<td></td>
</tr>
<tr>
<td>High value partial filled pipe detection</td>
<td>82</td>
</tr>
<tr>
<td>(1858)</td>
<td></td>
</tr>
<tr>
<td>Response time part. filled pipe detect.</td>
<td>82</td>
</tr>
<tr>
<td>(1859)</td>
<td></td>
</tr>
<tr>
<td>Maximum damping partial filled pipe det.</td>
<td>83</td>
</tr>
<tr>
<td>det. (6040)</td>
<td></td>
</tr>
</tbody>
</table>

Assign process variable

Navigation

Description

Use this function to select a process variable to detect empty or partially filled measuring tubes.

For gas measurement: Deactivate monitoring due to low gas density.

Selection

- Off
- Density
- Reference density

Factory setting

Off

Low value partial filled pipe detection

Navigation

Expert → Sensor → Process param. → Partial pipe det → Low value (1861)

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 81):

- Density
- Reference density

Description

Use this function to enter a lower limit value to enable detection of empty or partially filled measuring tubes. If the measured density falls below this value, monitoring is enabled.

User entry

Signed floating-point number
Proline Promass 300 HART

Factory setting
200

Additional information
User entry

The lower limit value must be less than the upper limit value defined in the **High value partial filled pipe detection** parameter (→ 82).

The unit depends on the process variable selected in the **Assign process variable** parameter (→ 81).

Limit value

If the displayed value is outside the limit value, the measuring device displays the diagnostic message \(\Delta S862\) **Partly filled pipe**.

High value partial filled pipe detection

Navigation
Expert → Sensor → Process param. → Partial pipe det → High value (1858)

Prerequisite

One of the following options is selected in the **Assign process variable** parameter (→ 81):

- Density
- Reference density

Description

Use this function to enter an upper limit value to enable detection of empty or partially filled measuring tubes. If the measured density exceeds this value, detection is enabled.

User entry

Signed floating-point number

Factory setting
6 000

Additional information
User entry

The upper limit value must be greater than the lower limit value defined in the **Low value partial filled pipe detection** parameter (→ 81).

The unit depends on the process variable selected in the **Assign process variable** parameter (→ 81).

Limit value

If the displayed value is outside the limit value, the measuring device displays the diagnostic message \(\Delta S862\) **Partly filled pipe**.

Response time part. filled pipe detect.

Navigation

Prerequisite

One of the following options is selected in the **Assign process variable** parameter (→ 81):

- Density
- Reference density
Description
Use this function to enter the minimum length of time (debouncing time) the signal must be present for the diagnostic message S862 Partly filled pipe to be triggered if the measuring pipe is empty or partially full.

User entry
0 to 100 s

Factory setting
1 s

Maximum damping partial filled pipe det.

Navigation
Expert → Sensor → Process param. → Partial pipe det → Max. damping (6040)

Description
Use this function to enter a damping value to enable detection of empty or partially filled measuring tubes.

User entry
Positive floating-point number

Factory setting
0

Additional information
Description
If pipe damping (Testpoints submenu) exceeds the specified value, the measuring device presumes that the pipe is partially filled and the flow signal is set to 0. The measuring device displays the diagnostic message S862 Partly filled pipe. In the case of non-homogeneous media or air pockets, the damping of the measuring tubes increases.

User entry
- Damping is disabled if 0 is entered (factory setting).
- Damping is enabled if the value entered is greater than 0.
- The value entered depends on application-specific influence variables, such as the medium, nominal diameter, sensor etc.

Example
- If the pipe is filled normally the value of the oscillation damping is 500.
- If the pipe is partially filled the value of the oscillation damping is > 5000.
- A practical damping value would then be 2000: enter 2000 as the value.

3.2.4 "Measurement mode" submenu

Navigation
Expert → Sensor → Measurement mode

Select medium (6062) → S84
Select gas type (6074) → S84
Description of device parameters

Proline Promass 300 HART

| Reference sound velocity (6147) | → 85 |
| Temperature coefficient sound velocity (6181) | → 85 |

Select medium

Navigation

Expert → Sensor → Measurement mode → Select medium (6062)

Description

Use this function to select the type of medium.

Selection

- Liquid
- Gas

Factory setting

Liquid

Select gas type

Navigation

Expert → Sensor → Measurement mode → Select gas type (6074)

Prerequisite

The **Gas** option is selected in the **Select medium** parameter (→ 84).

Description

Use this function to select the type of gas for the measuring application.

Selection

- Air
- Ammonia NH3
- Argon Ar
- Sulfur hexafluoride SF6
- Oxygen O2
- Ozone O3
- Nitrogen oxide NOx
- Nitrogen N2
- Nitrous oxide N2O
- Methane CH4
- Hydrogen H2
- Helium He
- Hydrogen chloride HCl
- Hydrogen sulfide H2S
- Ethylene C2H4
- Carbon dioxide CO2
- Carbon monoxide CO
- Chlorine Cl2
- Butane C4H10
- Propane C3H8
- Propylene C3H6
- Ethane C2H6
- Others

Factory setting

Methane CH4
Reference sound velocity

Navigation

Expert → Sensor → Measurement mode → Sound velocity (6147)

Prerequisite
In the **Select gas type** parameter (→ 84), the **Others** option is selected.

Description
Use this function to enter the sound velocity of the gas at 0 °C (+32 °F).

User entry
1 to 99999.9999 m/s

Factory setting
415.0 m/s

Temperature coefficient sound velocity

Navigation

Expert → Sensor → Measurement mode → Temp. coeff. SV (6181)

Prerequisite
The **Others** option is selected in the **Select gas type** parameter (→ 84).

Description
Use this function to enter a temperature coefficient for the sound velocity of the gas.

User entry
Positive floating-point number

Factory setting
0 (m/s)/K

3.2.5 "External compensation" submenu

Navigation

Navigation

- Pressure compensation (6130) → 86
- Pressure value (6059) → 86
- External pressure (6209) → 86
- Temperature mode (6184) → 87
- External temperature (6080) → 87
Description of device parameters

Proline Promass 300 HART

Pressure compensation

Navigation

Expert → Sensor → External comp. → Pressure compen. (6130)

Description

Use this function to select the type of pressure compensation.

Selection

- Off
- Fixed value
- External value
- Current input 1 *
- Current input 2 *

Factory setting

Off

Additional information

Selection

- Fixed value
 A fixed pressure value is used for compensation: **Pressure value** parameter (→ 86)
- External value
 The pressure value read in via HART is used for compensation.
- Current input 1...n
 The pressure value read in via the current input is used for compensation.

Pressure value

Navigation

Expert → Sensor → External comp. → Pressure value (6059)

Prerequisite

The **Fixed value** option is selected in the **Pressure compensation** parameter (→ 86).

Description

Use this function to enter a value for the process pressure that is used for pressure correction.

User entry

Positive floating-point number

Factory setting

0 bar

Additional information

User entry

The unit is taken from the **Pressure unit** parameter (→ 68)

External pressure

Navigation

Prerequisite

The **External value** option is selected in the **Pressure compensation** parameter (→ 86).

* Visibility depends on order options or device settings
Proline Promass 300 HART

Description of device parameters

Description
Use this function to enter an external pressure value.

User interface
Positive floating-point number

Factory setting
0 bar

Additional information

* User entry

The unit is taken from the **Pressure unit** parameter (→ 68)

Temperature mode

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Sensor → External comp. → Temperature mode (6184)</th>
</tr>
</thead>
</table>

Description
Use this function to select the temperature mode.

Selection

- Internal measured value
- External value
- Current input 1 *
- Current input 2 *
- Current input 3 *

Factory setting
Internal measured value

Additional information

* Description
Use this function to select the type of temperature compensation.

* Selection
All the options available for selection are used for measured value compensation.

- Internal measured value
 The temperature value measured internally (temperature sensor of the measuring sensor) is used for compensation.
- External value
 The temperature value read in via HART is used for compensation.
- Current input 1...n
 The temperature value read in via the current input is used for compensation.

External temperature

|------------|---|

Prerequisite
In the **Temperature mode** parameter (→ 87), the **External value** option is selected.

Description
Use this function to enter the external temperature.

User interface
-273.15 to 99 999 °C

* Visibility depends on order options or device settings
Factory setting

Country-specific:
- 0 °C
- +32 °F

Additional information

Description

The unit is taken from the Temperature unit parameter (→ 67)

3.2.6 "Calculated values" submenu

Navigation

Expert → Sensor → Calculated value

"Corrected volume flow calculation" submenu

Navigation

Corrected volume flow calculation

(1812)

External reference density (6198)

Fixed reference density (1814)

Reference temperature (1816)

Linear expansion coefficient (1817)

Square expansion coefficient (1818)

Description

Use this function to select the reference density for calculating the corrected volume flow.
Selection
- Fixed reference density
- Calculated reference density
- Reference density by API table 53
- Current input 1 *
- Current input 2 *

Factory setting
Calculated reference density

External reference density

Navigation
Expert → Sensor → Calculated value → Corr. vol. flow. → Ext. ref. density (6198)

Prerequisite
One of the following options is selected in the Corrected volume flow calculation parameter (→ 88):
- Current input 1 *
- Current input 2 *

Description
Displays the reference density which is read in externally, e.g. via the current input, HART input.

User interface
Floating point number with sign

Additional information
Dependency
The unit is taken from the Reference density unit parameter (→ 66)

Fixed reference density

Navigation
Expert → Sensor → Calculated value → Corr. vol. flow. → Fix ref. density (1814)

Prerequisite
In the Corrected volume flow calculation parameter (→ 88), the Fixed reference density option is selected.

Description
Use this function to enter a fixed value for the reference density.

User entry
Positive floating-point number

Factory setting
1 kg/Nl

Additional information
Dependency
The unit is taken from the Reference density unit parameter (→ 66)

* Visibility depends on order options or device settings
Description of device parameters

Proline Promass 300 HART

Reference temperature

Navigation

Prerequisite

In the Corrected volume flow calculation parameter (→ 88), the Calculated reference density option is selected.

Description

Use this function to enter a reference temperature for calculating the reference density.

User entry

-273.15 to 99 999 °C

Factory setting

Country-specific:
- +20 °C
- +68 °F

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 67)

Reference density calculation

\[\rho_n = \rho \cdot (1 + \alpha \cdot \Delta t + \beta \cdot \Delta t^2) \]

- \(\rho_n \): reference density
- \(\rho \): fluid density currently measured
- \(t \): fluid temperature currently measured
- \(t_n \): reference temperature at which the reference density is calculated (e.g. 20 °C)
- \(\Delta t \): \(t - t_n \)
- \(\alpha \): linear expansion coefficient of the fluid, unit = \([1/K]\); K = Kelvin
- \(\beta \): square expansion coefficient of the fluid, unit = \([1/K^2]\)

Linear expansion coefficient

Navigation

Expert → Sensor → Calculated value → Corr. vol.flow. → Linear exp coeff (1817)

Prerequisite

In the Corrected volume flow calculation parameter (→ 88), the Calculated reference density option is selected.

Description

Use this function to enter a linear, fluid-specific expansion coefficient for calculating the reference density.

User entry

Signed floating-point number

Factory setting

0.0
Square expansion coefficient

Navigation

Prerequisite
In the Corrected volume flow calculation parameter (→ 88), the Calculated reference density option is selected.

Description
For fluid with a non-linear expansion pattern: use this function to enter a quadratic, fluid-specific expansion coefficient for calculating the reference density.

User entry
Signed floating-point number

Factory setting
0.0

3.2.7 "Sensor adjustment" submenu

Navigation

Installation direction

Navigation
Expert → Sensor → Sensor adjustm. → Install. direct. (1809)

Description
Use this function to change the sign of the medium flow direction.

Selection
- Flow in arrow direction
- Flow against arrow direction

Factory setting
Flow in arrow direction

Additional information
Before changing the sign: ascertain the actual direction of fluid flow with reference to the direction indicated by the arrow on the sensor nameplate.
Installation angle roll

Navigation

Expert → Sensor → Sensor adjustm. → Inst. angle roll (6282)

Prerequisite

Only available on Promass Q.

Description

Use this function to enter the roll installation angle in degrees.

User entry

−180 to 180°

Factory setting

0°

Installation angle pitch

Navigation

Expert → Sensor → Sensor adjustm. → Inst. angle pitch (6236)

Prerequisite

Only available on Promass Q.

Description

Use this function to enter the installation angle pitch in degrees.

User entry

−180 to 180°

Factory setting

0°

"Zero point adjustment" submenu

- It is generally not necessary to perform zero point adjustment.
- However, this function may be needed in some applications with low flow and strict accuracy requirements.
- A zero point adjustment cannot increase repeatability.
- The following conditions should be met to perform a zero point adjustment successfully without the adjustment finishing in an error:
 - The real flow must be 0.
 - The pressure must be at least 15 psi g.
- The adjustment takes a maximum of 60 s. The more stable the conditions, the faster the adjustment is completed.
- This function can also be used to check the health of the measuring device.
 A healthy measuring device has a maximum zero point deviation of ±100 compared to the factory setting of the measuring device (calibration report).

Navigation

Zero point adjustment control (6196)

Progress (2808)
Zero point adjustment control

Navigation

Description
Use this function to select the start of the zero point adjustment.

Variables
- Cancel
- Busy
- Zero point adjust failure
- Start

Factory setting
Cancel

Additional information
Description
- Cancel
 If zero point adjustment has failed, select this option to cancel zero point adjustment.
- Busy
 Is displayed during zero point adjustment.
- Zero point adjust failure
 Is displayed if zero point adjustment has failed.
- Start
 Select this option to start zero point adjustment.

Progress

Navigation

Description
The progress of the process is indicated.

User interface
0 to 100 %

"Process variable adjustment" submenu

Navigation
Expert → Sensor → Sensor adjustm. → Variable adjust

<table>
<thead>
<tr>
<th>Process variable adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow offset (1831)</td>
</tr>
<tr>
<td>Mass flow factor (1832)</td>
</tr>
<tr>
<td>Volume flow offset (1841)</td>
</tr>
<tr>
<td>Volume flow factor (1846)</td>
</tr>
</tbody>
</table>
Description of device parameters

Proline Promass 300 HART

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density offset (1848)</td>
<td>→ 95</td>
</tr>
<tr>
<td>Density factor (1849)</td>
<td>→ 96</td>
</tr>
<tr>
<td>Corrected volume flow offset (1866)</td>
<td>→ 96</td>
</tr>
<tr>
<td>Corrected volume flow factor (1867)</td>
<td>→ 96</td>
</tr>
<tr>
<td>Reference density offset (1868)</td>
<td>→ 97</td>
</tr>
<tr>
<td>Reference density factor (1869)</td>
<td>→ 97</td>
</tr>
<tr>
<td>Temperature offset (1870)</td>
<td>→ 97</td>
</tr>
<tr>
<td>Temperature factor (1871)</td>
<td>→ 98</td>
</tr>
</tbody>
</table>

Mass flow offset

Navigation

Description

Use this function to enter the zero point shift for the mass flow trim. The mass flow unit on which the shift is based is kg/s.

User entry

Signed floating-point number

Factory setting

0 kg/s

Additional information

Description

Corrected value = (factor × value) + offset

Mass flow factor

Navigation

Expert → Sensor → Sensor adjustm. → Variable adjust → Mass flow factor (1832)

Description

Use this function to enter a quantity factor (without time) for the mass flow. This multiplication factor is applied over the mass flow range.

User entry

Positive floating-point number

Factory setting

1

Additional information

Description

Corrected value = (factor × value) + offset
Volume flow offset

Navigation

Description
Use this function to enter the zero point shift for the volume flow trim. The volume flow unit on which the shift is based is m³/s.

User entry
Signed floating-point number

Factory setting
0 m³/s

Additional information
Description
Corrected value = (factor × value) + offset

Volume flow factor

Navigation

Description
Use this function to enter a quantity factor (without time) for the volume flow. This multiplication factor is applied over the volume flow range.

User entry
Positive floating-point number

Factory setting
1

Additional information
Description
Corrected value = (factor × value) + offset

Density offset

Navigation
Expert → Sensor → Sensor adjustm. → Variable adjust → Density offset (1848)

Description
Use this function to enter the zero point shift for the density trim. The density unit on which the shift is based is kg/m³.

User entry
Signed floating-point number

Factory setting
0 kg/m³

Additional information
Description
Corrected value = (factor × value) + offset
Density factor

Navigation
Expert → Sensor → Sensor adjustm. → Variable adjust → Density factor (1849)

Description
Use this function to enter a quantity factor for the density. This multiplication factor is applied over the density range.

User entry
Positive floating-point number

Factory setting
1

Additional information
Description

Corrected value = (factor × value) + offset

Corrected volume flow offset

Navigation

Description
Use this function to enter the zero point shift for the corrected volume flow trim. The corrected volume flow unit on which the shift is based is 1 Nm³/s.

User entry
Signed floating-point number

Factory setting
0 Nm³/s

Additional information
Description

Corrected value = (factor × value) + offset

Corrected volume flow factor

Navigation

Description
Use this function to enter a quantity factor (without time) for the corrected volume flow. This multiplication factor is applied over the corrected volume flow range.

User entry
Positive floating-point number

Factory setting
1

Additional information
Description

Corrected value = (factor × value) + offset
Reference density offset

Navigation

Expert → Sensor → Sensor adjustm. → Variable adjust → Ref.dens. offset (1868)

Description

Use this parameter to enter the zero point shift for the reference density trim. The reference density unit on which the shift is based is 1 kg/Nm³.

User entry

Signed floating-point number

Factory setting

0 kg/Nm³

Additional information

Description

Corrected value = (factor × value) + offset

Reference density factor

Navigation

Expert → Sensor → Sensor adjustm. → Variable adjust → Ref.dens. factor (1869)

Description

Use this function to enter a quantity factor (without time) for the reference density. This multiplication factor is applied over the reference density range.

User entry

Positive floating-point number

Factory setting

1

Additional information

Description

Corrected value = (factor × value) + offset

Temperature offset

Navigation

Description

Use this function to enter the zero point shift for the temperature trim. The temperature unit on which the shift is based is K.

User entry

Signed floating-point number

Factory setting

0 K

Additional information

Description

Corrected value = (factor × value) + offset
Temperature factor

Navigation

Description
Use this function to enter a quantity factor for the temperature. In each case, this factor refers to the temperature in K.

User entry
Positive floating-point number

Factory setting
1

Additional information
Description
Corrected value = (factor × value) + offset

3.2.8 "Calibration" submenu

Navigation
Expert → Sensor → Calibration

-Calibration factor (6025)
- Zero point (6195)
- Nominal diameter (2807)
- C0 to 5 (6022)

Calibration factor

Navigation
Expert → Sensor → Calibration → Cal. factor (6025)

Description
Displays the current calibration factor for the sensor.

User interface
Signed floating-point number

Factory setting
Depends on nominal diameter and calibration.
Zero point

Navigation

Expert → Sensor → Calibration → Zero point (6195)

Description

Use this function to enter the zero point correction value for the sensor.

User entry

Signed floating-point number

Factory setting

Depends on nominal diameter and calibration.

Nominal diameter

Navigation

Expert → Sensor → Calibration → Nominal diameter (2807)

Description

Displays the nominal diameter of the sensor.

User interface

DNxx / x"

Factory setting

Depends on the size of the sensor

Additional information

Description

The value is also specified on the sensor nameplate.

C0 to 5

Navigation

Expert → Sensor → Calibration → C0 to 5 (6022)

Description

Displays the current density coefficients C0 to 5 of the sensor.

User interface

Signed floating-point number

Factory setting

0

3.3 "I/O configuration" submenu

Navigation

Expert → I/O config.

[I/O configuration]

I/O module 1 to n terminal numbers (3902–1 to n) → 100
Description of device parameters

Proline Promass 300 HART

I/O module 1 to n information (3906–1 to n)	→ 100
I/O module 1 to n type (3901–1 to n)	→ 101
Apply I/O configuration (3907)	→ 101
Conversion code (2762)	→ 101

I/O module 1 to n terminal numbers

Navigation
- Expert → I/O config. → I/O 1 to n terminals (3902–1 to n)

Description
Displays the terminal numbers used by the I/O module.

User interface
- Not used
- 26-27 (I/O 1)
- 24-25 (I/O 2)
- 22-23 (I/O 3)

I/O module 1 to n information

Navigation
- Expert → I/O config. → I/O 1 to n info (3906–1 to n)

Description
Displays information about the plugged in I/O module.

User interface
- Not plugged
- Invalid
- Not configurable
- Configurable
- Fieldbus

Additional information

Not plugged option
The I/O module is not plugged in.

Invalid option
The I/O module is not plugged correctly.

Not configurable option
The I/O module is not configurable.

Configurable option
The I/O module is configurable.

Fieldbus option
The I/O module is configured for the fieldbus.
I/O module 1 to n type

Navigation

Expert → I/O config. → I/O 1 to n type (3901–1 to n)

Prerequisite

For the following order code:
- "Output; input 2", option D "Configurable I/O initial setting off"
- "Output; input 3", option D "Configurable I/O initial setting off"

Description

Use this function to select the I/O module type for the configuration of the I/O module.

Selection

- Off
- Current output
- Current input
- Status input
- Pulse/frequency/switch output

Factory setting

Off

Apply I/O configuration

Navigation

Expert → I/O config. → Apply I/O config (3907)

Description

Use this function to restart the device in order to activate the newly configured I/O module type.

Selection

- No
- Yes

Factory setting

No

Conversion code

Navigation

Expert → I/O config. → Conversion code (2762)

Description

Use this function to enter the ordered activation code to activate the I/O configuration change.

User entry

Positive integer

Factory setting

0

Additional information

Description

The I/O configuration is changed in the **I/O module type** parameter (→ 101).
3.4 "Input" submenu

Navigation

Expert → Input

![Diagram](image)

- **Current input 1 to n** → 102
- **Status input 1 to n** → 105

3.4.1 "Current input 1 to n" submenu

Navigation

Expert → Input → Current input 1 to n

![Diagram](image)

- **Terminal number (1611–1 to n)** → 102
- **Signal mode (1610–1 to n)** → 103
- **Current span (1605–1 to n)** → 103
- **0/4 mA value (1606–1 to n)** → 103
- **20 mA value (1607–1 to n)** → 104
- **Failure mode (1601–1 to n)** → 104
- **Failure value (1602–1 to n)** → 105

Terminal number

Navigation

Expert → Input → Current input 1 to n → Terminal no. (1611–1 to n)

Description

Displays the terminal numbers used by the current input module.

User interface

- Not used
- 24-25 (I/O 2)
- 22-23 (I/O 3)

Additional information

"Not used" option

The current input module does not use any terminal numbers.
Signal mode

Navigation
[/expert] → Input → Current input 1 to n → Signal mode (1610–1 to n)

Prerequisite
The measuring device is **not** approved for use in the hazardous area with type of protection Ex-i.

Description
Use this function to select the signal mode for the current input.

Selection
- Passive
- Active

Factory setting
Passive

Current span

Navigation
[/expert] → Input → Current input 1 to n → Current span (1605–1 to n)

Description
Use this function to select the current range for the process value output and the upper and lower level for signal on alarm.

Selection
- 4...20 mA
- 4...20 mA NAMUR
- 4...20 mA US
- 0...20 mA

Factory setting
Country-specific:
- 4...20 mA NAMUR
- 4...20 mA US

Additional information
Examples
Sample values for the current range: Current span parameter (→ 110)

0/4 mA value

Navigation
[/expert] → Input → Current input 1 to n → 0/4 mA value (1606–1 to n)

Description
Use this function to enter a value for the 4 mA current.

User entry
Signed floating-point number

Factory setting
0
Additional information

Current input behavior

The current input behaves differently depending on the settings configured in the following parameters:
- Current span (→ 103)
- Failure mode (→ 104)

Configuration examples

Pay attention to the configuration examples for 4 mA value parameter (→ 111).

20 mA value

Navigation

Expert → Input → Current input 1 to n → 20 mA value (1607–1 to n)

Description

Use this function to enter a value for the 20 mA current.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter

Additional information

Configuration examples

Pay attention to the configuration examples for 4 mA value parameter (→ 111).

Failure mode

Navigation

Expert → Input → Current input 1 to n → Failure mode (1601–1 to n)

Description

Use this function to select the input behavior when measuring a current outside the configured Current span parameter (→ 103).

Selection

- Alarm
- Last valid value
- Defined value

Factory setting

Alarm

Additional information

Options

- Alarm
 An error message is set.
- Last valid value
 The last valid measured value is used.
- Defined value
 A user-defined measured value is used (Failure value parameter (→ 105)).
Failure value

Navigation

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expert → Input → Current input 1 to n → Failure value (1602–1 to n)</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisite

In the **Failure mode** parameter (→ 104), the **Defined value** option is selected.

Description

Use this function to enter the value that the device uses if it does not receive an input signal from the external device, or if the input signal is invalid.

User entry

Signed floating-point number

Factory setting

0

3.4.2 "Status input 1 to n" submenu

Navigation

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expert → Input → Status input 1 to n</td>
<td></td>
</tr>
</tbody>
</table>

Terminal number

Navigation

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expert → Input → Status input 1 to n → Terminal no. (1358–1 to n)</td>
<td></td>
</tr>
</tbody>
</table>

Description

Displays the terminal numbers used by the status input module.

User interface

- Not used
- 24-25 (I/O 2)
- 22-23 (I/O 3)

Additional information

"Not used" option

The status input module does not use any terminal numbers.
Assign status input

Navigation

Expert → Input → Status input 1 to n → Assign stat.inp. (1352–1 to n)

Description

Use this function to select the function for the status input.

Selection

- Off
- Reset totalizer 1
- Reset totalizer 2
- Reset totalizer 3
- Reset all totalizers
- Flow override

Factory setting

Off

Additional information

Custody transfer measurement

Only available for Promass F, O, Q and X.

NOTE!

Before enabling the measuring device for custody transfer mode, make sure that the Off option is selected in the Assign status input.

For detailed information on custody transfer mode, see the Special Documentation for the device → 7

Additional information

Selection

- Off
 The status input is switched off.
- Reset totalizer 1…3
 The individual totalizers are reset.
- Reset all totalizers
 All totalizers are reset.
- Flow override
 The Flow override (→ 77) is activated.

Note on the Flow override (→ 77):

- The Flow override (→ 77) is enabled as long as the level is at the status input (continuous signal).
- All other assignments react to a change in level (pulse) at the status input.

Value status input

Navigation

Expert → Input → Status input 1 to n → Val.stat.inp. (1353–1 to n)

Description

Displays the current input signal level.

User interface

- High
- Low
Active level

Navigation
Expert → Input → Status input 1 to n → Active level (1351–1 to n)

Description
Use this function to determine the input signal level at which the assigned function is activated.

Selection
- High
- Low

Factory setting
High

Response time status input

Navigation
Expert → Input → Status input 1 to n → Response time (1354–1 to n)

Description
Use this function to enter the minimum time period for which the input signal level must be present before the selected function is activated.

User entry
5 to 200 ms

Factory setting
50 ms

3.5 "Output" submenu

Navigation
Expert → Output

```
Output

- Current output 1 to n  →  108
- Pulse/frequency/switch output 1 to n  →  123
- Relay output 1 to n  →  148
- Double pulse output  →  155
```
3.5.1 "Current output 1 to n" submenu

Navigation
Expert → Output → Curr.output 1 to n

<table>
<thead>
<tr>
<th>Description</th>
<th>Terminal number (0379–1 to n)</th>
<th>108</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signal mode (0377–1 to n)</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Assign current output 1 to n</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>(0359–1 to n)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current span (0353–1 to n)</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Fixed current (0365–1 to n)</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>0/4 mA value (0367–1 to n)</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>20 mA value (0372–1 to n)</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Measuring mode (0351–1 to n)</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>Damping output 1 to n (0363–1 to n)</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Response time (0378–1 to n)</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Failure mode (0364–1 to n)</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Failure current (0352–1 to n)</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Output current 1 to n (0361–1 to n)</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Measured current 1 to n (0366–1 to n)</td>
<td>123</td>
</tr>
</tbody>
</table>

Terminal number

Navigation
Expert → Output → Curr.output 1 to n → Terminal no. (0379–1 to n)

Description
Displays the terminal numbers used by the current output module.

User interface
- Not used
- 26–27 (I/O 1)
- 24–25 (I/O 2)
- 22–23 (I/O 3)

Additional information
"Not used" option
The current output module does not use any terminal numbers.
Signal mode

Navigation

Expert → Output → Curr.output 1 to n → Signal mode (0377–1 to n)

Description

Use this function to select the signal mode for the current output.

Selection

- Passive
- Active

Factory setting

Passive

Assign current output 1 to n

Navigation

Expert → Output → Curr.output 1 to n → Assign curr. 1 to n (0359–1 to n)

Description

Use this function to select a process variable for the current output.

Detailed description of the options Oscillation frequency, Oscillation amplitude, Oscillation damping and Signal asymmetry: Value 1 display parameter (→ 18)

Selection

- Off
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow
- Density
- Reference density
- Concentration
- Dynamic viscosity
- Kinematic viscosity
- Temp. compensated dynamic viscosity
- Temp. compensated kinematic viscosity
- Temperature
- Carrier pipe temperature
- Electronic temperature
- Oscillation frequency 0
- Oscillation frequency 1
- Oscillation amplitude 0
- Oscillation amplitude 1
- Frequency fluctuation 0
- Frequency fluctuation 1
- Oscillation damping 0
- Oscillation damping 1
- Oscillation damping fluctuation 0
- Oscillation damping fluctuation 1
- Signal asymmetry
- Exciter current 0
- Exciter current 1
- HBSI

* Visibility depends on order options or device settings
Description of device parameters

Current span

Navigation

Expert → Output → Curr.output 1 to n → Current span (0353–1 to n)

Description

Use this function to select the current range for the process value output and the upper and lower level for signal on alarm.

Selection

- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- 0...20 mA
- Fixed current

Factory setting

Country-specific:

- 4...20 mA NAMUR
- 4...20 mA US

Additional information

Description

- In the event of a device alarm, the current output adopts the value specified in the Failure mode parameter (→ 121).
- If the measured value is outside the measuring range, the diagnostic message S441 Current output 1 to n is displayed.
- The measuring range is specified via the 0/4 mA value parameter (→ 111) and 20 mA value parameter (→ 113).

Fixed current option

- This option is used for a HART Multidrop network.
- It can only be used for the 4...20 mA HART current output (current output 1).
- The current value is set via the Fixed current parameter (→ 111).

Example

Shows the relationship between the current span for the output of the process variable and the lower and upper alarm levels:

![Diagram showing current span and alarm levels](image)

1. Current
2. Current span for process value
3. Lower level for signal on alarm
4. Upper level for signal on alarm

Selection

<table>
<thead>
<tr>
<th>Selection</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4...20 mA NAMUR</td>
<td>3.8 to 20.5 mA</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
<tr>
<td>4...20 mA US</td>
<td>3.9 to 20.8 mA US</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
</tbody>
</table>
If the flow exceeds or falls below the upper or lower signal on alarm level, the diagnostic message \textit{S441 Current output 1 to n} is displayed.

Fixed current

Navigation

Expert → Output → Curr.output 1 to n → Fixed current (0365–1 to n)

Prerequisite

In the \textit{Current span} parameter (→ 110), the \textit{Fixed current} option is selected.

Description

Use this function to enter a constant current value for the current output.

User entry

0 to 22.5 mA

Factory setting

22.5 mA

0/4 mA value

Navigation

Expert → Output → Curr.output 1 to n → 0/4 mA value (0367–1 to n)

Prerequisite

One of the following options is selected in the \textit{Current span} parameter (→ 110):
- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- 0...20 mA

Description

Use this function to enter a value for the 0/4 mA current.

User entry

Signed floating-point number

Factory setting

Country-specific:
- 0 kg/h
- 0 lb/min

Additional information

\textit{Description}

Positive and negative values are permitted depending on the process variable assigned in the \textit{Assign current output} parameter (→ 109). In addition, the value can be greater
than or smaller than the value assigned for the 20 mA current in the **20 mA value** parameter (→ 113).

Dependency

The unit depends on the process variable selected in the **Assign current output** parameter (→ 109).

Current output behavior

The current output behaves differently depending on the settings configured in the following parameters:
- Current span (→ 110)
- Failure mode (→ 121)

Configuration examples

Some examples of parameter settings and their effect on the current output are given in the following section.

Configuration example A

Measuring mode with **Forward flow** option

- **0/4 mA value** parameter (→ 111) = not equal to zero flow (e.g. -250 m³/h)
- **20 mA value** parameter (→ 113) = not equal to zero flow (e.g. +750 m³/h)
- Calculated current value = 8 mA at zero flow

![Graph showing current output behavior for Forward flow option](image)

Q: Flow
I: Current
1: Measuring range is exceeded or undershot

The operational range of the measuring device is defined by the values entered for the **0/4 mA value** parameter (→ 111) and **20 mA value** parameter (→ 113). If the effective flow exceeds or falls below this operational range, the diagnostic message **S441 Current output 1 to n** is displayed.

Configuration example B

Measuring mode with **Forward/Reverse flow** option

![Graph showing current output behavior for Forward/Reverse flow option](image)

1: Current
Q: Flow
1: Value assigned to the 0/4 mA current
2: Forward flow
3: Reverse flow
The current output signal is independent of the direction of flow (absolute amount of the measured variable). The values for the 0/4 mA value parameter (→ 111) and 20 mA value parameter (→ 113) must have the same sign. The value for the 20 mA value parameter (→ 113) (e.g. reverse flow) corresponds to the mirrored value for the 20 mA value parameter (→ 113) (e.g. forward flow).

Configuration example C

Measuring mode with **Reverse flow compensation** option

If flow is characterized by severe fluctuations (e.g. when using reciprocating pumps), flow components outside the measuring range are buffered, balanced and output after a maximum delay of 60 s → 114.

<table>
<thead>
<tr>
<th>20 mA value</th>
</tr>
</thead>
</table>

Navigation

Expert → Output → Curr.output 1 to n → 20 mA value (0372–1 to n)

Prerequisite

One of the following options is selected in the Current span parameter (→ 110):
- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- 0...20 mA

Description

Use this function to enter a value for the 20 mA current.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter → 252

Additional information

Description

Positive and negative values are permitted depending on the process variable assigned in the Assign current output parameter (→ 109). In addition, the value can be greater than or smaller than the value assigned for the 0/4 mA current in the 0/4 mA value parameter (→ 111).

Dependency

The unit depends on the process variable selected in the Assign current output parameter (→ 109).

Example

- Value assigned to 0/4 mA = -250 m³/h
- Value assigned to 20 mA = +750 m³/h
- Calculated current value = 8 mA (at zero flow)

If the Forward/Reverse flow option is selected in the Measuring mode parameter (→ 114), different signs cannot be entered for the values of the 0/4 mA value parameter (→ 111) and 20 mA value parameter (→ 113). The diagnostic message S441 Current output 1 to n is displayed.

Configuration examples

Observe the configuration examples for the 0/4 mA value parameter (→ 111).
Description of device parameters

Proline Promass 300 HART

Measuring mode

Navigation

Expert → Output → Curr.output 1 to n → Measuring mode (0351–1 to n)

Prerequisite

One of the following options is selected in the Assign current output parameter (→ 109):
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow *
- Carrier mass flow *
- Density
- Reference density
- Concentration *
- Dynamic viscosity *
- Kinematic viscosity *
- Temp. compensated dynamic viscosity *
- Temp. compensated kinematic viscosity *
- Temperature
- Carrier pipe temperature *
- Electronic temperature
- Oscillation frequency 0
- Oscillation frequency 1 *
- Oscillation amplitude 0 *
- Oscillation amplitude 1 *
- Frequency fluctuation 0
- Frequency fluctuation 1 *
- Oscillation damping 0 *
- Oscillation damping 1 *
- Oscillation damping fluctuation 0
- Oscillation damping fluctuation 1 *
- Signal asymmetry
- Exciter current 0 *
- Exciter current 1 *
- HBSI *

Detailed description of the options Oscillation frequency, Oscillation amplitude, Oscillation damping and Signal asymmetry: Value 1 display parameter (→ 18)

One of the following options is selected in the Current span parameter (→ 110):
- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- 0...20 mA

Description

Use this function to select the measuring mode for the current output.

Selection

- Forward flow
- Forward/Reverse flow
- Reverse flow compensation

Factory setting

Forward flow

* Visibility depends on order options or device settings
Additional information

Description

The process variable that is assigned to the current output via the **Assign current output** parameter (→ 109) is displayed below the parameter.

"Forward flow" option

The current output signal is proportional to the process variable assigned. The measuring range is defined by the values that are assigned to the 0/4 mA and 20 mA current value. The flow components outside the scaled measuring range are taken into account for signal output as follows:

- Both values are defined such that they are not equal to zero flow e.g.:
 - 0/4 mA current value = –5 m³/h
 - 20 mA current value = 10 m³/h

- If the effective flow exceeds or falls below this measuring range, the diagnostic message △S441 Current output 1 to n is displayed.

"Forward/Reverse flow" option

The current output signal is independent of the direction of flow (absolute amount of the measured variable). The values for the 0/4 mA value parameter (→ 111) and 20 mA value parameter (→ 113) must have the same sign.

- The value for the 20 mA value parameter (→ 113) (e.g. reverse flow) corresponds to the mirrored value for the 20 mA value parameter (→ 113) (e.g. forward flow).

"Reverse flow compensation" option

The **Reverse flow compensation** option is primarily used to compensate for abrupt reverse flow which can occur in connection with positive displacement pumps as a result of wear or high viscosity. The reverse flows are recorded in a buffer and balanced against forward flow the next time flow is in the forward direction.

If buffering cannot be processed within approx. 60 s, the diagnostic message △S441 Current output 1 to n is displayed.

Flow values can aggregate in the buffer in the event of prolonged and unwanted fluid reverse flow. However, these flows are not taken into consideration by the current output configuration, i.e. the reverse flow is not compensated.

If this option is set, the measuring device does not attenuate the flow signal. The flow signal is not attenuated.

Examples of how the current output behaves

Example 1

Defined measuring range: lower range value and upper range value with the **same** sign
2 Measuring range

1 Current
Q Flow
1 Lower range value (value assigned to 0/4 mA current)
2 Upper range value (value assigned to 20 mA current)

With the following flow response:

3 Flow response

Q Flow
t Time

With the Forward flow option

The current output signal is proportional to the process variable assigned. The flow components outside the scaled measuring range are not taken into account for signal output.

With the Forward/Reverse flow option

The current output signal is independent of the direction of flow.

With the Reverse flow compensation option
Flow components outside the span are buffered, balanced and output after a maximum delay of 60 s.

\[
S = A
\]

1 Current
\(t \) Time
S Flow components saved
A Balancing of saved flow components

Example 2

Defined measuring range: lower range value and upper range value with different signs

\[
\begin{align*}
I &\quad \text{Current} \\
Q &\quad \text{Flow} \\
1 &\quad \text{Lower range value (value assigned to 0/4 mA current)} \\
2 &\quad \text{Upper range value (value assigned to 20 mA current)}
\end{align*}
\]

With flow a (—) outside, b (- -) inside the measuring range

\[
Q
\]

1 Flow
\(t \) Time
1 Lower range value (value assigned to 0/4 mA current)
2 Upper range value (value assigned to 20 mA current)

With the **Forward flow** option

- a (—): The flow components outside the scaled measuring range cannot be taken into account for signal output.
 The diagnostic message **S441 Current output 1 to n** is displayed.
- b (- -): The current output signal is proportional to the process variable assigned.
With the **Forward/Reverse flow** option

This option is not possible in this case as the values for the **0/4 mA value** parameter (→ 111) and **20 mA value** parameter (→ 113) have different signs.

With the **Reverse flow compensation** option

Flow components outside the span are buffered, balanced and output after a maximum delay of 60 s.

Damping output 1 to n

Navigation

[Expert → Output → Curr.output 1 to n → Damping out. 1 to n (0363–1 to n)]

Prerequisite

One of the following options is selected in the **Assign current output** parameter (→ 109):

- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow
- Density
- Reference density
- Concentration
- Dynamic viscosity
- Kinematic viscosity
- Temp. compensated dynamic viscosity
- Temp. compensated kinematic viscosity
- Temperature
- Carrier pipe temperature
- Electronic temperature

* Visibility depends on order options or device settings
Description of device parameters

- Oscillation frequency 0
- Oscillation frequency 1 *
- Oscillation amplitude 0 *
- Oscillation amplitude 1 *
- Frequency fluctuation 0
- Frequency fluctuation 1 *
- Oscillation damping 0
- Oscillation damping 1 *
- Oscillation damping fluctuation 0
- Oscillation damping fluctuation 1 *
- Signal asymmetry
- Exciter current 0
- Exciter current 1 *
- HBSI *

Detailed description of the options Oscillation frequency, Oscillation amplitude, Oscillation damping and Signal asymmetry: Value 1 display parameter (→ 18)

One of the following options is selected in the Current span parameter (→ 110):
- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- 0...20 mA

Description

Use this function to enter a time constant for the reaction time of the current output signal to fluctuations in the measured value caused by process conditions.

User entry

0.0 to 999.9 s

Factory setting

1.0 s

Additional information

Use this function to enter a time constant (PT1 element 5) for current output damping:
- If a low time constant is entered, the current output reacts particularly quickly to fluctuating measured variables.
- On the other hand, the current output reacts more slowly if a high time constant is entered.

Damping is switched off if 0 is entered (factory setting).

Response time

Navigation

Expert → Output → Curr.output 1 to n → Response time (0378–1 to n)

Prerequisite

One of the following options is selected in the Assign current output parameter (→ 109):
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow *
- Carrier mass flow *
- Density

* Visibility depends on order options or device settings
5) Proportional transmission behavior with first order delay
• Reference density
• Concentration *
• Dynamic viscosity *
• Kinematic viscosity *
• Temp. compensated dynamic viscosity *
• Temp. compensated kinematic viscosity *
• Temperature
• Carrier pipe temperature *
• Electronic temperature
• Oscillation frequency 0 *
• Oscillation frequency 1 *
• Oscillation amplitude 0 *
• Oscillation amplitude 1 *
• Frequency fluctuation 0 *
• Frequency fluctuation 1 *
• Oscillation damping 0 *
• Oscillation damping 1 *
• Oscillation damping fluctuation 0 *
• Oscillation damping fluctuation 1 *
• Signal asymmetry
• Exciter current 0 *
• Exciter current 1 *
• HBSI *

Detailed description of the options Oscillation frequency, Oscillation amplitude, Oscillation damping and Signal asymmetry: Value 1 display parameter (→ 18)

One of the following options is selected in the Current span parameter (→ 110):
• 4...20 mA NAMUR
• 4...20 mA US
• 4...20 mA
• 0...20 mA

Description
Displays the response time. This specifies how quickly the current output reaches the measured value change of 63 % of 100 % of the measured value change.

User interface
Positive floating-point number

Additional information
Description

The response time is made up of the time specified for the following dampings:
• Current output damping (→ 118)
and
• Depending on the measured variable assigned to the output.
 – Flow damping
 or
 – Density damping
 or
 – Temperature damping

* Visibility depends on order options or device settings
Failure mode

Navigation

Expert → Output → Curr.output 1 to n → Failure mode (0364–1 to n)

Prerequisite

One of the following options is selected in the Assign current output parameter (→ 109):
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow
- Density
- Reference density
- Concentration
- Dynamic viscosity
- Kinematic viscosity
- Temp. compensated dynamic viscosity
- Temp. compensated kinematic viscosity
- Temperature
- Carrier pipe temperature
- Electronic temperature
- Oscillation frequency 0
- Oscillation frequency 1
- Oscillation amplitude 0
- Oscillation amplitude 1
- Frequency fluctuation 0
- Frequency fluctuation 1
- Oscillation damping 0
- Oscillation damping 1
- Oscillation damping fluctuation 0
- Oscillation damping fluctuation 1
- Signal asymmetry
- Exciter current 0
- Exciter current 1
- HBSI

Detailed description of the options Oscillation frequency, Oscillation amplitude, Oscillation damping and Signal asymmetry. Value 1 display parameter (→ 18)

One of the following options is selected in the Current span parameter (→ 110):
- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- 0...20 mA

Description

Use this function to select the value of the current output in the event of a device alarm.

Selection

- Min.
- Max.
- Last valid value
- Actual value
- Defined value

Factory setting

Max.

* Visibility depends on order options or device settings
Additional information

Description
This setting does not affect the failsafe mode of other outputs and totalizers. This is specified in separate parameters.

"Min." option
The current output adopts the value of the lower level for signal on alarm.

The signal on alarm level is defined via the **Current span** parameter (→ 110).

"Max." option
The current output adopts the value of the upper level for signal on alarm.

The signal on alarm level is defined via the **Current span** parameter (→ 110).

"Last valid value" option
The current output adopts the last measured value that was valid before the device alarm occurred.

"Actual value" option
The current output adopts the measured value on the basis of the current flow measurement; the device alarm is ignored.

"Defined value" option
The current output adopts a defined measured value.

The measured value is defined via the **Failure current** parameter (→ 122).

Failure current

Navigation

Expert → Output → Curr.output 1 to n → Failure current (0352–1 to n)

Prerequisite

In the **Failure mode** parameter (→ 121), the **Defined value** option is selected.

Description

Use this function to enter a fixed value that the current output adopts in the event of a device alarm.

User entry

0 to 22.5 mA

Factory setting

22.5 mA

Output current 1 to n

Navigation

Expert → Output → Curr.output 1 to n → Output curr. 1 to n (0361–1 to n)

Description

Displays the current value currently calculated for the current output.

User interface

3.59 to 22.5 mA
Proline Promass 300 HART

Description of device parameters

Measured current 1 to n

Navigation

Expert → Output → Curr.output 1 to n → Measur. curr. 1 to n (0366–1 to n)

Description

Use this function to display the actual measured value of the output current.

User interface

0 to 30 mA

3.5.2 "Pulse/frequency/switch output 1 to n" submenu

Navigation

Expert → Output → PFS output 1 to n

<table>
<thead>
<tr>
<th>Topic</th>
<th>Function/Setting</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal number (0492–1 to n)</td>
<td></td>
<td>124</td>
</tr>
<tr>
<td>Signal mode (0490–1 to n)</td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>Operating mode (0469–1 to n)</td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>Assign pulse output 1 to n (0460–1 to n)</td>
<td></td>
<td>127</td>
</tr>
<tr>
<td>Value per pulse (0455–1 to n)</td>
<td></td>
<td>127</td>
</tr>
<tr>
<td>Pulse width (0452–1 to n)</td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>Measuring mode (0457–1 to n)</td>
<td></td>
<td>129</td>
</tr>
<tr>
<td>Failure mode (0480–1 to n)</td>
<td></td>
<td>129</td>
</tr>
<tr>
<td>Pulse output 1 to n (0456–1 to n)</td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>Assign frequency output (0478–1 to n)</td>
<td></td>
<td>131</td>
</tr>
<tr>
<td>Minimum frequency value (0453–1 to n)</td>
<td></td>
<td>132</td>
</tr>
<tr>
<td>Maximum frequency value (0454–1 to n)</td>
<td></td>
<td>133</td>
</tr>
<tr>
<td>Measuring value at minimum frequency (0476–1 to n)</td>
<td></td>
<td>134</td>
</tr>
<tr>
<td>Measuring value at maximum frequency (0475–1 to n)</td>
<td></td>
<td>135</td>
</tr>
</tbody>
</table>
Description of device parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring mode (0479–1 to n)</td>
<td>136</td>
</tr>
<tr>
<td>Damping output 1 to n (0477–1 to n)</td>
<td>137</td>
</tr>
<tr>
<td>Response time (0491–1 to n)</td>
<td>138</td>
</tr>
<tr>
<td>Failure mode (0451–1 to n)</td>
<td>139</td>
</tr>
<tr>
<td>Failure frequency (0474–1 to n)</td>
<td>140</td>
</tr>
<tr>
<td>Output frequency 1 to n (0471–1 to n)</td>
<td>141</td>
</tr>
<tr>
<td>Switch output function (0481–1 to n)</td>
<td>141</td>
</tr>
<tr>
<td>Assign diagnostic behavior (0482–1 to n)</td>
<td>142</td>
</tr>
<tr>
<td>Assign limit (0483–1 to n)</td>
<td>143</td>
</tr>
<tr>
<td>Switch-on value (0466–1 to n)</td>
<td>144</td>
</tr>
<tr>
<td>Switch-off value (0464–1 to n)</td>
<td>145</td>
</tr>
<tr>
<td>Assign flow direction check (0484–1 to n)</td>
<td>145</td>
</tr>
<tr>
<td>Assign status (0485–1 to n)</td>
<td>146</td>
</tr>
<tr>
<td>Switch-on delay (0467–1 to n)</td>
<td>146</td>
</tr>
<tr>
<td>Switch-off delay (0465–1 to n)</td>
<td>146</td>
</tr>
<tr>
<td>Failure mode (0486–1 to n)</td>
<td>147</td>
</tr>
<tr>
<td>Switch status 1 to n (0461–1 to n)</td>
<td>147</td>
</tr>
<tr>
<td>Invert output signal (0470–1 to n)</td>
<td>148</td>
</tr>
</tbody>
</table>

Terminal number

Navigation

- Expert → Output → PFS output 1 to n → Terminal no. (0492–1 to n)

Description

Displays the terminal numbers used by the pulse/frequency/switch output module.

User interface

- Not used
- 24-25 (I/O 2)
- 22-23 (I/O 3)
Signal mode

Navigation
Expert → Output → PFS output 1 to n → Signal mode (0490–1 to n)

Description
Use this function to select the signal mode for the pulse/frequency/switch output.

Selection
- Passive
- Active

Factory setting
Passive

Operating mode

Navigation
Expert → Output → PFS output 1 to n → Operating mode (0469–1 to n)

Description
Use this function to select the operating mode of the output as a pulse, frequency or switch output.

Selection
- Pulse
- Frequency
- Switch

Factory setting
Pulse

Additional information

Pulse option
Quantity-dependent pulse with configurable pulse width
- Whenever a specific mass, volume, corrected volume, target mass or carrier mass is reached (pulse value), a pulse is output, the duration of which was set previously (pulse width).
- The pulses are never shorter than the set duration.

Example
- Flow rate approx. 100 g/s
- Pulse value 0.1 g
- Pulse width 0.05 ms
- Pulse rate 1000 Impuls/s
Proline Promass 300 HART

Description of device parameters

5 Quantity-proportional pulse (pulse value) with pulse width to be configured

- **B** Pulse width entered
- **P** Pauses between the individual pulses

"Frequency" option

Flow-proportional frequency output with 1:1 on/off ratio

An output frequency is output that is proportional to the value of a process variable, such as mass flow, volume flow, corrected volume flow, target mass flow, carrier mass flow, density, reference density, concentration, dynamic viscosity, kinematic viscosity, temperature-compensated dynamic viscosity, temperature-compensated kinematic viscosity, temperature, carrier tube temperature, electronic temperature, vibration frequency, frequency fluctuation, oscillation amplitude, oscillation damping, oscillation damping fluctuation, signal asymmetry or excitation current.

Example
- Flow rate approx. 100 g/s
- Max. frequency 10 kHz
- Flow rate at max. frequency 1000 g/s
- Output frequency approx. 1000 Hz

6 Flow-proportional frequency output

"Switch" option

Contact for displaying a condition (e.g. alarm or warning if a limit value is reached)

Example
- Alarm response without alarm

7 No alarm, high level

Example
- Alarm response in case of alarm
Assign pulse output 1 to n

Navigation

Expert → Output → PFS output 1 to n → Assign pulse 1 to n (0460–1 to n)

Prerequisite

In the Operating mode parameter (→ 125), the Pulse option is selected.

Description

Use this function to select the process variable for the pulse output.

Selection

- Off
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow*
- Carrier mass flow*

Factory setting

Off

Value per pulse

Navigation

Expert → Output → PFS output 1 to n → Value per pulse (0455–1 to n)

Prerequisite

In the Operating mode parameter (→ 125), the Pulse option is selected and one of the following options is selected in the Assign pulse output parameter (→ 127):

- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow*
- Carrier mass flow*

Description

Use this function to enter the value for the measured value that a pulse is equivalent to.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter → 253

Additional information

User entry

Weighting of the pulse output with a quantity.

* Visibility depends on order options or device settings
The lower the pulse value, the
- better the resolution.
- the higher the frequency of the pulse response.

Pulse width

Navigation
Expert → Output → PFS output 1 to n → Pulse width (0452–1 to n)

Prerequisite
In the Operating mode parameter (→ 125), the Pulse option is selected and one of the following options is selected in the Assign pulse output parameter (→ 127):
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow

Description
Use this function to enter the duration of the output pulse.

User entry
0.05 to 2 000 ms

Factory setting
100 ms

Additional information
Define how long a pulse is (duration).
The maximum pulse rate is defined by $f_{\text{max}} = 1 / (2 \times \text{pulse width})$.
The interval between two pulses lasts at least as long as the set pulse width.
*The maximum flow is defined by $Q_{\text{max}} = f_{\text{max}} \times \text{pulse value}$. *
If the flow exceeds these limit values, the measuring device displays the diagnostic message Δ.S443 Pulse output 1 to n.

Example
- Pulse value: 0.1 g
- Pulse width: 0.1 ms
- f_{max}: $1 / (2 \times 0.1 \text{ ms}) = 5 \text{ kHz}$
- Q_{max}: $5 \text{ kHz} \times 0.1 \text{ g} = 0.5 \text{ kg/s}$

* Visibility depends on order options or device settings
Measuring mode

Navigation
Expert → Output → PFS output 1 to n → Measuring mode (0457–1 to n)

Prerequisite
In the Operating mode parameter (→ 125), the Pulse option is selected and one of the following options is selected in the Assign pulse output parameter (→ 127):
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow

Description
Use this function to select the measuring mode for the pulse output.

Selection
- Forward flow
- Forward/Reverse flow
- Reverse flow
- Reverse flow compensation

Factory setting
Forward flow

Additional information
Selection
- Forward flow
 Positive flow is output, negative flow is not output.
- Forward/Reverse flow
 Positive and negative flow are output (absolute value), but a distinction is not made between positive and negative flow.
- Reverse flow
 Negative flow is output, positive flow is not output.
- Reverse flow compensation
 The flow components outside the span are buffered, balanced and output after a maximum delay of 60 s.

For a detailed description of the options available, see the Measuring mode parameter (→ 114)

Examples

For a detailed description of the configuration examples, see the Measuring mode parameter (→ 114)

Failure mode

Navigation
Expert → Output → PFS output 1 to n → Failure mode (0480–1 to n)

Prerequisite
In the Operating mode parameter (→ 125), the Pulse option is selected and one of the following options is selected in the Assign pulse output parameter (→ 127):
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow

* Visibility depends on order options or device settings
Description
Use this function to select the failure mode of the pulse output in the event of a device alarm.

Selection
- Actual value
- No pulses

Factory setting
No pulses

Additional information
Description
The dictates of safety render it advisable to ensure that the pulse output shows a predefined behavior in the event of a device alarm.

Selection
- Actual value
 In the event of a device alarm, the pulse output continues on the basis of the current flow measurement. The fault is ignored.
- No pulses
 In the event of a device alarm, the pulse output is "switched off".

NOTICE! A device alarm is a measuring device error that must be taken seriously. It can affect the measurement quality such that the quality can no longer be guaranteed. The Actual value option is only recommended if it can be guaranteed that all possible alarm conditions will not affect the measurement quality.

Pulse output 1 to n

Navigation
Expert → Output → PFS output 1 to n → Pulse output 1 to n (0456–1 to n)

Prerequisite
In the Operating mode parameter (→ 125), the Pulse option is selected.

Description
Displays the pulse frequency currently output.

User interface
Positive floating-point number

Additional information
Description
- The pulse output is an open collector output.
- This is configured at the factory in such a way that the transistor is conductive for the duration of the pulse (NO contact) and is safety-oriented.

The output behavior can be reversed via the Invert output signal parameter (→ 148)
i.e. the transistor does not conduct for the duration of the pulse.
In addition, the behavior of the output in the event of a device alarm (Failure mode parameter (→ 129)) can be configured.

Assign frequency output

Navigation
Expert → Output → PFS output 1 to n → Assign freq. (0478–1 to n)

Prerequisite
In the Operating mode parameter (→ 125), the Frequency option is selected.

Description
Use this function to select the process variable for the frequency output.

Detailed description of the options Oscillation frequency, Oscillation amplitude, Oscillation damping and Signal asymmetry: Value 1 display parameter (→ 18)

Selection
- Off
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow
- Density
- Reference density
- Concentration
- Dynamic viscosity
- Kinematic viscosity
- Temp. compensated dynamic viscosity
- Temp. compensated kinematic viscosity
- Temperature
- Carrier pipe temperature
- Electronic temperature
- Oscillation frequency 0
- Oscillation frequency 1
- Oscillation amplitude 0
- Oscillation amplitude 1
- Frequency fluctuation 0
- Frequency fluctuation 1
- Oscillation damping 0
- Oscillation damping 1
- Oscillation damping fluctuation 0
- Oscillation damping fluctuation 1
- Signal asymmetry
- Exciter current 0
- Exciter current 1

Factory setting
Off

* Visibility depends on order options or device settings
Description of device parameters

Minimum frequency value

Navigation

[Expert → Output → PFS output 1 to n → Min. freq. value (0453–1 to n)]

Prerequisite

In the [Operating mode](#) parameter (→ 125), the [Frequency](#) option is selected and one of the following options is selected in the [Assign frequency output](#) parameter (→ 131):

- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow
- Density
- Reference density
- Concentration
- Dynamic viscosity
- Kinematic viscosity
- Temp. compensated dynamic viscosity
- Temp. compensated kinematic viscosity
- Temperature
- Carrier pipe temperature
- Electronic temperature
- Oscillation frequency 0
- Oscillation frequency 1
- Frequency fluctuation 0
- Frequency fluctuation 1
- Oscillation amplitude 0
- Oscillation amplitude 1
- Oscillation damping 0
- Oscillation damping 1
- Oscillation damping fluctuation 0
- Oscillation damping fluctuation 1
- Signal asymmetry
- Exciter current 0
- Exciter current 1

* Detailed description of the options Oscillation frequency, Oscillation amplitude, Oscillation damping and Signal asymmetry: Value 1 display parameter (→ 18)

Description

Use this function to enter the start value frequency.

User entry

0.0 to 10000.0 Hz

Factory setting

0.0 Hz

* Visibility depends on order options or device settings
Maximum frequency value

Navigation

Expert → Output → PFS output 1 to n → Max. freq. value (0454–1 to n)

Prerequisite

In the **Operating mode** parameter (→ 125), the **Frequency** option is selected and one of the following options is selected in the **Assign frequency output** parameter (→ 131):

- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow*
- Carrier mass flow*
- Density
- Reference density
- Concentration*
- Dynamic viscosity*
- Kinematic viscosity*
- Temp. compensated dynamic viscosity*
- Temp. compensated kinematic viscosity*
- Temperature
- Carrier pipe temperature*
- Electronic temperature
- Oscillation frequency 0
- Oscillation frequency 1*
- Frequency fluctuation 0
- Frequency fluctuation 1*
- Oscillation amplitude 0*
- Oscillation amplitude 1*
- Oscillation damping 0
- Oscillation damping 1*
- Oscillation damping fluctuation 0
- Oscillation damping fluctuation 1*
- Signal asymmetry
- Exciter current 0
- Exciter current 1*

Detailed description of the options Oscillation frequency, Oscillation amplitude, Oscillation damping and Signal asymmetry: Value 1 display parameter (→ 18)

Description

Use this function to enter the end value frequency.

User entry

0.0 to 10000.0 Hz

Factory setting

10000.0 Hz

* Visibility depends on order options or device settings
Description of device parameters

Proline Promass 300 HART

Measuring value at minimum frequency

Navigation

Expert → Output → PFS output 1 to n → Val. at min.freq (0476–1 to n)

Prerequisite

In the Operating mode parameter (→ 125), the Frequency option is selected and one of the following options is selected in the Assign frequency output parameter (→ 131):

- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow
- Density
- Reference density
- Concentration
- Dynamic viscosity
- Kinematic viscosity
- Temp. compensated dynamic viscosity
- Temp. compensated kinematic viscosity
- Temperature
- Carrier pipe temperature
- Electronic temperature
- Oscillation frequency 0
- Oscillation frequency 1
- Frequency fluctuation 0
- Frequency fluctuation 1
- Oscillation amplitude 0
- Oscillation amplitude 1
- Oscillation damping 0
- Oscillation damping 1
- Oscillation damping fluctuation 0
- Oscillation damping fluctuation 1
- Signal asymmetry
- Exciter current 0
- Exciter current 1

Detailed description of the options Oscillation frequency, Oscillation amplitude, Oscillation damping and Signal asymmetry: Value 1 display parameter (→ 18)

Description

Use this function to enter the measured value for the start value frequency.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter

Additional information

Dependency

The entry depends on the process variable selected in the Assign frequency output parameter (→ 131).

* Visibility depends on order options or device settings
Measuring value at maximum frequency

Navigation

Expert → Output → PFS output 1 to n → Val. at max. freq (0475–1 to n)

Prerequisite

In the **Operating mode** parameter (→ 125), the **Frequency** option is selected and one of the following options is selected in the **Assign frequency output** parameter (→ 131):

- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow
- Density
- Reference density
- Concentration
- Dynamic viscosity
- Kinematic viscosity
- Temp. compensated dynamic viscosity
- Temp. compensated kinematic viscosity
- Temperature
- Carrier pipe temperature
- Electronic temperature
- Oscillation frequency 0
- Oscillation frequency 1
- Frequency fluctuation 0
- Frequency fluctuation 1
- Oscillation amplitude 0
- Oscillation amplitude 1
- Oscillation damping 0
- Oscillation damping 1
- Oscillation damping fluctuation 0
- Oscillation damping fluctuation 1
- Signal asymmetry
- Exciter current 0
- Exciter current 1

* Visibility depends on order options or device settings

Description

Use this function to enter the measured value for the end value frequency.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter

Additional information

Description

Use this function to enter the maximum measured value at the maximum frequency. The selected process variable is output as a proportional frequency.

Dependency

The entry depends on the process variable selected in the **Assign frequency output** parameter (→ 131).
Measuring mode

Navigation

Expert → Output → PFS output 1 to n → Measuring mode (0479–1 to n)

Prerequisite

In the Operating mode parameter (→ 125), the Frequency option is selected and one of the following options is selected in the Assign frequency output parameter (→ 131):

- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow
- Density
- Reference density
- Concentration
- Dynamic viscosity
- Kinematic viscosity
- Temp. compensated dynamic viscosity
- Temp. compensated kinematic viscosity
- Temperature
- Carrier pipe temperature
- Electronic temperature
- Oscillation frequency 0
- Oscillation frequency 1
- Frequency fluctuation 0
- Frequency fluctuation 1
- Oscillation amplitude 0
- Oscillation amplitude 1
- Oscillation damping 0
- Oscillation damping 1
- Oscillation damping fluctuation 0
- Oscillation damping fluctuation 1
- Signal asymmetry
- Exciter current 0
- Exciter current 1

Detailed description of the options Oscillation frequency, Oscillation amplitude, Oscillation damping and Signal asymmetry: Value 1 display parameter (→ 18)

Description

Use this function to select the measuring mode for the frequency output.

Selection

- Forward flow
- Forward/Reverse flow
- Reverse flow compensation

Factory setting

Forward flow

Additional information

Selection

For a detailed description of the options available, see the Measuring mode parameter (→ 114)

Examples

For a detailed description of the configuration examples, see the Measuring mode parameter (→ 114)

* Visibility depends on order options or device settings
Damping output 1 to n

Navigation

Expert → Output → PFS output 1 to n → Damping out. 1 to n (0477–1 to n)

Prerequisite

In the Operating mode parameter (→ 125), the Frequency option is selected and one of the following options is selected in the Assign frequency output parameter (→ 131):

- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow
- Density
- Reference density
- Concentration
- Dynamic viscosity
- Kinematic viscosity
- Temp. compensated dynamic viscosity
- Temp. compensated kinematic viscosity
- Temperature
- Carrier pipe temperature
- Electronic temperature
- Oscillation frequency 0
- Oscillation frequency 1
- Frequency fluctuation 0
- Frequency fluctuation 1
- Oscillation amplitude 0
- Oscillation amplitude 1
- Oscillation damping 0
- Oscillation damping 1
- Oscillation damping fluctuation 0
- Oscillation damping fluctuation 1
- Signal asymmetry
- Exciter current 0
- Exciter current 1

Detailed description of the options Oscillation frequency, Oscillation amplitude, Oscillation damping and Signal asymmetry: Value 1 display parameter (→ 18)

Description

Use this function to enter a time constant for the reaction time of the output signal to fluctuations in the measured value.

User entry

0 to 999.9 s

Factory setting

0.0 s

Additional information

Use this function to enter a time constant (PT1 element 6) for frequency output damping:

- If a low time constant is entered, the current output reacts particularly quickly to fluctuating measured variables.
- On the other hand, the current output reacts more slowly if a high time constant is entered.

Damping is switched off if 0 is entered (factory setting).

* Visibility depends on order options or device settings
6) Proportional transmission behavior with first order delay
The frequency output is subject to separate damping that is independent of all preceding time constants.

Response time

Navigation

Expert → Output → PFS output 1 to n → Response time (0491–1 to n)

Prerequisite

In the Operating mode parameter (→ 125), the Frequency option is selected and one of the following options is selected in the Assign frequency output parameter (→ 131):
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow
- Density
- Reference density
- Concentration
- Dynamic viscosity
- Kinematic viscosity
- Temp. compensated dynamic viscosity
- Temp. compensated kinematic viscosity
- Temperature
- Carrier pipe temperature
- Electronic temperature
- Oscillation frequency 0
- Oscillation frequency 1
- Frequency fluctuation 0
- Frequency fluctuation 1
- Oscillation amplitude 0
- Oscillation amplitude 1
- Oscillation damping 0
- Oscillation damping 1
- Oscillation damping fluctuation 0
- Oscillation damping fluctuation 1
- Signal asymmetry
- Exciter current 0
- Exciter current 1

Detailed description of the options Oscillation frequency, Oscillation amplitude, Oscillation damping and Signal asymmetry: Value 1 display parameter

Description

Displays the response time. This specifies how quickly the pulse/frequency/switch output reaches the measured value change of 63 % of 100 % of the measured value change.

User interface

Positive floating-point number

* Visibility depends on order options or device settings
Additional information

Description

The response time is made up of the time specified for the following dampings:

- Damping of pulse/frequency/switch output → 118 and
- Depending on the measured variable assigned to the output.
 - Flow damping
 or
 - Density damping
 or
 - Temperature damping

Failure mode

Navigation

Expert → Output → PFS output 1 to n → Failure mode (0451–1 to n)

Prerequisite

In the Operating mode parameter (→ 125), the Frequency option is selected and one of the following options is selected in the Assign frequency output parameter (→ 131):

- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow
- Density
- Reference density
- Concentration
- Dynamic viscosity
- Kinematic viscosity
- Temp. compensated dynamic viscosity
- Temp. compensated kinematic viscosity
- Temperature
- Carrier pipe temperature
- Electronic temperature
- Oscillation frequency 0
- Oscillation frequency 1
- Frequency fluctuation 0
- Frequency fluctuation 1
- Oscillation amplitude 0
- Oscillation amplitude 1
- Oscillation damping 0
- Oscillation damping 1
- Oscillation damping fluctuation 0
- Oscillation damping fluctuation 1
- Signal asymmetry
- Exciter current 0
- Exciter current 1

Detailed description of the options Oscillation frequency, Oscillation amplitude, Oscillation damping and Signal asymmetry: Value 1 display parameter (→ 18)

Description

Use this function to select the failure mode of the frequency output in the event of a device alarm.

* Visibility depends on order options or device settings
Selection
- Actual value
- Defined value
- 0 Hz

Factory setting
0 Hz

Additional information
Selection
- Actual value
 In the event of a device alarm, the frequency output continues on the basis of the current flow measurement. The device alarm is ignored.
- Defined value
 In the event of a device alarm, the frequency output continues on the basis of a predefined value. The Failure frequency (→ 140) replaces the current measured value, making it possible to bypass the device alarm. The actual measurement is switched off for the duration of the device alarm.
- 0 Hz
 In the event of a device alarm, the frequency output is "switched off".

NOTICE! A device alarm is a measuring device error that must be taken seriously. It can affect the measurement quality such that the quality can no longer be guaranteed. The Actual value option is only recommended if it can be guaranteed that all possible alarm conditions will not affect the measurement quality.

Failure frequency

Navigation
Expert → Output → PFS output 1 to n → Failure freq. (0474–1 to n)

Prerequisite
In the Operating mode parameter (→ 125), the Frequency option is selected and one of the following options is selected in the Assign frequency output parameter (→ 131):
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow*
- Carrier mass flow*
- Density
- Reference density
- Concentration*
- Dynamic viscosity*
- Kinematic viscosity*
- Temp. compensated dynamic viscosity*
- Temp. compensated kinematic viscosity*
- Temperature
- Carrier pipe temperature*
- Electronic temperature
- Oscillation frequency 0
- Oscillation frequency 1*
- Frequency fluctuation 0
- Frequency fluctuation 1*
- Oscillation amplitude 0*
- Oscillation amplitude 1*
- Oscillation damping 0
- Oscillation damping 1*

* Visibility depends on order options or device settings
• Oscillation damping fluctuation 0
• Oscillation damping fluctuation 1 *
• Signal asymmetry
• Exciter current 0
• Exciter current 1 *

Detailed description of the options Oscillation frequency, Oscillation amplitude, Oscillation damping and Signal asymmetry: Value 1 display parameter (→ 18)

Description
Use this function to enter the value for the frequency output in the event of a device alarm in order to bypass the alarm.

User entry
0.0 to 12 500.0 Hz

Factory setting
0.0 Hz

Output frequency 1 to n

Navigation
Expert → Output → PFS output 1 to n → Output freq. 1 to n (0471–1 to n)

Prerequisite
In the Operating mode parameter (→ 125), the Frequency option is selected.

Description
Displays the actual value of the output frequency which is currently measured.

User interface
0.0 to 12 500.0 Hz

Switch output function

Navigation
Expert → Output → PFS output 1 to n → Switch out funct (0481–1 to n)

Prerequisite
In the Operating mode parameter (→ 125) the Switch option is selected.

Description
Use this function to select a function for the switch output.

Selection
• Off
• On
• Diagnostic behavior
• Limit
• Flow direction check
• Status

Factory setting
Off

* Visibility depends on order options or device settings
Additional information

Selection

- **Off**
 The switch output is permanently switched off (open, non-conductive).
- **On**
 The switch output is permanently switched on (closed, conductive).
- **Diagnostic behavior**
 Indicates if the diagnostic event is present or not. Is used to output diagnostic information and to react to it appropriately at the system level.
- **Limit**
 Indicates if a specified limit value has been reached for the process variable. Is used to output diagnostic information relating to the process and to react to it appropriately at the system level.
- **Flow direction check**
 Indicates the flow direction (forward or reverse flow).
- **Status**
 Indicates the device status depending on whether empty pipe detection or low flow cutoff is selected.

Assign diagnostic behavior

Navigation

Expert → Output → PFS output 1 to n → Assign diag. beh (0482–1 to n)

Prerequisite

- In the **Operating mode** parameter (→ 125), the **Switch** option is selected.
- In the **Switch output function** parameter (→ 141), the **Diagnostic behavior** option is selected.

Description

Use this function to select the diagnostic event category that is displayed for the switch output.

Selection

- **Alarm**
- **Alarm or warning**
- **Warning**

Factory setting

Alarm

Additional information

Description

If no diagnostic event is pending, the switch output is closed and conductive.

Selection

- **Alarm**
 The switch output signals only diagnostic events in the alarm category.
- **Alarm or warning**
 The switch output signals diagnostic events in the alarm and warning category.
- **Warning**
 The switch output signals only diagnostic events in the warning category.
Assign limit

Navigation

Expert → Output → PFS output 1 to n → Assign limit (0483–1 to n)

Prerequisite

- In the **Operating mode** parameter (→ 125), the **Switch** option is selected.
- In the **Switch output function** parameter (→ 141), the **Limit** option is selected.

Description

Use this function to select a process variable for the limit function.

Selection

- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow *
- Carrier mass flow *
- Density
- Reference density
- Dynamic viscosity *
- Concentration *
- Kinematic viscosity *
- Temp. compensated dynamic viscosity *
- Temp. compensated kinematic viscosity *
- Temperature
- Totalizer 1
- Totalizer 2
- Totalizer 3
- Oscillation damping

Factory setting

Mass flow

Additional information

Description

Behavior of status output when Switch-on value > Switch-off value:

- Process variable > Switch-on value: transistor is conductive
- Process variable < Switch-off value: transistor is non-conductive

* Visibility depends on order options or device settings
Behavior of status output when Switch-on value < Switch-off value:
- Process variable < Switch-on value: transistor is conductive
- Process variable > Switch-off value: transistor is non-conductive

Behavior of status output when Switch-on value = Switch-off value:
- Process variable > Switch-on value: transistor is conductive
- Process variable < Switch-off value: transistor is non-conductive

Switch-on value

Navigation
Expert → Output → PFS output 1 to n → Switch-on value (0466–1 to n)

Prerequisite
- In the Operating mode parameter (→ 125), the Switch option is selected.
- In the Switch output function parameter (→ 141), the Limit option is selected.

Description
Use this function to enter the measured value for the switch-on point.

User entry
Signed floating-point number
Factory setting

Country-specific:
- 0 kg/h
- 0 lb/min

Additional information

Description

Use this function to enter the limit value for the switch-on value (process variable > switch-on value = closed, conductive).

- When using a hysteresis: Switch-on value > Switch-off value.

Dependency

- The unit depends on the process variable selected in the **Assign limit** parameter (→ 143).

Switch-off value

Navigation

Expert → Output → PFS output 1 to n → Switch-off value (0464–1 to n)

Prerequisite

- In the **Operating mode** parameter (→ 125), the **Switch** option is selected.
- In the **Switch output function** parameter (→ 141), the **Limit** option is selected.

Description

Use this function to enter the measured value for the switch-off point.

User entry

Signed floating-point number

Factory setting

Country-specific:
- 0 kg/h
- 0 lb/min

Additional information

Description

Use this function to enter the limit value for the switch-off value (process variable < switch-off value = open, non-conductive).

- When using a hysteresis: Switch-on value > Switch-off value.

Dependency

- The unit depends on the process variable selected in the **Assign limit** parameter (→ 143).

Assign flow direction check

Navigation

Expert → Output → PFS output 1 to n → Assign dir.check (0484–1 to n)

Prerequisite

- The **Switch** option is selected in the **Operating mode** parameter (→ 125).
- The **Flow direction check** option is selected in the **Switch output function** parameter (→ 141).

Description

Use this function to select a process variable for monitoring the flow direction.
Selection

- Off
- Volume flow
- Mass flow
- Corrected volume flow

Factory setting
Mass flow

Assign status

Navigation

Expert → Output → PFS output 1 to n → Assign status (0485–1 to n)

Prerequisite

- The Switch option is selected in the Operating mode parameter (→ 125).
- The Status option is selected in the Switch output function parameter (→ 141).

Description
Use this function to select a device status for the switch output.

Selection

- Partially filled pipe detection
- Low flow cut off

Factory setting
Partially filled pipe detection

Additional information

Options
If empty pipe detection or low flow cut off are enabled, the output is conductive. Otherwise, the switch output is non-conductive.

Switch-on delay

Navigation

Expert → Output → PFS output 1 to n → Switch-on delay (0467–1 to n)

Prerequisite

- The Switch option is selected in the Operating mode parameter (→ 125).
- The Limit option is selected in the Switch output function parameter (→ 141).

Description
Use this function to enter a delay time for switching on the switch output.

User entry
0.0 to 100.0 s

Factory setting
0.0 s

Switch-off delay

Navigation

Expert → Output → PFS output 1 to n → Switch-off delay (0465–1 to n)

Prerequisite

- The Switch option is selected in the Operating mode parameter (→ 125).
- The Limit option is selected in the Switch output function parameter (→ 141).

Description
Use this function to enter a delay time for switching off the switch output.
Failure mode

Navigation

Expert → Output → PFS output 1 to n → Failure mode (0486–1 to n)

Description
Use this function to select a failsafe mode for the switch output in the event of a device alarm.

Selection
- Actual status
- Open
- Closed

Factory setting
Open

Additional information

Options
- Actual status
 In the event of a device alarm, faults are ignored and the current behavior of the input value is output by the switch output. The Actual status option behaves in the same way as the current input value.
- Open
 In the event of a device alarm, the switch output's transistor is set to **non-conductive**.
- Closed
 In the event of a device alarm, the switch output's transistor is set to **conductive**.

Switch status 1 to n

Navigation

Expert → Output → PFS output 1 to n → Switch status 1 to n (0461–1 to n)

Prerequisite
The **Switch** option is selected in the **Operating mode** parameter (→ 125).

Description
Displays the current switch status of the status output.

User interface
- Open
- Closed

Additional information

User interface
- Open
 The switch output is not conductive.
- Closed
 The switch output is conductive.
Description of device parameters

Proline Promass 300 HART

Invert output signal

Navigation

Expert → Output → PFS output 1 to n → Invert outp.sig. (0470–1 to n)

Description

Use this function to select whether to invert the output signal.

Selection

- No
- Yes

Factory setting

No

Additional information

Selection

No option (passive - negative)

![Diagram showing no option (passive - negative)](image)

Yes option (passive - positive)

![Diagram showing yes option (passive - positive)](image)

3.5.3 "Relay output 1 to n" submenu

Navigation

Expert → Output → Relay output 1 to n

Relay output 1 to n

- Terminal number
- Relay output function
- Assign flow direction check
- Assign limit
- Assign diagnostic behavior
- Assign status
- Switch-off value

![Diagram showing relay output 1 to n options](image)
Terminal number

Navigation

Expert → Output → Relay output 1 to n → Terminal no. (0812–1 to n)

Description
Displays the terminal numbers used by the relay output module.

User interface
- Not used
- 24-25 (I/O 2)
- 22-23 (I/O 3)

Additional information
"Not used" option
The relay output module does not use any terminal numbers.

Relay output function

Navigation

Expert → Output → Relay output 1 to n → Relay outp.func. (0804–1 to n)

Description
Use this function to select an output function for the relay output.

Selection
- Closed
- Open
- Diagnostic behavior
- Limit
- Flow direction check
- Digital Output

Factory setting
Closed
Additional information

Selection

- **Closed**
 The relay output is permanently switched on (closed, conductive).
- **Open**
 The relay output is permanently switched off (open, non-conductive).
- **Diagnostic behavior**
 Indicates if the diagnostic event is present or not. Is used to output diagnostic information and to react to it appropriately at the system level.
- **Limit**
 Indicates if a specified limit value has been reached for the process variable. Is used to output diagnostic information relating to the process and to react to it appropriately at the system level.
- **Flow direction check**
 Indicates the flow direction (forward or reverse flow).
- **Digital Output**
 Indicates the device status depending on whether empty pipe detection or low flow cut off is selected.

Assign flow direction check

Navigation

[Expert → Output → Relay output 1 to n → Assign dir.check (0808–1 to n)]

Prerequisite

In the **Relay output function** parameter (→ 149), the **Flow direction check** option is selected.

Description

Use this function to select a process variable for monitoring the flow direction.

Selection

- Off
- Volume flow
- Mass flow
- Corrected volume flow

Factory setting

Mass flow

Assign limit

Navigation

[Expert → Output → Relay output 1 to n → Assign limit (0807–1 to n)]

Prerequisite

In the **Relay output function** parameter (→ 149), the **Limit** option is selected.

Description

Use this function to select a process variable for the limit value function.

Selection

- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow *
- Carrier mass flow *
- Density

* Visibility depends on order options or device settings
• Reference density
• Dynamic viscosity *
• Concentration
• Kinematic viscosity *
• Temp. compensated dynamic viscosity *
• Temp. compensated kinematic viscosity *
• Temperature
• Totalizer 1
• Totalizer 2
• Totalizer 3
• Oscillation damping

Factory setting
Mass flow

Assign diagnostic behavior

Navigation
Expert → Output → Relay output 1 to n → Assign diag. beh (0806–1 to n)

Prerequisite
In the **Relay output function** parameter (→ 149), the **Diagnostic behavior** option is selected.

Description
Use this function to select the category of the diagnostic events that are displayed for the relay output.

Selection
- Alarm
- Alarm or warning
- Warning

Factory setting
Alarm

Additional information
Description

If no diagnostic event is pending, the relay output is closed and conductive.

Selection
- Alarm
 The relay output signals only diagnostic events in the alarm category.
- Alarm or warning
 The relay output signals diagnostic events in the alarm and warning category.
- Warning
 The relay output signals only diagnostic events in the warning category.

Assign status

Navigation
Expert → Output → Relay output 1 to n → Assign status (0805–1 to n)

Prerequisite
In the **Relay output function** parameter (→ 149), the **Digital Output** option is selected.

* Visibility depends on order options or device settings
Description

Use this function to select the device status for the relay output.

Selection

- Partially filled pipe detection
- Low flow cut off

Factory setting

Partially filled pipe detection

Switch-off value

Navigation

Expert → Output → Relay output 1 to n → Switch-off value (0809–1 to n)

Prerequisite

In the Relay output function parameter (→ 149), the Limit option is selected.

Description

Use this function to enter the measured value for the switch-off point.

User entry

Signed floating-point number

Factory setting

Country-specific:
- 0 kg/h
- 0 lb/min

Additional information

Description

Use this function to enter the limit value for the switch-off value (process variable < switch-off value = open, non-conductive).

When using a hysteresis: Switch-on value > Switch-off value.

Dependency

The unit is dependent on the process variable selected in the Assign limit parameter (→ 150).

Switch-off delay

Navigation

Expert → Output → Relay output 1 to n → Switch-off delay (0813–1 to n)

Prerequisite

In the Relay output function parameter (→ 149), the Limit option is selected.

Description

Use this function to enter a delay time for switching off the switch output.

User entry

0.0 to 100.0 s

Factory setting

0.0 s
Switch-on value

Navigation
Expert → Output → Relay output 1 to n → Switch-on value (0810–1 to n)

Prerequisite
In the **Relay output function** parameter (→ 149), the **Limit** option is selected.

Description
Use this function to enter the measured value for the switch-on point.

User entry
Signed floating-point number

Factory setting
Country-specific:
- 0 kg/h
- 0 lb/min

Additional information
Description
Use this function to enter the limit value for the switch-on value (process variable > switch-on value = closed, conductive).

When using a hysteresis: Switch-on value > Switch-off value.

Dependency
The unit is dependent on the process variable selected in the **Assign limit** parameter (→ 150).

Switch-on delay

Navigation
Expert → Output → Relay output 1 to n → Switch-on delay (0814–1 to n)

Prerequisite
In the **Relay output function** parameter (→ 149), the **Limit** option is selected.

Description
Use this function to enter a delay time for switching on the switch output.

User entry
0.0 to 100.0 s

Factory setting
0.0 s

Failure mode

Navigation
Expert → Output → Relay output 1 to n → Failure mode (0811–1 to n)

Description
Use this function to select the failure mode of the relay output in the event of a device alarm.

Selection
- Actual status
- Open
- Closed

Factory setting
Open
Description of device parameters

Additional information

Selection

- **Actual status**
 In the event of a device alarm, faults are ignored and the current behavior of the input value is output by the relay output. The **Actual status** option behaves in the same way as the current input value.
- **Open**
 In the event of a device alarm, the relay output's transistor is set to **non-conductive**.
- **Closed**
 In the event of a device alarm, the relay output's transistor is set to **conductive**.

Switch status

Navigation

Expert → Output → Relay output 1 to n → Switch status (0801–1 to n)

Description

Displays the current status of the relay output.

User interface

- **Open**
- **Closed**

Additional information

User interface

- **Open**
 The relay output is not conductive.
- **Closed**
 The relay output is conductive.

Actual relay state

Navigation

Expert → Output → Relay output 1 to n → Act. relay state (0816–1 to n)

Description

Use this function to select the quiescent state for the relay output.

Selection

- **Open**
- **Closed**

Factory setting

Open

Additional information

Selection

- **Open**
 The relay output is not conductive.
- **Closed**
 The relay output is conductive.
3.5.4 "Double pulse output" submenu

Navigation Expert → Output → Double pulse out

<table>
<thead>
<tr>
<th>Double pulse output</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Master terminal number (0981)</td>
<td>→ 155</td>
</tr>
<tr>
<td>Slave terminal number (0990)</td>
<td>→ 155</td>
</tr>
<tr>
<td>Signal mode (0991)</td>
<td>→ 156</td>
</tr>
<tr>
<td>Assign pulse output 1 (0982-1)</td>
<td>→ 156</td>
</tr>
<tr>
<td>Value per pulse (0983)</td>
<td>→ 156</td>
</tr>
<tr>
<td>Pulse width (0986)</td>
<td>→ 157</td>
</tr>
<tr>
<td>Phase shift (0992)</td>
<td>→ 157</td>
</tr>
<tr>
<td>Measuring mode (0984)</td>
<td>→ 157</td>
</tr>
<tr>
<td>Failure mode (0985)</td>
<td>→ 158</td>
</tr>
<tr>
<td>Pulse output (0987)</td>
<td>→ 159</td>
</tr>
<tr>
<td>Invert output signal (0993)</td>
<td>→ 159</td>
</tr>
</tbody>
</table>

Master terminal number

Navigation Expert → Output → Double pulse out → Master term. no. (0981)

Description Displays the master terminal number for the double pulse output.

User interface
- Not used
- 24-25 (I/O 2)
- 22-23 (I/O 3)

Additional information

"Not used" option
The double pulse output does not use any terminal numbers.

Slave terminal number

Navigation Expert → Output → Double pulse out → Slave term. no. (0990)

Description Displays the slave terminal number for the double pulse output.
Description of device parameters

User interface

- Not used
- 24-25 (I/O 2)
- 22-23 (I/O 3)

Additional information

"Not used" option

The double pulse output does not use any terminal numbers.

Signal mode

Navigation

Expert → Output → Double pulse out → Signal mode (0991)

Description

Use this function to select the signal mode for the double pulse output.

Selection

- Passive
- Active
- Passive NAMUR

Factory setting

Passive

Assign pulse output 1

Navigation

Expert → Output → Double pulse out → Assign pulse 1 (0982–1)

Description

Use this function to select a process variable for the double pulse output.

Selection

- Off
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow*
- Carrier mass flow*

Factory setting

Off

Value per pulse

Navigation

Expert → Output → Double pulse out → Value per pulse (0983)

Description

Use this function to enter the value for the measured value that a pulse is equivalent to.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter → 253

* Visibility depends on order options or device settings
Additional information

User entry

Weighting of the pulse output with a quantity.
The lower the pulse value, the
• better the resolution.
• the higher the frequency of the pulse response.

Pulse width

Navigation

Expert → Output → Double pulse out → Pulse width (0986)

Description

Use this function to enter the duration of the output pulse.

User entry

0.5 to 2 000 ms

Factory setting

0.5 ms

Additional information

For a detailed description and example: Pulse width parameter (→ 128)

Phase shift

Navigation

Expert → Output → Double pulse out → Phase shift (0992)

Description

Use this function to select the degree of phase shift.

Selection

• 90°
• 180°

Factory setting

90°

Additional information

Selection

• 90°
 Phase shift by a quarter period.
• 180°
 Phase shift by a half period, which is equivalent to a phase reversal.

Measuring mode

Navigation

Expert → Output → Double pulse out → Measuring mode (0984)

Description

Use this function to select the measuring mode for the double pulse output.

Selection

• Forward flow
• Forward/Reverse flow
• Reverse flow
• Reverse flow compensation
Factory setting

Forward flow

Additional information

Selection

- Forward flow
 - Positive flow is output, negative flow is not output.
- Forward/Reverse flow
 - Positive and negative flow are output (absolute value), but a distinction is not made between positive and negative flow.
- Reverse flow
 - Negative flow is output, positive flow is not output.
- Reverse flow compensation
 - The flow components outside the span are buffered, balanced and output after a maximum delay of 60 s.

For a detailed description of the options available, see the **Measuring mode** parameter (→ 114)

Examples

For a detailed description of the configuration examples, see the **Measuring mode** parameter (→ 114)

Failure mode

Navigation

Expert → Output → Double pulse out → Failure mode (0985)

Description

Use this function to select the failure mode of the double pulse output in the event of a device alarm.

Selection

- Actual value
- No pulses

Factory setting

No pulses

Additional information

Description

The dictates of safety render it advisable to ensure that the double pulse output shows a predefined behavior in the event of a device alarm.

Selection

- Actual value
 - In the event of a device alarm, the double pulse output continues on the basis of the current flow measurement. The fault is ignored.
- No pulses
 - In the event of a device alarm, the double pulse output is "switched off".

NOTICE! A device alarm is a measuring device error that must be taken seriously. It can affect the measurement quality such that the quality can no longer be guaranteed. The **Actual value** option is only recommended if it can be guaranteed that all possible alarm conditions will not affect the measurement quality.
Pulse output

Navigation

Expert → Output → Double pulse out → Pulse output (0987)

Description

Displays the pulse frequency of the double pulse output which is currently output.

User interface

Positive floating-point number

Additional information

For a detailed description and example: Pulse output parameter (→ 130)

Invert output signal

Navigation

Expert → Output → Double pulse out → Invert outp.sig. (0993)

Description

Use this function to select whether to invert the output signal.

Selection

- No
- Yes

Factory setting

No

Additional information

Selection

No option (passive - negative)

![Diagram of No option](A0026693)

Yes option (passive - positive)

![Diagram of Yes option](A0026692)

3.6 "Communication" submenu

Navigation

Expert → Communication

![Diagram of Communication submenu](A0026691)
Description of device parameters

3.6.1 "HART input" submenu

Navigation

Expert → Communication → HART input

<table>
<thead>
<tr>
<th>Submenu</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ HART input</td>
<td>160</td>
</tr>
<tr>
<td>▶ Configuration</td>
<td>160</td>
</tr>
<tr>
<td>▶ Input</td>
<td>165</td>
</tr>
</tbody>
</table>

"Configuration" submenu

Navigation

Expert → Communication → HART input → Configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture mode (7001)</td>
<td>161</td>
</tr>
<tr>
<td>Device ID (7007)</td>
<td>161</td>
</tr>
<tr>
<td>Device type (7008)</td>
<td>161</td>
</tr>
<tr>
<td>Manufacturer ID (7009)</td>
<td>162</td>
</tr>
<tr>
<td>Burst command (7006)</td>
<td>162</td>
</tr>
<tr>
<td>Slot number (7010)</td>
<td>163</td>
</tr>
<tr>
<td>Timeout (7005)</td>
<td>163</td>
</tr>
<tr>
<td>Failure mode (7011)</td>
<td>164</td>
</tr>
<tr>
<td>Failure value (7012)</td>
<td>164</td>
</tr>
</tbody>
</table>
Capture mode

Navigation

Expert → Communication → HART input → Configuration → Capture mode (7001)

Description

Use this function to select the capture mode via burst or master communication.

Selection

- Off
- Burst network
- Master network

Factory setting

Off

Additional information

'Burst network' option

The device records data transmitted via burst in the network.

An external pressure sensor must be in the burst mode.

'Master network' option

In this case, the device must be located in a HART network in which a HART master (control) queries the measured values of the up to 64 network participants. The device reacts only to the responses of a specific device in the network. Device ID, device type, manufacturer ID and the HART commands used by the master must be defined.

Device ID

Navigation

Expert → Communication → HART input → Configuration → Device ID (7007)

Prerequisite

The Master network option is selected in the Capture mode parameter (→ 161).

Description

Use this function to enter the device ID of the HART slave device whose data are to be recorded.

User entry

6-digit value:
- Via local operation: enter as hexadecimal or decimal number
- Via operating tool: enter as decimal number

Factory setting

0

Additional information

In addition to the device ID and manufacturer ID, the device type is part of the unique ID. Each HART device is uniquely identified by the unique device ID.

Device type

Navigation

Expert → Communication → HART input → Configuration → Device type (7008)

Prerequisite

In the Capture mode parameter (→ 161), the Master network option is selected.
Description

Use this function to enter the device type of the HART slave device whose data are to be recorded.

User entry
2-digit hexadecimal number

Factory setting
0x00

Additional information

In addition to the device ID and manufacturer ID, the device type is part of the unique ID. Each HART device is uniquely identified by the unique device ID.

Manufacturer ID

Navigation

Expert → Communication → HART input → Configuration → Manufacturer ID (7009)

Prerequisite

The **Master network** option is selected in the **Capture mode** parameter (→ 161).

Description

Use this function to enter the manufacturer ID of the HART slave device whose data are to be recorded.

User entry
2-digit value:
- Via local operation: enter as hexadecimal or decimal number
- Via operating tool: enter as decimal number

Factory setting
0

Additional information

In addition to the device ID and manufacturer ID, the device type is part of the unique ID. Each HART device is uniquely identified by the unique device ID.

Burst command

Navigation

Expert → Communication → HART input → Configuration → Burst command (7006)

Prerequisite

The **Burst network** option or the **Master network** option are selected in the **Capture mode** parameter (→ 161).

Description

Use this function to select the burst command to be recorded.

Selection

- Command 1
- Command 3
- Command 9
- Command 33

Factory setting
Command 1
Additional information

Selection

- Command 1
 Use this function to capture the primary variable.
- Command 3
 Use this function to capture the dynamic HART variables and the current.
- Command 9
 Use this function to capture the dynamic HART variables including the associated status.
- Command 33
 Use this function to capture the dynamic HART variables including the associated unit.

Slot number

Navigation

Expert → Communication → HART input → Configuration → Slot number (7010)

Prerequisite

The Burst network option or the Master network option is selected in the Capture mode parameter (→ 161).

Description

Use this function to enter the position of the process variable to be recorded in the burst command.

User entry

1 to 8

Factory setting

1

Additional information

User entry

<table>
<thead>
<tr>
<th>Slot</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 3 9 33</td>
</tr>
<tr>
<td>1</td>
<td>PV PV HART variable (slot 1) HART variable (slot 1)</td>
</tr>
<tr>
<td>2</td>
<td>– SV HART variable (slot 2) HART variable (slot 2)</td>
</tr>
<tr>
<td>3</td>
<td>– TV HART variable (slot 3) HART variable (slot 3)</td>
</tr>
<tr>
<td>4</td>
<td>– QV HART variable (slot 4) HART variable (slot 4)</td>
</tr>
<tr>
<td>5</td>
<td>– – HART variable (slot 5) –</td>
</tr>
<tr>
<td>6</td>
<td>– – HART variable (slot 6) –</td>
</tr>
<tr>
<td>7</td>
<td>– – HART variable (slot 7) –</td>
</tr>
<tr>
<td>8</td>
<td>– – HART variable (slot 8) –</td>
</tr>
</tbody>
</table>

Timeout

Navigation

Expert → Communication → HART input → Configuration → Timeout (7005)

Prerequisite

The Burst network option or the Master network option is selected in the Capture mode parameter (→ 161).

Description

Use this function to enter the maximum permitted interval between two HART frames.

User entry

1 to 120 s
Description of device parameters

Factory setting

5 s

Additional information

Description

*If the interval is exceeded, the measuring device displays the diagnostic message **F882 Input signal.***

Failure mode

Navigation

Expert → Communication → HART input → Configuration → Failure mode (7011)

Prerequisite

In the **Capture mode** parameter (→ 161), the **Burst network** option or **Master network** option is selected.

Description

Use this function to select the device behavior if no data are recorded within the maximum permitted interval.

Selection

- Alarm
- Last valid value
- Defined value

Factory setting

Alarm

Additional information

Options

- **Alarm**
 An error message is set.
- **Last valid value**
 The last valid measured value is used.
- **Defined value**
 A user-defined measured value is used: (**Failure value** parameter (→ 164)).

Failure value

Navigation

Expert → Communication → HART input → Configuration → Failure value (7012)

Prerequisite

The following conditions are met:

- In the **Capture mode** parameter (→ 161), the **Burst network** option or **Master network** option is selected.
- In the **Failure mode** parameter (→ 164), the **Defined value** option is selected.

Description

Use this function to enter the measured value to be used if no data are recorded within the maximum permitted interval.

User entry

Signed floating-point number

Factory setting

0
"Input" submenu

Navigation

Expert → Communication → HART input → Input

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value (7003)</td>
<td>165</td>
</tr>
<tr>
<td>Status (7004)</td>
<td>165</td>
</tr>
</tbody>
</table>

Value

Navigation

Expert → Communication → HART input → Input → Value (7003)

Description
Displays the value of the device variable recorded by the HART input.

User interface

-273.15 to 99 726.8499 °C

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 67)

Status

Navigation

Expert → Communication → HART input → Input → Status (7004)

Description
Displays the value of the device variable recorded by the HART input in accordance with the HART specification.

User interface

- Manual/Fixed
- Good
- Poor accuracy
- Bad

3.6.2 "HART output" submenu

Navigation

Expert → Communication → HART output

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>166</td>
</tr>
<tr>
<td>Burst config</td>
<td>168</td>
</tr>
</tbody>
</table>
"Configuration" submenu

Navigation
Expert → Communication → HART output → Configuration

HART short tag

Description
Use this function to enter a brief description for the measuring point. This can be edited and displayed via HART protocol or using the local display.

User entry
Max. 8 characters: A to Z, 0 to 9 and certain special characters (e.g. punctuation marks, @, %).

Factory setting
PROMASS

Device tag

Description
Use this function to enter the name for the measuring point.

User entry
Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /).

Factory setting
Promass
HART address

Navigation
Expert → Communication → HART output → Configuration → HART address (0219)

Description
Use this function to enter the address via which the data exchange takes place via HART protocol.

User entry
0 to 63

Factory setting
0

Additional information
Description
For addressing in a HART Multidrop network, the Fixed current option must be set in the Current span parameter (→ 110) (current output 1).

No. of preambles

Navigation
Expert → Communication → HART output → Configuration → No. of preambles (0217)

Description
Use this function to enter the number of preambles in the HART protocol.

User entry
2 to 20

Factory setting
5

Additional information
User entry
As every modem component can ‘swallow’ a byte, 2-byte preambles at least must be defined.

Fieldbus writing access

Navigation
Expert → Communication → HART output → Configuration → Fieldb.writ.acc. (0273)

Description
Use this function to restrict access to the measuring device via fieldbus (HART interface).

Selection
- Read + write
- Read only

Factory setting
Read + write
Additional information

Description

If read and/or write protection is enabled, the parameter can only be controlled and reset via local operation. Access is no longer possible via operating tools.

Selection

- Read + write
 The parameters are readable and writable.
- Read only
 The parameters are only readable.

"Burst configuration" submenu

Navigation

Expert → Communication → HART output → Burst config.
→ Burst config. 1 to n

<table>
<thead>
<tr>
<th>Burst configuration 1 to n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst mode 1 to n (2032–1 to n)</td>
</tr>
<tr>
<td>Burst command 1 to n (2031–1 to n)</td>
</tr>
<tr>
<td>Burst variable 0 (2033)</td>
</tr>
<tr>
<td>Burst variable 1 (2034)</td>
</tr>
<tr>
<td>Burst variable 2 (2035)</td>
</tr>
<tr>
<td>Burst variable 3 (2036)</td>
</tr>
<tr>
<td>Burst variable 4 (2037)</td>
</tr>
<tr>
<td>Burst variable 5 (2038)</td>
</tr>
<tr>
<td>Burst variable 6 (2039)</td>
</tr>
<tr>
<td>Burst variable 7 (2040)</td>
</tr>
<tr>
<td>Burst trigger mode (2044–1 to n)</td>
</tr>
<tr>
<td>Burst trigger level (2043–1 to n)</td>
</tr>
<tr>
<td>Min. update period (2042–1 to n)</td>
</tr>
<tr>
<td>Max. update period (2041–1 to n)</td>
</tr>
</tbody>
</table>
Burst mode 1 to n

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst mode 1 to n (2032–1 to n)

Description

Use this function to select whether to activate the HART burst mode for burst message X.

Selection

- Off
- On

Factory setting

Off

Additional information

Options

- Off
 - The measuring device transmits data only when requested by the HART master.
- On
 - The measuring device transmits data regularly without being requested.

Burst command 1 to n

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst command 1 to n (2031–1 to n)

Description

Use this function to select the HART command that is sent to the HART master.

Selection

- Command 1
- Command 2
- Command 3
- Command 9
- Command 33
- Command 48

Factory setting

Command 2

Additional information

Selection

- Command 1
 - Read out the primary variable.
- Command 2
 - Read out the current and the main measured value as a percentage.
- Command 3
 - Read out the dynamic HART variables and the current.
- Command 9
 - Read out the dynamic HART variables including the related status.
- Command 33
 - Read out the dynamic HART variables including the related unit.
- Command 48
 - Read out the complete device diagnostics.

"Command 33" option

The HART device variables are defined via Command 107.
The following measured variables (HART device variables) can be read out:

- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow
- Density
- Reference density
- Concentration
- Dynamic viscosity
- Kinematic viscosity
- Temp. compensated dynamic viscosity
- Temp. compensated kinematic viscosity
- Temperature
- Totalizer 1...3
- HBSI
- Pressure
- HART input
- Percent of range
- Measured current
- Primary variable (PV)
- Secondary variable (SV)
- Tertiary variable (TV)
- Quaternary variable (QV)

Commands

- Information about the defined details of the command: HART specifications
- The measured variables (HART device variables) are assigned to the dynamic variables in the **Output** submenu (→ 107).

Burst variable 0

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 0 (2033)

Description

For HART command 9 and 33: select the HART device variable or the process variable.

Selection

- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow
- Density
- Reference density
- Concentration
- Dynamic viscosity
- Kinematic viscosity
- Temp. compensated dynamic viscosity
- Temp. compensated kinematic viscosity
- Temperature
- Totalizer 1
- Totalizer 2

* Visibility depends on order options or device settings
- Totalizer 3
- HBSI
- HART input
- Percent of range
- Measured current
- Primary variable (PV)
- Secondary variable (SV)
- Tertiary variable (TV)
- Quaternary variable (QV)
- Not used

Factory setting

Volume flow

Additional information

Selection

The **Not used** option is set if a burst message is not configured.

Burst variable 1

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 1 (2034)

Description

For HART command 9 and 33: select the HART device variable or the process variable.

Selection

See the **Burst variable 0** parameter (→ 170).

Factory setting

Not used

Burst variable 2

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 2 (2035)

Description

For HART command 9 and 33: select the HART device variable or the process variable.

Selection

See the **Burst variable 0** parameter (→ 170).

Factory setting

Not used

Burst variable 3

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 3 (2036)

Description

For HART command 9 and 33: select the HART device variable or the process variable.

* Visibility depends on order options or device settings
Description of device parameters

Proline Promass 300 HART

Selection
See the **Burst variable 0** parameter (→ 170).

Factory setting
Not used

Burst variable 4

Navigation
Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 4 (2037)

Description
For HART command 33: select the HART device variable or the process variable.

Selection
See the **Burst variable 0** parameter (→ 170).

Factory setting
Not used

Burst variable 5

Navigation
Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 5 (2038)

Description
For HART command 33: select the HART device variable or the process variable.

Selection
See the **Burst variable 0** parameter (→ 170).

Factory setting
Not used

Burst variable 6

Navigation
Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 6 (2039)

Description
For HART command 33: select the HART device variable or the process variable.

Selection
See the **Burst variable 0** parameter (→ 170).

Factory setting
Not used

Burst variable 7

Navigation
Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Burst variable 7 (2040)

Description
For HART command 33: select the HART device variable or the process variable.
Selection

See the **Burst variable 0** parameter (→ 170).

Factory setting

Not used

Burst trigger mode

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Trigger mode (2044–1 to n)

Description

Use this function to select the event that triggers burst message X.

Selection

- Continuous
- Window
- Rising
- Falling
- On change

Factory setting

Continuous

Additional information

Options

- Continuous
 The message is sent continuously, at least at intervals corresponding to the time frame specified in the **Burst min period** parameter (→ 174).
- Window
 The message is sent if the specified measured value has changed by the value in the **Burst trigger level** parameter (→ 173).
- Rising
 The message is sent if the specified measured value exceeds the value in the **Burst trigger level** parameter (→ 173).
- Falling
 The message is sent if the specified measured value drops below the value in the **Burst trigger level** parameter (→ 173).
- On change
 The message is sent if a measured value changes in the burst message.

Burst trigger level

Navigation

Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Trigger level (2043–1 to n)

Description

For entering the burst trigger value.

User entry

Positive floating-point number

Additional information

Description

Together with the option selected in the **Burst trigger mode** parameter (→ 173) the burst trigger value determines the time of burst message X.
Min. update period

Navigation

Navigation: Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Min. upd. per. (2042–1 to n)

Description

Use this function to enter the minimum time span between two burst commands of burst message X.

User entry

Positive integer

Factory setting

1 000 ms

Max. update period

Navigation

Navigation: Expert → Communication → HART output → Burst config. → Burst config. 1 to n → Max. upd. per. (2041–1 to n)

Description

Use this function to enter the maximum time span between two burst commands of burst message X.

User entry

Positive integer

Factory setting

2 000 ms

"Information" submenu

Navigation

Navigation: Expert → Communication → HART output → Information

<table>
<thead>
<tr>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device revision (0204)</td>
</tr>
<tr>
<td>Device ID (0221)</td>
</tr>
<tr>
<td>Device type (0209)</td>
</tr>
<tr>
<td>Manufacturer ID (0259)</td>
</tr>
<tr>
<td>HART revision (0205)</td>
</tr>
<tr>
<td>HART descriptor (0212)</td>
</tr>
<tr>
<td>HART message (0216)</td>
</tr>
<tr>
<td>Hardware revision (0206)</td>
</tr>
</tbody>
</table>
Device revision

Navigation

Expert → Communication → HART output → Information → Device revision (0204)

Description

Use this function to view the device revision with which the device is registered with the HART Communication Foundation.

User interface

2-digit hexadecimal number

Factory setting

1

Additional information

The device revision is needed to assign the appropriate device description file (DD) to the device.

Device ID

Navigation

Expert → Communication → HART output → Information → Device ID (0221)

Description

Use this function to view the device ID for identifying the measuring device in a HART network.

User interface

6-digit hexadecimal number

Additional information

In addition to the device type and manufacturer ID, the device ID is part of the unique ID. Each HART device is uniquely identified by the unique device ID.

Device type

Navigation

Expert → Communication → HART output → Information → Device type (0209)

Description

Displays the device type with which the measuring device is registered with the HART Communication Foundation.

User interface

2-digit hexadecimal number

Factory setting

0x3B (for Promass 300/500)
Additional information

- **Description**

 The device type is specified by the manufacturer. It is needed to assign the appropriate device description file (DD) to the device.

Manufacturer ID

- **Navigation**

 Expert → Communication → HART output → Information → Manufacturer ID (0259)

- **Description**

 Use this function to view the manufacturer ID with which the measuring device is registered with the HART Communication Foundation.

- **User interface**

 2-digit hexadecimal number

- **Factory setting**

 0x11 (for Endress+Hauser)

HART revision

- **Navigation**

 Expert → Communication → HART output → Information → HART revision (0205)

- **Description**

 Use this function to display the HART protocol revision of the measuring device.

- **User interface**

 5 to 7

- **Factory setting**

 7

HART descriptor

- **Navigation**

 Expert → Communication → HART output → Information → HART descriptor (0212)

- **Description**

 Use this function to enter a description for the measuring point. This can be edited and displayed via HART protocol or using the local display.

- **User entry**

 Max. 16 characters such as letters, numbers or special characters (e.g. @, %, /)

- **Factory setting**

 Promass300/500

HART message

- **Navigation**

 Expert → Communication → HART output → Information → HART message (0216)

- **Description**

 Use this function to enter a HART message which is sent via the HART protocol when requested by the master.
User entry
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /)

Factory setting
Promass300/500

Hardware revision

Navigation
Expert → Communication → HART output → Information → Hardware rev. (0206)

Description
Displays the hardware revision of the measuring device.

User interface
0 to 30

Factory setting
1

Software revision

Navigation
Expert → Communication → HART output → Information → Software rev. (0224)

Description
Displays the software revision of the measuring device.

User interface
0 to 255

Factory setting
1

HART date code

Navigation
Expert → Communication → HART output → Information → HART date code (0202)

Description
Use this function to enter the date information for individual use.

User entry
Date entry format: yyyy-mm-dd

Factory setting
2009-07-20

Additional information
Example
Device installation date
Assign PV

Navigation
[Expert → Communication → HART output → Output → Assign PV (0234)](178)

Description
Use this function to select a measured variable (HART device variable) for the primary dynamic variable (PV).

Selection
- Off
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow*
- Carrier mass flow*
- Density
- Reference density
- Concentration*
- Dynamic viscosity*
- Kinematic viscosity*
- Temp. compensated dynamic viscosity*
- Temp. compensated kinematic viscosity*
- Temperature
- Carrier pipe temperature*
- Electronic temperature
- Oscillation frequency 0
- Oscillation frequency 1*
- Oscillation amplitude 0*

Visibility depends on order options or device settings
• Oscillation amplitude 1 *
• Frequency fluctuation 0
• Frequency fluctuation 1 *
• Oscillation damping 0
• Oscillation damping 1 *
• Oscillation damping fluctuation 0
• Oscillation damping fluctuation 1
• Signal asymmetry
• Exciter current 0
• Exciter current 1 *
• HBSI *

Factory setting
Mass flow

Additional information
Selection

Detailed description of the options Oscillation frequency, Oscillation amplitude, Oscillation damping and Signal asymmetry: Value 1 display parameter (→ 18)

Primary variable (PV)

Navigation
Expert → Communication → HART output → Output → Primary var (PV) (0201)

Description
Displays the current measured value of the primary dynamic variable (PV).

User interface
Signed floating-point number

Additional information
User interface

The measured value displayed depends on the process variable selected in the Assign PV parameter (→ 178).

Dependency

The unit of the displayed measured value is taken from the System units submenu (→ 60).

Assign SV

Navigation
Expert → Communication → HART output → Output → Assign SV (0235)

Description
Use this function to select a measured variable (HART device variable) for the secondary dynamic variable (SV).

Selection

• Mass flow
• Volume flow
• Corrected volume flow
• Target mass flow *
• Carrier mass flow *
• Density

* Visibility depends on order options or device settings
Description of device parameters

Proline Promass 300 HART

- Reference density
- Concentration *
- Dynamic viscosity *
- Kinematic viscosity *
- Temp. compensated dynamic viscosity *
- Temp. compensated kinematic viscosity *
- Temperature
- Carrier pipe temperature *
- Electronic temperature
- HBSI *
- Totalizer 1
- Totalizer 2
- Totalizer 3

Factory setting
Totalizer 1

Secondary variable (SV)

Navigation
Expert → Communication → HART output → Output → Second.var(SV) (0226)

Description
Displays the current measured value of the secondary dynamic variable (SV).

User interface
Signed floating-point number

Additional information
User interface
The measured value displayed depends on the process variable selected in the Assign SV parameter (→ 179).

Dependency
The unit of the displayed measured value is taken from the System units submenu (→ 60).

Assign TV

Navigation
Expert → Communication → HART output → Output → Assign TV (0236)

Description
Use this function to select a measured variable (HART device variable) for the tertiary (third) dynamic variable (TV).

Selection
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow *
- Carrier mass flow *
- Density
- Reference density
- Concentration *
- Dynamic viscosity *

Visibility depends on options or device settings
Tertiary variable (TV)

Navigation

Expert → Communication → HART output → Output → Tertiary var(TV) (0228)

Description
Displays the current measured value of the tertiary dynamic variable (TV).

User interface
Positive floating-point number

Additional information

User interface
The measured value displayed depends on the process variable selected in the Assign TV parameter (→ 180).

Dependency
The unit of the displayed measured value is taken from the System units submenu (→ 60).

Assign QV

Navigation

Expert → Communication → HART output → Output → Assign QV (0237)

Description
Use this function to select a measured variable (HART device variable) for the quaternary (fourth) dynamic variable (QV).

Selection
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow
- Density
- Reference density
- Concentration
- Dynamic viscosity
- Kinematic viscosity
- Temp. compensated dynamic viscosity
- Temp. compensated kinematic viscosity

* Visibility depends on order options or device settings
Description of device parameters

- Temperature
- Carrier pipe temperature *
- Electronic temperature
- HBSI *
- Totalizer 1
- Totalizer 2
- Totalizer 3

Factory setting

Temperature

Quaternary variable (QV)

Navigation

Expert → Communication → HART output → Output → Quaterna.var(QV) (0203)

Description

Displays the current measured value of the quaternary dynamic variable (QV).

User interface

\[-273.15 \text{ to } 99726.8499 \degree C\]

Additional information

User interface

The measured value displayed depends on the process variable selected in the Assign QV parameter (→ 181).

Dependency

The unit of the displayed measured value is taken from the System units submenu (→ 60).

3.6.3 "Web server" submenu

Navigation

Expert → Communication → Web server

<table>
<thead>
<tr>
<th>Web server</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Web server language (7221)</td>
<td>→ 183</td>
</tr>
<tr>
<td>MAC address (7214)</td>
<td>→ 183</td>
</tr>
<tr>
<td>IP address (7209)</td>
<td>→ 184</td>
</tr>
<tr>
<td>Subnet mask (7211)</td>
<td>→ 184</td>
</tr>
<tr>
<td>Default gateway (7210)</td>
<td>→ 184</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
Web server language

Navigation
Expert → Communication → Web server → Webserv.language (7221)

Description
Use this function to select the web server language setting.

Selection
- English
- Deutsch *
- Français *
- Español *
- Italiano *
- Nederlands *
- Portuguesa *
- Polski *
- русский язык (Russian) *
- Svenska *
- Türkçe *
- 中文 (Chinese) *
- 日本語 (Japanese) *
- 한국어 (Korean) *
- العربية (Arabic) *
- Bahasa Indonesia *
- ภาษาไทย (Thai) *
- tiếng Việt (Vietnamese) *
- čeština (Czech) *

Factory setting
English

MAC address

Navigation
Expert → Communication → Web server → MAC Address (7214)

Description
Displays the MAC address of the measuring device.

User interface
Unique 12-digit character string comprising letters and numbers

Factory setting
Each measuring device is given an individual address.

Additional information
Example

For the display format
00:07:05:10:01:5F

* Visibility depends on order options or device settings

7) Media Access Control
Description of device parameters

IP address

Navigation
Expert → Communication → Web server → IP address (7209)

Description
Displays the IP address of the device’s web server.

User interface
4 octet: 0 to 255 (in the particular octet)

Factory setting
192.168.1.212

Subnet mask

Navigation
Expert → Communication → Web server → Subnet mask (7211)

Description
Displays the subnet mask.

User interface
4 octet: 0 to 255 (in the particular octet)

Factory setting
255.255.255.0

Default gateway

Navigation
Expert → Communication → Web server → Default gateway (7210)

Description
Displays the default gateway.

User interface
4 octet: 0 to 255 (in the particular octet)

Factory setting
0.0.0.0

Web server functionality

Navigation
Expert → Communication → Web server → Webserver funct. (7222)

Description
Use this function to switch the Web server on and off.

Selection
- Off
- On

Factory setting
On
Additional information

Description

Once disabled, the Web server functionality can be re-enabled only via the FieldCare or DeviceCare operating tool.

Selection

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| Off | ● The web server is completely disabled.
 | ● Port 80 is locked. |
| On | ● The complete functionality of the web server is available.
 | ● JavaScript is used.
 | ● The password is transferred in an encrypted state.
 | ● Any change to the password is also transferred in an encrypted state. |

Login page

Navigation

Expert → Communication → Web server → Login page (7273)

Description

Use this function to select the format of the login page.

Selection

● Without header

● With header

Factory setting

With header

3.6.4 "WLAN settings" submenu

Navigation

Expert → Communication → WLAN settings

[WLAN settings]

- WLAN (2702) → 186
- WLAN IP address (2711) → 186
- WLAN subnet mask (2709) → 186
- WLAN MAC address (2703) → 187
- Security type (2705) → 187
- WLAN passphrase (2706) → 187
- Assign SSID name (2708) → 188
- SSID name (2707) → 188
WLAN

Navigation

Expert → Communication → WLAN settings → WLAN (2702)

Description

Use this function to enable and disable the WLAN connection.

Selection

- Disable
- Enable

Factory setting

Enable

WLAN IP address

Navigation

Expert → Communication → WLAN settings → WLAN IP address (2711)

Description

Use this function to enter the IP address of the measuring device's WLAN connection.

User entry

4 octet: 0 to 255 (in the particular octet)

Factory setting

192.168.1.212

WLAN subnet mask

Navigation

Expert → Communication → WLAN settings → WLAN subnet mask (2709)

Description

Use this function to enter the subnet mask.

User entry

4 octet: 0 to 255 (in the particular octet)

Factory setting

255.255.255.0
WLAN MAC address

Navigation
Expert → Communication → WLAN settings → WLAN MAC address (2703)

Description
Displays the MAC address of the measuring device.

User interface
Unique 12-digit character string comprising letters and numbers

Factory setting
Each measuring device is given an individual address.

Additional information
Example
For the display format
00:07:05:10:01:5F

Security type

Navigation
Expert → Communication → WLAN settings → Security type (2705)

Description
Use this function to select the type of security for the WLAN interface.

Selection
- Unsecured
- WPA2-PSK

Factory setting
WPA2-PSK

Additional information
Selection
- Unsecured
 Access the WLAN connection without identification.
- WPA2-PSK
 Access the WLAN connection with a network key.

WLAN passphrase

Navigation
Expert → Communication → WLAN settings → WLAN passphrase (2706)

Prerequisite
In the Security type parameter (→ 187), the WPA2-PSK option is selected.

Description
Use this function to enter the network key.

User entry
8 to 32-digit character string comprising numbers, letters and special characters

8) Media Access Control
Description of device parameters

Assign SSID name

Navigation

Expert → Communication → WLAN settings → Assign SSID name (2708)

Description

Use this function to select which name is used for the SSID.

Selection

- Device tag
- User-defined

Factory setting

User-defined

Additional information

Selection

- Device tag
 - The device tag name is used as the SSID.
- User-defined
 - A user-defined name is used as the SSID.

SSID name

Navigation

Expert → Communication → WLAN settings → SSID name (2707)

Prerequisite

In the Assign SSID name parameter (→ 188), the User-defined option is selected.

Description

Use this function to enter a user-defined SSID name.

User entry

Max. 32-digit character string comprising numbers, letters and special characters

Select antenna

Navigation

Expert → Communication → WLAN settings → Select antenna (2713)

Description

Use this function to select whether the external or internal antenna is used for reception.

Selection

- External antenna
- Internal antenna

Factory setting

Internal antenna

2.4 GHz WLAN channel

Navigation

Expert → Communication → WLAN settings → WLAN channel (2704)

Description

Use this function to enter the 2.4 GHz WLAN channel.

9) Service Set Identifier
User entry 1 to 11
Factory setting 6
Additional information

- It is only necessary to enter a 2.4 GHz WLAN channel if multiple WLAN devices are in use.
- If just one measuring device is in use, it is recommended to keep the factory setting.

Apply changes

Description Use this function to adopt modified WLAN settings.

Selection
- Cancel
- Ok

Factory setting Cancel
Additional information

- Cancel
 No action is executed and the user exits the parameter.
- Ok
 The measuring device adopts the modified WLAN settings.

3.6.5 "Diagnostic configuration" submenu

For a list of all the diagnostic events, see the Operating Instructions for the device → 7

Assign a category to the particular diagnostic event:

<table>
<thead>
<tr>
<th>Category</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure (F)</td>
<td>A device error is present. The measured value is no longer valid.</td>
</tr>
<tr>
<td>Function check (C)</td>
<td>The device is in service mode (e.g. during a simulation).</td>
</tr>
</tbody>
</table>
| Out of specification (S) | The device is being operated:
 - Outside its technical specification limits (e.g. outside the process temperature range)
 - Outside of the configuration carried out by the user (e.g. maximum flow in parameter 20 mA value) |
| Maintenance required (M) | Maintenance is required. The measured value is still valid. |
| No effect (N) | Has no effect on the condensed status 1). |

1) Condensed status according to NAMUR recommendation NE107
Event category 046 (Sensor limit exceeded)

Navigation
Expert → Communication → Diag. config. → Event category 046 (0246)

Description
Use this function to assign a category to the diagnostic message **046 Sensor limit exceeded**.
Proline Promass 300 HART

Description of device parameters

Selection
• Failure (F)
• Function check (C)
• Out of specification (S)
• Maintenance required (M)
• No effect (N)

Factory setting
Out of specification (S)

Additional information
For a detailed description of the event categories available for selection: → 189

Event category 140 (Sensor signal asymmetrical)

Navigation
Expert → Communication → Diag. config. → Event category 140 (0244)

Description
Use this function to assign a category to the diagnostic message 140 Sensor signal asymmetrical.

Selection
• Failure (F)
• Function check (C)
• Out of specification (S)
• Maintenance required (M)
• No effect (N)

Factory setting
Out of specification (S)

Additional information
For a detailed description of the event categories available for selection: → 189

Event category 274 (Main electronic failure)

Navigation
Expert → Communication → Diag. config. → Event category 374 (0245)

Description
Use this function to assign a category to the diagnostic message 274 Main electronic failure.

Selection
• Failure (F)
• Function check (C)
• Out of specification (S)
• Maintenance required (M)
• No effect (N)

Factory setting
Out of specification (S)

Additional information
For a detailed description of the event categories available for selection: → 189
Event category 441 (Current output 1 to n)

Navigation
Expert → Communication → Diag. config. → Event category 441 (0210)

Description
Use this option to select a category for the diagnostic message **441 Current output 1 to n**.

Selection
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Factory setting
Out of specification (S)

Additional information
For a detailed description of the event categories available for selection: → 189

Event category 442 (Frequency output 1 to n)

Navigation
Expert → Communication → Diag. config. → Event category 442 (0230)

Prerequisite
The pulse/frequency/switch output is available.

Description
Use this option to select a category for the diagnostic message **442 Frequency output 1 to n**.

Selection
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Factory setting
Out of specification (S)

Additional information
For a detailed description of the event categories available for selection: → 189

Event category 443 (Pulse output 1 to n)

Navigation
Expert → Communication → Diag. config. → Event category 443 (0231)

Prerequisite
The pulse/frequency/switch output is available.

Description
Use this option to select a category for the diagnostic message **443 Pulse output 1 to n**.
Selection
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Factory setting
Out of specification (S)

Additional information
For a detailed description of the event categories available for selection: → 189

Event category 444 (Current input 1 to n)

Navigation
- Expert → Communication → Diag. config. → Event category 444 (0211)

Prerequisite
The current input is available.

Description
Use this option to select a category for the diagnostic message **444 Current input 1 to n**.

Selection
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Factory setting
Out of specification (S)

Additional information
Selection
For a detailed description of the event categories available for selection: → 189

Event category 543 (Double pulse output)

Navigation
- Expert → Communication → Diag. config. → Event category 543 (0276)

Description
Use this option to select a category for the diagnostic message **543 Double pulse output**.

Selection
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Factory setting
Out of specification (S)

Additional information
For a detailed description of the event categories available for selection: → 189
Event category 830 (Sensor temperature too high)

Navigation

Expert → Communication → Diag. config. → Event category 830 (0240)

Description

Use this function to assign a category to the diagnostic message 830 **Sensor temperature too high**.

Selection

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Factory setting

Out of specification (S)

Additional information

For a detailed description of the event categories available for selection: → 189

Event category 831 (Sensor temperature too low)

Navigation

Expert → Communication → Diag. config. → Event category 831 (0241)

Description

Use this function to assign a category to the diagnostic message 831 **Sensor temperature too low**.

Selection

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Factory setting

Out of specification (S)

Additional information

For a detailed description of the event categories available for selection: → 189

Event category 832 (Electronic temperature too high)

Navigation

Expert → Communication → Diag. config. → Event category 832 (0218)

Description

Use this option to select a category for the diagnostic message 832 **Electronic temperature too high**.

Selection

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Factory setting

Out of specification (S)
Additional information For a detailed description of the event categories available for selection: → 189

Event category 833 (Electronic temperature too low)

Navigation Expert → Communication → Diag. config. → Event category 833 (0225)

Description Use this option to select a category for the diagnostic message 833 Electronic temperature too low.

Selection • Failure (F)
 • Function check (C)
 • Out of specification (S)
 • Maintenance required (M)
 • No effect (N)

Factory setting Out of specification (S)

Additional information For a detailed description of the event categories available for selection: → 189

Event category 834 (Process temperature too high)

Navigation Expert → Communication → Diag. config. → Event category 834 (0227)

Description Use this option to select a category for the diagnostic message 834 Process temperature too high.

Selection • Failure (F)
 • Function check (C)
 • Out of specification (S)
 • Maintenance required (M)
 • No effect (N)

Factory setting Out of specification (S)

Additional information For a detailed description of the event categories available for selection: → 189

Event category 835 (Process temperature too low)

Navigation Expert → Communication → Diag. config. → Event category 835 (0229)

Description Use this option to select a category for the diagnostic message 835 Process temperature too low.
Description of device parameters

Proline Promass 300 HART

Selection
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Factory setting
Out of specification (S)

Additional information
For a detailed description of the event categories available for selection: → 189

Event category 862 (Empty pipe)

Navigation
Expert → Communication → Diag. config. → Event category 862 (0214)

Description
Use this option to select a category for the diagnostic message 862 Empty pipe.

Selection
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Factory setting
Out of specification (S)

Additional information
For a detailed description of the event categories available for selection: → 189

Event category 912 (Medium inhomogeneous)

Navigation
Expert → Communication → Diag. config. → Event category 912 (0243)

Description
Use this function to assign a category to the diagnostic message 912 Medium inhomogeneous.

Selection
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Factory setting
Out of specification (S)

Additional information
For a detailed description of the event categories available for selection: → 189
Event category 913 (Medium unsuitable)

Navigation
Expert → Communication → Diag. config. → Event category 913 (0242)

Description
Use this function to assign a category to the diagnostic message 913 Medium unsuitable.

Selection
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Factory setting
Out of specification (S)

Additional information
For a detailed description of the event categories available for selection: → 189

Event category 948 (Tube damping too high)

Navigation
Expert → Communication → Diag. config. → Event category 948 (0275)

Description
Use this function to assign a category to the diagnostic message 948 Tube damping too high.

Selection
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

Factory setting
Out of specification (S)

Additional information
For a detailed description of the event categories available for selection: → 189

3.7 "Application" submenu

Navigation
Expert → Application

- **Application**
 - Reset all totalizers (2806) → 198
 - Totalizer 1 to n → 198
 - Viscosity → 203
Reset all totalizers

Navigation
Expert → Application → Reset all tot. (2806)

Description
Use this function to reset all totalizers to the value 0 and restart the totaling process. This deletes all the flow values previously totalized.

Selection
- Cancel
- Reset + totalize

Factory setting
Cancel

Additional information
Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel</td>
<td>No action is executed and the user exits the parameter.</td>
</tr>
<tr>
<td>Reset + totalize</td>
<td>Resets all totalizers to 0 and restarts the totaling process. This deletes all the flow values previously totalized.</td>
</tr>
</tbody>
</table>

3.7.1 "Totalizer 1 to n" submenu

Navigation
Expert → Application → Totalizer 1 to n

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign process variable (0914–1 to n)</td>
<td>→ 199</td>
</tr>
<tr>
<td>Unit totalizer 1 to n (0915–1 to n)</td>
<td>→ 199</td>
</tr>
<tr>
<td>Totalizer operation mode (0908–1 to n)</td>
<td>→ 200</td>
</tr>
<tr>
<td>Control Totalizer 1 to n (0912–1 to n)</td>
<td>→ 201</td>
</tr>
<tr>
<td>Preset value 1 to n (0913–1 to n)</td>
<td>→ 202</td>
</tr>
<tr>
<td>Failure mode (0901–1 to n)</td>
<td>→ 202</td>
</tr>
</tbody>
</table>
Assign process variable

Navigation
Expert → Application → Totalizer 1 to n → Assign variable (0914–1 to n)

Description
Use this function to select a process variable for the Totalizer 1 to n.

Selection
- Off
- Volume flow
- Mass flow
- Corrected volume flow
- Target mass flow *
- Carrier mass flow *

Factory setting
Mass flow

Additional information

Description
If the option selected is changed, the device resets the totalizer to 0.

Selection
If the Off option is selected, only Assign process variable parameter (→ 199) is still displayed in the Totalizer 1 to n submenu. All other parameters in the submenu are hidden.

Unit totalizer 1 to n

Navigation
Expert → Application → Totalizer 1 to n → Unit totalizer 1 to n (0915–1 to n)

Prerequisite
One of the following options is selected in the Assign process variable parameter (→ 199) Totalizer 1 to n submenu:
- Volume flow
- Mass flow
- Corrected volume flow
- Target mass flow *
- Carrier mass flow *

Description
Use this function to select the process variable unit for the Totalizer 1 to n (→ 198).

Selection
SI units
- g
- kg
- t
- STon

US units
- oz
- lb

Custom-specific units
User mass

or

* Visibility depends on order options or device settings
Description of device parameters

Proline Promass 300 HART

SI units
- cm³
- dm³
- m³
- ml
- l
- hl
- Ml Mega

US units
- af
- ft³
- fl oz (us)
- gal (us)
- kgal (us)
- Mgal (us)
- bbl (us;liq.)
- bbl (us;beer)
- bbl (us;oil)
- bbl (us;tank)

Imperial units
- gal (imp)
- Mgal (imp)
- bbl (imp;beer)
- bbl (imp;oil)

Custom-specific units
- User vol.

or

SI units
- Nl
- Nm³
- Sl
- Sm³

US units
- Sft³
- Sgal (us)
- Sbbl (us;liq.)

Imperial units
- Sgal (imp)

Custom-specific units
- UserCrVol.

Factory setting
- Country-specific:
 - kg
 - lb

Additional information

Description

The unit is selected separately for each totalizer. It is independent of the selection made in the **System units** submenu (→ 60).

Selection

The selection is dependent on the process variable selected in the **Assign process variable** parameter (→ 199).

Totalizer operation mode

Navigation

Expert → Application → Totalizer 1 to n → Operation mode (0908→1 to n)

Prerequisite

One of the following options is selected in the **Assign process variable** parameter (→ 199)**Totalizer 1 to n** submenu:
- Volume flow
- Mass flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow

Description

Use this function to select how the totalizer summates the flow.

* Visibility depends on order options or device settings
Selection

- Net flow total
- Forward flow total
- Reverse flow total

Factory setting

Net flow total

Additional information

Selection

- Net flow total
 Flow values in the forward and reverse flow direction are totalized and balanced against one another. Net flow is registered in the flow direction.
- Forward flow total
 Only the flow in the forward flow direction is totalized.
- Reverse flow total
 Only the flow in the reverse flow direction is totalized (= reverse flow quantity).

Control Totalizer 1 to n

Navigation

Expert → Application → Totalizer 1 to n → Control Tot. 1 to n (0912–1 to n)

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 199) Totalizer 1 to n submenu:

- Volume flow
- Mass flow
- Corrected volume flow
- Target mass flow*
- Carrier mass flow*

Description

Use this function to select the control of totalizer value 1-3.

Selection

- Totalize
- Reset + hold
- Preset + hold
- Reset + totalize
- Preset + totalize
- Hold

Factory setting

Totalize

Additional information

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalize</td>
<td>The totalizer is started or continues running.</td>
</tr>
<tr>
<td>Reset + hold</td>
<td>The totaling process is stopped and the totalizer is reset to 0.</td>
</tr>
<tr>
<td>Preset + hold</td>
<td>The totaling process is stopped and the totalizer is set to its defined start value from the Preset value parameter.</td>
</tr>
<tr>
<td>Reset + totalize</td>
<td>The totalizer is reset to 0 and the totaling process is restarted.</td>
</tr>
<tr>
<td>Preset + totalize</td>
<td>The totalizer is set to the defined start value from the Preset value parameter and the totaling process is restarted.</td>
</tr>
<tr>
<td>Hold</td>
<td>Totalizing is stopped.</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
Description of device parameters

Preset value 1 to n

Navigation

Expert → Application → Totalizer 1 to n → Preset value 1 to n (0913–1 to n)

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 199) Totalizer 1 to n submenu:

- Volume flow
- Mass flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow

Description

Use this function to enter a start value for the Totalizer 1 to n.

User entry

Signed floating-point number

Factory setting

Country-specific:

- 0 kg
- 0 lb

Additional information

User entry

The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 199).

Example

This configuration is suitable for applications such as iterative filling processes with a fixed batch quantity.

Failure mode

Navigation

Expert → Application → Totalizer 1 to n → Failure mode (0901–1 to n)

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 199) Totalizer 1 to n submenu:

- Volume flow
- Mass flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow

Description

Use this function to select how a totalizer behaves in the event of a device alarm.

Selection

- Stop
- Actual value
- Last valid value

Factory setting

Stop

* Visibility depends on order options or device settings
Additional information

Description

This setting does not affect the failsafe mode of other totalizers and the outputs. This is specified in separate parameters.

Selection

- Stop
 The totalizer is stopped in the event of a device alarm.
- Actual value
 The totalizer continues to count based on the actual measured value; the device alarm is ignored.
- Last valid value
 The totalizer continues to count based on the last valid measured value before the device alarm occurred.

3.7.2 "Viscosity" submenu

Only available for Promass I.

For detailed information on the parameter descriptions for the Viscosity application package, refer to the Special Documentation for the device → 7

Navigation

Expert → Application → Viscosity

3.7.3 "Concentration" submenu

For detailed information on the parameter descriptions for the Concentration application package, refer to the Special Documentation for the device → 7

Navigation

Expert → Application → Concentration

3.7.4 "Custody transfer" submenu

Only available for Promass F, O, Q and X.

For detailed information on the parameter descriptions for custody transfer measurement, see the Special Documentation for the device → 7
3.8 "Diagnostics" submenu

Navigation
Expert → Application → Custody transfer

Custody transfer
- Custody transfer mode (14405)
- Checksum (14407)
- Custody transfer locking (14406)
- Custody transfer counter (14402)
- Timestamp last custody transfer (14403)

Navigation
Expert → Diagnostics

Diagnostics
- Actual diagnostics (0691) ➔ 205
- Previous diagnostics (0690) ➔ 206
- Operating time from restart (0653) ➔ 206
- Operating time (0652) ➔ 207
- Diagnostic list ➔ 207
- Event logbook ➔ 217
- Custody transfer logbook ➔ 213
- Device information ➔ 214
- Mainboard module ➔ 218
- Sensor electronic module (ISEM) ➔ 218
- I/O module 1 ➔ 219
- I/O module 2 ➔ 219
- I/O module 3 ➔ 220
- Display module ➔ 221
Actual diagnostics

Navigation
- Expert → Diagnostics → Actual diagnos. (0691)

Prerequisite
- A diagnostic event has occurred.

Description
- Displays the current diagnostic message. If two or more messages occur simultaneously, the message with the highest priority is shown on the display.

User interface
- Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
- **Display**
 - Additional pending diagnostic messages can be viewed in the Diagnostic list submenu (→ 207).
 - Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Example
- For the display format:

 F271 Main electronic failure

Timestamp

Navigation
- Expert → Diagnostics → Timestamp

Description
- Displays the operating time when the current diagnostic message occurred.

User interface
- Days (d), hours (h), minutes (m) and seconds (s)

Additional information
- **Display**
 - The diagnostic message can be viewed via the Actual diagnostics parameter (→ 205).

Example
- For the display format:

 24d12h13m00s
Previous diagnostics

Navigation

![Link to Expert → Diagnostics → Prev.diagnostics (0690)]

Prerequisite

Two diagnostic events have already occurred.

Description

Displays the diagnostic message that occurred before the current message.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Example

For the display format:

![F271 Main electronic failure]

Timestamp

Navigation

![Link to Expert → Diagnostics → Timestamp]

Description

Displays the operating time when the last diagnostic message before the current message occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the Previous diagnostics parameter (→ 206).

Example

For the display format:

24d12h13m00s

Operating time from restart

Navigation

![Link to Expert → Diagnostics → Time fr. restart (0653)]

Description

Use this function to display the time the device has been in operation since the last device restart.

User interface

Days (d), hours (h), minutes (m) and seconds (s)
Operating time

Navigation

Expert → Diagnostics → Operating time (0652)

Description

Use this function to display the length of time the device has been in operation.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

The maximum number of days is 9999, which is equivalent to 27 years.

3.8.1 "Diagnostic list" submenu

Navigation

Expert → Diagnostics → Diagnostic list

<table>
<thead>
<tr>
<th>Diagnostic list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostics 1 (0692)</td>
</tr>
<tr>
<td>Diagnostics 2 (0693)</td>
</tr>
<tr>
<td>Diagnostics 3 (0694)</td>
</tr>
<tr>
<td>Diagnostics 4 (0695)</td>
</tr>
<tr>
<td>Diagnostics 5 (0696)</td>
</tr>
</tbody>
</table>

Diagnostics 1

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 1 (0692)

Description

Displays the current diagnostics message with the highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples

For the display format:
- ☘ F271 Main electronic failure
- ☘ F276 I/O module failure
Description of device parameters

Proline Promass 300 HART

Timestamp

Navigation
- Expert → Diagnostics → Diagnostic list → Timestamp

Description
Displays the operating time when the diagnostic message with the highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
- **Display**
 The diagnostic message can be viewed via the Diagnostics 1 parameter (→ 207).

Example
For the display format:
24d12h13m00s

Diagnostics 2

Navigation
- Expert → Diagnostics → Diagnostic list → Diagnostics 2 (0693)

Description
Displays the current diagnostics message with the second-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
- **Display**
 Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples
For the display format:
- F271 Main electronic failure
- F276 I/O module failure

Timestamp

Navigation
- Expert → Diagnostics → Diagnostic list → Timestamp

Description
Displays the operating time when the diagnostic message with the second-highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)
Additional information

Display

1 The diagnostic message can be viewed via the Diagnostics 2 parameter (→ 208).

Example

For the display format:
24d12h13m00s

Diagnostics 3

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 3 (0694)

Description

Displays the current diagnostics message with the third-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

1 Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples

For the display format:
- • F271 Main electronic failure
- • F276 I/O module failure

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the third-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

1 The diagnostic message can be viewed via the Diagnostics 3 parameter (→ 209).

Example

For the display format:
24d12h13m00s
Diagnostics 4

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 4 (0695)

Description

Displays the current diagnostics message with the fourth-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the \[\text{key}\] key.

Examples

For the display format:

- \[\text{F271 Main electronic failure}\]
- \[\text{F276 I/O module failure}\]

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the fourth-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the Diagnostics 4 parameter (→ 210).

Example

For the display format:

24d12h13m00s

Diagnostics 5

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 5 (0696)

Description

Displays the current diagnostics message with the fifth-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.
Additional information

Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples

For the display format:
- \(\times F271 \) Main electronic failure
- \(\times F276 \) I/O module failure

Timestamp

Navigation

- Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the fifth-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the Diagnostics 5 parameter (→ 210).

Example

For the display format:

\(24d12h13m00s \)

3.8.2 "Event logbook" submenu

Navigation

- Expert → Diagnostics → Event logbook

Filter options

Navigation

- Expert → Diagnostics → Event logbook → Filter options (0705)

Description

Use this function to select the category whose event messages are displayed in the event list of the local display.
Selection

- All
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- Information (I)

Factory setting
All

Additional information

Description

The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107:
- F = Failure
- C = Function Check
- S = Out of Specification
- M = Maintenance Required

Filter options

Navigation

Expert → Diagnostics → Event logbook → Filter options

Description

Use this function to select the category whose event messages are displayed in the event list of the operating tool.

Selection

- All
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- Information (I)

Factory setting
All

Additional information

Description

The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107:
- F = Failure
- C = Function Check
- S = Out of Specification
- M = Maintenance Required

"Event list" submenu

The Event list submenu is only displayed if operating via the local display.

If operating via the FieldCare operating tool, the event list can be read out with a separate FieldCare module.

If operating via the Web browser, the event messages can be found directly in the Event logbook submenu.
Navigation
Expert → Diagnostics → Event logbook → Event list

Event list

Description
Displays the history of event messages of the category selected in the Filter options parameter (→ 211).

User interface
- For a 'Category I' event message
 Information event, short message, symbol for event recording and operating time when error occurred
- For a 'Category F, C, S, M' event message (status signal)
 Diagnostics code, short message, symbol for event recording and operating time when error occurred

Additional information

Description
A maximum of 20 event messages are displayed in chronological order.

If the Extended HistoROM application package (order option) is enabled in the device, the event list can contain up to 100 entries.

The following symbols indicate whether an event has occurred or has ended:
- ☢️: Occurrence of the event
- ☢️: End of the event

Examples
For the display format:
- I1091 Configuration modified ☢️ 24d12h13m00s
- ☢️ F271 Main electronic failure ☢️ 01d04h12min30s

HistoROM
A HistoROM is a 'non-volatile' device memory in the form of an EEPROM.

3.8.3 "Custody transfer logbook" submenu

- Only available for Promass F, O, Q and X.

- For detailed information on the parameter descriptions for custody transfer measurement, see the Special Documentation for the device → 7
Description of device parameters

Proline Promass 300 HART

Navigation

- Expert → Diagnostics → Cust.transf.log.

Custody transfer logbook

3.8.4 "Device information" submenu

Navigation

- Expert → Diagnostics → Device info

Device information

- Device tag (0011)
- Serial number (0009)
- Firmware version (0010)
- Device name (0020)
- Order code (0008)
- Extended order code 1 (0023)
- Extended order code 2 (0021)
- Extended order code 3 (0022)
- Configuration counter (0233)
- ENP version (0012)

Device tag

Navigation

- Expert → Diagnostics → Device info → Device tag (0011)

Description

Displays a unique name for the measuring point so it can be identified quickly within the plant. The name is displayed in the header.

User interface

Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /).

Factory setting

Promass300/500
Serial number

<table>
<thead>
<tr>
<th>Navigation</th>
<th>专家 → Diagnostics → Device info → Serial number (0009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the serial number of the measuring device.</td>
</tr>
<tr>
<td></td>
<td>The number can be found on the nameplate of the sensor and transmitter.</td>
</tr>
<tr>
<td>User interface</td>
<td>A maximum of 11-digit character string comprising letters and numbers.</td>
</tr>
<tr>
<td>Additional information</td>
<td>Uses of the serial number</td>
</tr>
<tr>
<td></td>
<td>- To identify the measuring device quickly, e.g. when contacting Endress+Hauser.</td>
</tr>
<tr>
<td></td>
<td>- To obtain specific information on the measuring device using the Device Viewer: www.endress.com/deviceviewer</td>
</tr>
</tbody>
</table>

Firmware version

<table>
<thead>
<tr>
<th>Navigation</th>
<th>专家 → Diagnostics → Device info → Firmware version (0010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the device firmware version installed.</td>
</tr>
<tr>
<td>User interface</td>
<td>Character string in the format xx.yy.zz</td>
</tr>
<tr>
<td>Additional information</td>
<td>Display</td>
</tr>
<tr>
<td></td>
<td>The Firmware version is also located:</td>
</tr>
<tr>
<td></td>
<td>- On the title page of the Operating instructions</td>
</tr>
<tr>
<td></td>
<td>- On the transmitter nameplate</td>
</tr>
</tbody>
</table>
Device name

Navigation
Expert → Diagnostics → Device info → Device name (0020)

Description
Displays the name of the transmitter. It can also be found on the nameplate of the transmitter.

User interface
Promass300/500

Order code

Navigation
Expert → Diagnostics → Device info → Order code (0008)

Description
Displays the device order code.

User interface
Character string composed of letters, numbers and certain punctuation marks (e.g. /).

Additional information

Description

The order code can be found on the nameplate of the sensor and transmitter in the "Order code" field.

The order code is generated from the extended order code through a process of reversible transformation. The extended order code indicates the attributes for all the device features in the product structure. The device features are not directly readable from the order code.

Uses of the order code
- To order an identical spare device.
- To identify the device quickly and easily, e.g. when contacting Endress+Hauser.

Extended order code 1

Navigation
Expert → Diagnostics → Device info → Ext. order cd. 1 (0023)

Description
Displays the first part of the extended order code.

On account of length restrictions, the extended order code is split into a maximum of 3 parameters.

User interface
Character string

Additional information

Description

The extended order code indicates the version of all the features of the product structure for the measuring device and thus uniquely identifies the measuring device.

The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field.
Extended order code 2

Navigation
[diarr] Expert → Diagnostics → Device info → Ext. order cd. 2 (0021)

Description
Displays the second part of the extended order code.

User interface
Character string

Additional information
For additional information, see **Extended order code 1** parameter (→ 216)

Extended order code 3

Navigation
[diarr] Expert → Diagnostics → Device info → Ext. order cd. 3 (0022)

Description
Displays the third part of the extended order code.

User interface
Character string

Additional information
For additional information, see **Extended order code 1** parameter (→ 216)

Configuration counter

Navigation
[diarr] Expert → Diagnostics → Device info → Config. counter (0233)

Description
Displays the number of parameter modifications for the device. When the user changes a parameter setting, this counter is incremented.

User interface
0 to 65535

ENP version

Navigation
[diarr] Expert → Diagnostics → Device info → ENP version (0012)

Description
Displays the version of the electronic nameplate.

User interface
Character string

Factory setting
2.02.00

Additional information
Description
This electronic nameplate stores a data record for device identification that includes more data than the nameplates attached to the outside of the device.
3.8.5 "Mainboard module" submenu

Navigation
Expert → Diagnostics → Mainboard module

Software revision

Navigation
Expert → Diagnostics → Mainboard module → Software rev. (0072)

Description
Use this function to display the software revision of the module.

User interface
Positive integer

3.8.6 "Sensor electronic module (ISEM)" submenu

Navigation
Expert → Diagnostics → Sens. electronic

Software revision

Navigation
Expert → Diagnostics → Sens. electronic → Software rev. (0072)

Description
Use this function to display the software revision of the module.

User interface
Positive integer
3.8.7 "I/O module 1" submenu

Navigation

Expert → Diagnostics → I/O module 1

I/O module 1 terminal numbers

Navigation

Expert → Diagnostics → I/O module 1 → I/O 1 terminals (3902–1)

Description
Displays the terminal numbers used by the I/O module.

User interface

- Not used
- 26-27 (I/O 1)
- 24-25 (I/O 2)
- 22-23 (I/O 3)

Software revision

Navigation

Expert → Diagnostics → I/O module 1 → Software rev. (0072)

Description
Use this function to display the software revision of the module.

User interface
Positive integer

3.8.8 "I/O module 2" submenu

Navigation

Expert → Diagnostics → I/O module 2

I/O module 2 terminal numbers

Navigation

Expert → Diagnostics → I/O module 2 → I/O 2 terminals (3902–2)

Description

Displays the terminal numbers used by the I/O module.

User interface

- Not used
- 26-27 (I/O 1)
- 24-25 (I/O 2)
- 22-23 (I/O 3)

Software revision

Navigation

Expert → Diagnostics → I/O module 2 → Software rev. (0072)

Description

Use this function to display the software revision of the module.

User interface

Positive integer

3.8.9 "I/O module 3" submenu

Navigation

Expert → Diagnostics → I/O module 3

I/O module 3 terminal numbers

Navigation

Expert → Diagnostics → I/O module 3 → I/O 3 terminals (3902–3)

Description

Displays the terminal numbers used by the I/O module.

User interface

- Not used
- 26-27 (I/O 1)
- 24-25 (I/O 2)
- 22-23 (I/O 3)
Software revision

Navigation

Navigate to:

Expert → Diagnostics → I/O module 3 → Software rev. (0072)

Description

Use this function to display the software revision of the module.

User interface

Positive integer

3.8.10 "Display module" submenu

Navigation

Navigate to:

Expert → Diagnostics → Display module

![Display module](attachment:image.png)

Software revision (0072)

Software revision

Navigation

Navigate to:

Expert → Diagnostics → Display module → Software rev. (0072)

Description

Use this function to display the software revision of the module.

User interface

Positive integer

3.8.11 "Min/max values" submenu

Navigation

Navigate to:

Expert → Diagnostics → Min/max val.

![Min/max values](attachment:image.png)

Reset min/max values (6151)

Electronic temperature

Medium temperature

Carrier pipe temperature

Oscillation frequency
Reset min/max values

Navigation
Expert → Diagnostics → Min/max val. → Reset min/max (6151)

Description
Use this function to select measured variables whose minimum, maximum and average measured values are to be reset.

Selection
- Cancel
- Oscillation amplitude
- Oscillation amplitude 1 *
- Oscillation damping
- Torsion oscillation damping *
- Oscillation frequency
- Torsion oscillation frequency *
- Signal asymmetry
- Torsion signal asymmetry *

Factory setting
Cancel

Additional information
Selection
Detailed description of the options Oscillation frequency, Oscillation amplitude, Oscillation damping and Signal asymmetry: Value 1 display parameter (→ 22)

* Visibility depends on order options or device settings
"Electronic temperature" submenu

Navigation

Expert → Diagnostics → Min/max val. → Electronic temp.

<table>
<thead>
<tr>
<th>Electronic temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
</tr>
<tr>
<td>Maximum value</td>
</tr>
</tbody>
</table>

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Electronic temp. → Maximum value (6051)

Description

Displays the highest previously measured temperature value of the main electronics module.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Temperature unit** parameter (→ 67)

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Electronic temp. → Minimum value (6052)

Description

Displays the lowest previously measured temperature value of the main electronics module.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Temperature unit** parameter (→ 67)
"Medium temperature" submenu

Navigation

Expert → Diagnostics → Min/max val. → Medium temp.

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Medium temp. → Minimum value (6109)

Description

Displays the lowest previously measured medium temperature value.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 67)

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Medium temp. → Maximum value (6108)

Description

Displays the highest previously measured medium temperature value.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 67)

"Carrier pipe temperature" submenu

Navigation

Expert → Diagnostics → Min/max val. → Carr. pipe temp.

Minimum value

Minimum value (6030) → 225

Maximum value

Maximum value (6029) → 225
Minimum value

Navigation

[Expert → Diagnostics → Min/max val. → Carr. pipe temp. → Minimum value (6030)]

Prerequisite

[Only available for:
- Promass A
- Promass F
- Promass H
- Promass I
- Promass O
- Promass P
- PromassQ
- Promass S
- Promass X

For the following order code
"Application package", option **EB** "Heartbeat Verification + Monitoring"

Description

Displays the lowest previously measured temperature value of the carrier pipe.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Temperature unit** parameter (→ 67)

Maximum value

Navigation

[Expert → Diagnostics → Min/max val. → Carr. pipe temp. → Maximum value (6029)]

Prerequisite

[Only available for:
- Promass A
- Promass F
- Promass H
- Promass I
- Promass O
- Promass P
- PromassQ
- Promass S
- Promass X

For the following order code
"Application package", option **EB** "Heartbeat Verification + Monitoring"

Description

Displays the highest previously measured temperature value of the carrier pipe.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Temperature unit** parameter (→ 67)
"Oscillation frequency" submenu

Navigation
Expert → Diagnostics → Min/max val. → Oscil. frequency

<table>
<thead>
<tr>
<th>Oscillation frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value (6071) → 226</td>
</tr>
<tr>
<td>Maximum value (6070) → 226</td>
</tr>
</tbody>
</table>

Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Oscil. frequency → Minimum value (6071)

Description
Displays the lowest previously measured oscillation frequency.

User interface
Signed floating-point number

Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Oscil. frequency → Maximum value (6070)

Description
Displays the highest previously measured oscillation frequency.

User interface
Signed floating-point number

"Torsion oscillation frequency" submenu

Navigation
Expert → Diagnostics → Min/max val. → Tors.oscil.freq.

<table>
<thead>
<tr>
<th>Torsion oscillation frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value (6069) → 227</td>
</tr>
<tr>
<td>Maximum value (6068) → 227</td>
</tr>
</tbody>
</table>
Minimum value

Navigation

专家 → 对话 → Min/max val. → Tors.oscil.freq → Minimum value (6069)

Prerequisite

- 只有 Promass I 可用。
- 仅允许从以下订单代码访问：
 - 应用程序包选项 EB "Heartbeat Verification + Monitoring"。

Description

显示最低之前测量的振幅频率。

User interface

带符号的浮点数

Maximum value

Navigation

专家 → 对话 → Min/max val. → Tors.oscil.freq → Maximum value (6068)

Prerequisite

- 只有 Promass I 可用。
- 仅允许从以下订单代码访问：
 - 应用程序包选项 EB "Heartbeat Verification + Monitoring"。

Description

显示最高之前测量的振幅频率。

User interface

带符号的浮点数

"Oscillation amplitude" submenu

Navigation

专家 → 对话 → Min/max val. → Oscil. amplitude

- 振幅频率
 - 最低值 (6010) → 227
 - 最高值 (6009) → 228

Minimum value

Navigation

专家 → 对话 → Min/max val. → Oscil. amplitude → Minimum value (6010)

Description

显示最低之前测量的振幅频率。

User interface

带符号的浮点数

Description of device parameters

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Oscil. amplitude → Maximum value (6009)

Description
Displays the highest previously measured oscillation amplitude.

User interface
Signed floating-point number

"Torsion oscillation amplitude" submenu

Navigation

Expert → Diagnostics → Min/max val. → Tor. osc. amp.

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Tor. osc. amp. → Minimum value (6008)

Prerequisite
Only available for Promass I.
For the following order code:
Application package, option EB "Heartbeat Verification + Monitoring"

Description
Displays the lowest previously measured torsion oscillation amplitude.

User interface
Signed floating-point number

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Tor. osc. amp. → Maximum value (6007)

Prerequisite
Only available for Promass I.
For the following order code:
Application package, option EB "Heartbeat Verification + Monitoring"

Description
Displays the highest previously measured torsion oscillation amplitude.
User interface
Signed floating-point number

"Oscillation damping" submenu

Navigation
Expert → Diagnostics → Min/max val. → Oscil. damping

<table>
<thead>
<tr>
<th>➤ Oscillation damping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value (6122)</td>
</tr>
<tr>
<td>Maximum value (6121)</td>
</tr>
</tbody>
</table>

Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Oscil. damping → Minimum value (6122)

Description
Displays the lowest previously measured oscillation damping.

User interface
Signed floating-point number

Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Oscil. damping → Maximum value (6121)

Description
Displays the highest previously measured oscillation damping.

User interface
Signed floating-point number

"Torsion oscillation damping" submenu

Navigation
Expert → Diagnostics → Min/max val. → Tors.oscil.damp.

<table>
<thead>
<tr>
<th>➤ Torsion oscillation damping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value (6120)</td>
</tr>
<tr>
<td>Maximum value (6119)</td>
</tr>
</tbody>
</table>
Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Tors. oscil. damp. → Minimum value (6120)

Prerequisite

Only available for Promass I.

For the following order code:
'Application package', option **EB** 'Heartbeat Verification + Monitoring'

Description

Displays the lowest previously measured torsion oscillation damping.

User interface

Signed floating-point number

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Tors. oscil. damp. → Maximum value (6119)

Prerequisite

Only available for Promass I.

For the following order code:
'Application package', option **EB** 'Heartbeat Verification + Monitoring'

Description

Displays the highest previously measured torsion oscillation damping.

User interface

Signed floating-point number

“Signal asymmetry” submenu

Navigation

Expert → Diagnostics → Min/max val. → Signal asymmetry

<table>
<thead>
<tr>
<th>Signal asymmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value (6015) → 230</td>
</tr>
<tr>
<td>Maximum value (6014) → 231</td>
</tr>
</tbody>
</table>

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Signal asymmetry → Minimum value (6015)

Description

Displays the lowest previously measured signal asymmetry.
User interface Signed floating-point number

Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Signal asymmetry → Maximum value (6014)

Description Displays the highest previously measured signal asymmetry.

User interface Signed floating-point number

"Torsion signal asymmetry" submenu

Navigation
Expert → Diagnostics → Min/max val. → Tors.sig.asymm.

Prerequisite Only available for Promass I.

For the following order code:
"Application package", option **EB** "Heartbeat Verification + Monitoring"

Description Displays the lowest previously measured torsion signal asymmetry.

User interface Signed floating-point number

Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Tors.sig.asymm. → Minimum value (6284)

Prerequisite Only available for Promass I.

For the following order code:
"Application package", option **EB** "Heartbeat Verification + Monitoring"

Description Displays the lowest previously measured torsion signal asymmetry.

User interface Signed floating-point number

Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Tors.sig.asymm. → Maximum value (6283)

Prerequisite Only available for Promass I.
For the following order code:
'Application package', option EB 'Heartbeat Verification + Monitoring'

Description
Displays the highest previously measured torsion signal asymmetry.

User interface
Signed floating-point number

3.8.12 "Data logging" submenu

Navigation

```
Expert → Diagnostics → Data logging
```

<table>
<thead>
<tr>
<th>Data logging</th>
<th>➤ 233</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign channel 1 (0851)</td>
<td></td>
</tr>
<tr>
<td>Assign channel 2 (0852)</td>
<td></td>
</tr>
<tr>
<td>Assign channel 3 (0853)</td>
<td></td>
</tr>
<tr>
<td>Assign channel 4 (0854)</td>
<td></td>
</tr>
<tr>
<td>Logging interval (0856)</td>
<td></td>
</tr>
<tr>
<td>Clear logging data (0855)</td>
<td></td>
</tr>
<tr>
<td>Data logging (0860)</td>
<td></td>
</tr>
<tr>
<td>Logging delay (0859)</td>
<td></td>
</tr>
<tr>
<td>Data logging control (0857)</td>
<td></td>
</tr>
<tr>
<td>Data logging status (0858)</td>
<td></td>
</tr>
<tr>
<td>Entire logging duration (0861)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display channel 1</th>
<th>➤ 238</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display channel 2</td>
<td></td>
</tr>
<tr>
<td>Display channel 3</td>
<td></td>
</tr>
<tr>
<td>Display channel 4</td>
<td></td>
</tr>
</tbody>
</table>
Assign channel 1

Navigation

Expert → Diagnostics → Data logging → Assign chan. 1 (0851)

Prerequisite

The Extended HistOROM application package is available.

The software options currently enabled are displayed in the Software option overview parameter (→ 45).

Description

Use this function to select a process variable for the data logging channel.

Selection

- Off
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow *
- Carrier mass flow
- Density
- Reference density
- Concentration
- Dynamic viscosity *
- Kinematic viscosity *
- Temp. compensated dynamic viscosity *
- Temp. compensated kinematic viscosity *
- Temperature
- Carrier pipe temperature *
- Electronic temperature
- Oscillation frequency 0
- Oscillation frequency 1 *
- Frequency fluctuation 0
- Frequency fluctuation 1 *
- Oscillation amplitude *
- Oscillation amplitude 1 *
- Oscillation damping 0 *
- Oscillation damping 1 *
- Oscillation damping fluctuation 0
- Oscillation damping fluctuation 1 *
- Signal asymmetry
- Exciter current 0
- Exciter current 1 *
- Current output 1
- Current output 2 *
- Current output 3 *

Factory setting

Off

Additional information

Description

A total of 1000 measured values can be logged. This means:

- 1000 data points if 1 logging channel is used
- 500 data points if 2 logging channels are used
- 333 data points if 3 logging channels are used
- 250 data points if 4 logging channels are used

* Visibility depends on order options or device settings
Once the maximum number of data points is reached, the oldest data points in the data log are cyclically overwritten in such a way that the last 1000, 500, 333 or 250 measured values are always in the log (ring memory principle).

The log contents are cleared if the option selected is changed.

Selection

Detailed description of the options Oscillation frequency, Oscillation amplitude, Oscillation damping and Signal asymmetry: Assign current output parameter (→ 109)

Assign channel 2

Navigation

Expert → Diagnostics → Data logging → Assign chan. 2 (0852)

Prerequisite

The Extended HistoROM application package is available.

The software options currently enabled are displayed in the Software option overview parameter (→ 45).

Description

Options for the assignment of a process variable to the data logging channel.

Selection

Picklist, see Assign channel 1 parameter (→ 233)

Factory setting

Off

Assign channel 3

Navigation

Expert → Diagnostics → Data logging → Assign chan. 3 (0853)

Prerequisite

The Extended HistoROM application package is available.

The software options currently enabled are displayed in the Software option overview parameter (→ 45).

Description

Options for the assignment of a process variable to the data logging channel.

Selection

Picklist, see Assign channel 1 parameter (→ 233)

Factory setting

Off
Assign channel 4

Navigation

Expert → Diagnostics → Data logging → Assign chan. 4 (0854)

Prerequisite

The Extended HistoROM application package is available.

The software options currently enabled are displayed in the Software option overview parameter (→ 45).

Description

Options for the assignment of a process variable to the data logging channel.

Selection

Picklist, see Assign channel 1 parameter (→ 233)

Factory setting

Off

Logging interval

Navigation

Expert → Diagnostics → Data logging → Logging interval (0856)

Prerequisite

The Extended HistoROM application package is available.

The software options currently enabled are displayed in the Software option overview parameter (→ 45).

Description

Use this function to enter the logging interval \(T_{\text{log}}\) for data logging.

User entry

0.1 to 999.0 s

Factory setting

1.0 s

Additional information

This defines the interval between the individual data points in the data log, and thus the maximum loggable process time \(T_{\text{log}}\):

- If 1 logging channel is used: \(T_{\text{log}} = 1000 \times t_{\text{log}}\)
- If 2 logging channels are used: \(T_{\text{log}} = 500 \times t_{\text{log}}\)
- If 3 logging channels are used: \(T_{\text{log}} = 333 \times t_{\text{log}}\)
- If 4 logging channels are used: \(T_{\text{log}} = 250 \times t_{\text{log}}\)

Once this time elapses, the oldest data points in the data log are cyclically overwritten such that a time of \(T_{\text{log}}\) always remains in the memory (ring memory principle).

The log contents are cleared if the length of the logging interval is changed.

Example

If 1 logging channel is used:

- \(T_{\text{log}} = 1000 \times 1 \text{ s} = 1000 \text{ s} \approx 15 \text{ min}\)
- \(T_{\text{log}} = 1000 \times 10 \text{ s} = 10000 \text{ s} = 3 \text{ h}\)
- \(T_{\text{log}} = 1000 \times 80 \text{ s} = 80000 \text{ s} = 1 \text{ d}\)
- \(T_{\text{log}} = 1000 \times 3600 \text{ s} = 3600000 \text{ s} = 41 \text{ d}\)
Clear logging data

Navigation
Expert → Diagnostics → Data logging → Clear logging (0855)

Prerequisite
The Extended HistoROM application package is available.
The software options currently enabled are displayed in the Software option overview parameter (→ 45).

Description
Use this function to clear the entire logging data.

Selection
- Cancel
- Clear data

Factory setting
Cancel

Additional information
Selection
- Cancel
 The data is not cleared. All the data is retained.
- Clear data
 The logging data is cleared. The logging process starts from the beginning.

Data logging

Navigation
Expert → Diagnostics → Data logging → Data logging (0860)

Description
Use this function to select the data logging method.

Selection
- Overwriting
- Not overwriting

Factory setting
Overwriting

Additional information
Selection
- Overwriting
 The device memory applies the FIFO principle.
- Not overwriting
 Data logging is canceled if the measured value memory is full (single shot).

Logging delay

Navigation
Expert → Diagnostics → Data logging → Logging delay (0859)

Prerequisite
In the Data logging parameter (→ 236), the Not overwriting option is selected.

Description
Use this function to enter the time delay for measured value logging.

User entry
0 to 999 h
Factory setting 0 h

Additional information
Once measured value logging has been started with the Data logging control parameter (→ 237), the device does not save any data for the duration of the time delay entered.

Data logging control

Navigation Expert → Diagnostics → Data logging → Data log.control (0857)

Prerequisite In the Data logging parameter (→ 236), the Not overwriting option is selected.

Description Use this function to start and stop measured value logging.

Selection
- None
- Delete + start
- Stop

Factory setting None

Additional information
Selection
- None
 Initial measured value logging status.
- Delete + start
 All the measured values recorded for all the channels are deleted and measured value logging starts again.
- Stop
 Measured value logging is stopped.

Data logging status

Navigation Expert → Diagnostics → Data logging → Data log. status (0858)

Prerequisite In the Data logging parameter (→ 236), the Not overwriting option is selected.

Description Displays the measured value logging status.

User interface
- Done
- Delay active
- Active
- Stopped

Factory setting Done
Additional information

Selection
- Done
 Measured value logging has been performed and completed successfully.
- Delay active
 Measured value logging has been started but the logging interval has not yet elapsed.
- Active
 The logging interval has elapsed and measured value logging is active.
- Stopped
 Measured value logging is stopped.

Entire logging duration

Navigation
- Expert → Diagnostics → Data logging → Logging duration (0861)

Prerequisite
In the Data logging parameter (→ 236), the Not overwriting option is selected.

Description
Displays the total logging duration.

User interface
Positive floating-point number

Factory setting
0 s

"Display channel 1" submenu

Navigation
- Expert → Diagnostics → Data logging → Displ.channel 1

Display channel 1

Navigation
- Expert → Diagnostics → Data logging → Displ.channel 1

Prerequisite
The Extended HistoROM application package is available.

The software options currently enabled are displayed in the Software option overview parameter (→ 45).

One of the following options is selected in the Assign channel 1 parameter (→ 233):
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow*

* Visibility depends on order options or device settings
Description

Displays the measured value trend for the logging channel in the form of a chart.

Additional information

Prerequisite

Detailed description of the options Oscillation frequency, Oscillation amplitude, Oscillation damping and Signal asymmetry. Assign current output parameter (→ 109)

Description

A0016357

Chart of a measured value trend

- x-axis: depending on the number of channels selected displays 250 to 1000 measured values of a process variable.
- y-axis: displays the approximate measured value span and constantly adapts this to the ongoing measurement.

* Visibility depends on order options or device settings
"Display channel 2" submenu

Navigation

Expert → Diagnostics → Data logging → Displ.channel 2

Prerequisite

A process variable is defined in the Assign channel 2 parameter.

Description

See the Display channel 1 parameter → 238

"Display channel 3" submenu

Navigation

Expert → Diagnostics → Data logging → Displ.channel 3

Prerequisite

A process variable is defined in the Assign channel 3 parameter.

Description

See the Display channel 1 parameter → 238

"Display channel 4" submenu

Navigation

Expert → Diagnostics → Data logging → Displ.channel 4

Prerequisite

A process variable is defined in the Assign channel 4 parameter.

Description

See the Display channel 1 parameter → 238
Display channel 4

Navigation

Expert → Diagnostics → Data logging → Displ. channel 4

Prerequisite
A process variable is defined in the **Assign channel 4** parameter.

Description
See the **Display channel 1** parameter → 238

3.8.13 "Heartbeat" submenu

For detailed information on the parameter descriptions for the Heartbeat Verification+Monitoring application package, refer to the Special Documentation for the device → 7

Navigation

Expert → Diagnostics → Heartbeat

3.8.14 "Simulation" submenu

Navigation

Expert → Diagnostics → Simulation

- Assign simulation process variable (1810) → 242
- Process variable value (1811) → 243
- Status input simulation (1355) → 243
- Input signal level (1356) → 244
- Current input 1 to n simulation (1608–1 to n) → 244
- Value current input 1 to n (1609–1 to n) → 245
Description of device parameters

Assign simulation process variable

Navigation
Expert → Diagnostics → Simulation → Assign proc.var. (1810)

Description
Use this function to select a process variable for the simulation process that is activated. The display alternates between the measured value and a diagnostic message of the “Function check” category (C) while simulation is in progress.

Selection
- Off
- Mass flow
- Volume flow
- Corrected volume flow
- Density
- Reference density
Proline Promass 300 HART

Description of device parameters

- Temperature
- Dynamic viscosity *
- Kinematic viscosity *
- Temp. compensated dynamic viscosity *
- Temp. compensated kinematic viscosity *
- Concentration *
- Target mass flow *
- Carrier mass flow *

Factory setting
Off

Additional information

Description
The simulation value of the process variable selected is defined in the Process variable value parameter (→ 243).

Process variable value

Navigation
Expert → Diagnostics → Simulation → Proc. var. value (1811)

Description
Use this function to enter a simulation value for the selected process variable. Subsequent measured value processing and the signal output use this simulation value. In this way, users can verify whether the measuring device has been configured correctly.

User entry
Depends on the process variable selected

Factory setting
0

Additional information

User entry
The unit of the displayed measured value is taken from the System units submenu (→ 60).

Status input simulation

Navigation
Expert → Diagnostics → Simulation → Status inp. sim. (1355)

Description
Use this function to switch simulation of the status input on and off. The display alternates between the measured value and a diagnostic message of the "Function check" category (C) while simulation is in progress.

Selection
- Off
- On

Factory setting
Off

* Visibility depends on order options or device settings
Additional information

Description

The desired simulation value is defined in the **Input signal level** parameter (→ 244).

Selection

- **Off**
 Simulation for the status input is switched off. The device is in normal measuring mode or another process variable is being simulated.
- **On**
 Simulation for the status input is active.

Input signal level

Navigation

Expert → Diagnostics → Simulation → Signal level (1356)

Prerequisite

In the **Status input simulation** parameter (→ 243), the **On** option is selected.

Description

Use this function to select the signal level for the simulation of the status input. In this way, users can verify the correct configuration of the status input and the correct function of upstream feed-in units.

Selection

- **High**
- **Low**

Current input 1 to n simulation

Navigation

Expert → Diagnostics → Simulation → Curr.inp 1 to n sim. (1608–1 to n)

Description

Option for switching simulation of the current input on and off. The display alternates between the measured value and a diagnostic message of the ‘Function check’ category (C) while simulation is in progress.

The desired simulation value is defined in the **Value current input 1 to n** parameter.

Selection

- **Off**
- **On**

Factory setting

Off

Additional information

Selection

- **Off**
 Current simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- **On**
 Current simulation is active.
Value current input 1 to n

Navigation

Expert → Diagnostics → Simulation → Value curr. inp 1 to n (1609–1 to n)

Prerequisite
In the **Current input 1 to n simulation** parameter, the **On** option is selected.

Description
Use this function to enter the current value for the simulation. In this way, users can verify the correct configuration of the current input and the correct function of upstream feed-in units.

User entry
0 to 22.5 mA

Current output 1 to n simulation

Navigation

Expert → Diagnostics → Simulation → Curr. out. 1 to n sim. (0354–1 to n)

Description
Use this function to switch simulation of the current output on and off. The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.

Selection
- Off
- On

Factory setting
Off

Additional information

Description
The desired simulation value is defined in the **Value current output 1 to n** parameter.

Selection
- Off
 Current simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- On
 Current simulation is active.

Value current output 1 to n

Navigation

Expert → Diagnostics → Simulation → Value curr. out 1 to n (0355–1 to n)

Prerequisite
In the **Current output 1 to n simulation** parameter, the **On** option is selected.

Description
Use this function to enter a current value for the simulation. In this way, users can verify the correct adjustment of the current output and the correct function of downstream switching units.

User entry
3.59 to 22.5 mA
Additional information

Dependency
The input range is dependent on the option selected in the Current span parameter (→ 110).

Frequency output simulation 1 to n

Navigation

Expert → Diagnostics → Simulation → FreqOutputSim 1 to n (0472–1 to n)

Prerequisite
In the Operating mode parameter (→ 125), the Frequency option is selected.

Description
Use this function to switch simulation of the frequency output on and off. The display alternates between the measured value and a diagnostic message of the "Function check" category (C) while simulation is in progress.

Selection
- Off
- On

Factory setting
Off

Additional information

Description
The desired simulation value is defined in the Frequency value 1 to n parameter.

Selection
- Off
 Frequency simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- On
 Frequency simulation is active.

Frequency value 1 to n

Navigation

Expert → Diagnostics → Simulation → Freq value 1 to n (0473–1 to n)

Prerequisite
In the Frequency output simulation 1 to n parameter, the On option is selected.

Description
Use this function to enter a frequency value for the simulation. In this way, users can verify the correct adjustment of the frequency output and the correct function of downstream switching units.

User entry
0.0 to 12500.0 Hz
Pulse output simulation 1 to n

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Simulation → Puls.outp.sim. 1 to n (0458–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>In the Operating mode parameter (→ 125), the Pulse option is selected.</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to switch simulation of the pulse output on and off. The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.</td>
</tr>
</tbody>
</table>
| Selection | • Off
• Fixed value
• Down-counting value |
| Factory setting | Off |
| Additional information | Description
The desired simulation value is defined in the Pulse value 1 to n parameter.
Selection
• Off
Pulse simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
• Fixed value
Pulses are continuously output with the pulse width specified in the Pulse width parameter (→ 128).
• Down-counting value
The pulses specified in the Pulse value parameter (→ 247) are output. |

Pulse value 1 to n

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Simulation → Pulse value 1 to n (0459–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>In the Pulse output simulation 1 to n parameter, the Down-counting value option is selected.</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to enter a pulse value for the simulation. In this way, users can verify the correct adjustment of the pulse output and the correct function of downstream switching units.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 65535</td>
</tr>
</tbody>
</table>

Switch output simulation 1 to n

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Simulation → Switch sim. 1 to n (0462–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>In the Operating mode parameter (→ 125), the Switch option is selected.</td>
</tr>
</tbody>
</table>
Description of device parameters

Proline Promass 300 HART

Description
Use this function to switch simulation of the switch output on and off. The display alternates between the measured value and a diagnostic message of the "Function check" category (C) while simulation is in progress.

Selection
- Off
- On

Factory setting
Off

Additional information

Description
The desired simulation value is defined in the Switch status 1 to n parameter.

Selection
- Off
 Switch simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- On
 Switch simulation is active.

Switch status 1 to n

Navigation
Expert → Diagnostics → Simulation → Switch status 1 to n (0463–1 to n)

Description
Use this function to select a switch value for the simulation. In this way, users can verify the correct adjustment of the switch output and the correct function of downstream switching units.

Selection
- Open
- Closed

Additional information

Selection
- Open
 Switch simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- Closed
 Switch simulation is active.

Relay output 1 to n simulation

Navigation
Expert → Diagnostics → Simulation → Relay out. 1 to n sim (0802–1 to n)

Description
Use this function to switch simulation of the relay output on and off. The display alternates between the measured value and a diagnostic message of the "Function check" category (C) while simulation is in progress.

Selection
- Off
- On

Factory setting
Off
Additional information

Description

The desired simulation value is defined in the **Switch status 1 to n** parameter.

Selection

- **Off**
 Relay simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- **On**
 Relay simulation is active.

Switch status 1 to n

Navigation

Expert → Diagnostics → Simulation → Switch status 1 to n (0803–1 to n)

Prerequisite

In the **Switch output simulation 1 to n** parameter, the **On** option is selected.

Description

Use this function to select a relay value for the simulation. In this way, users can verify the correct adjustment of the relay output and the correct function of downstream switching units.

Selection

- **Open**
- **Closed**

Additional information

Selection

- **Open**
 Relay simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- **Closed**
 Relay simulation is active.

Pulse output simulation

Navigation

Expert → Diagnostics → Simulation → Puls.outp.sim. (0988)

Description

Use this function to switch simulation of the double pulse output on and off. The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.

Selection

- **Off**
- **Fixed value**
- **Down-counting value**

Factory setting

Off
Additional information

Description

The desired simulation value is defined in the **Pulse value** parameter (→ 250).

Selection

- **Off**
 Simulation of the double pulse output is switched off. The device is in normal measuring mode or another process variable is being simulated.
- **Fixed value**
 Pulses are continuously output with the pulse width specified in the **Pulse width** parameter (→ 157).
- **Down-counting value**
 The pulses specified in the **Pulse value** parameter (→ 250) are output.

Pulse value

Navigation

[Expert → Diagnostics → Simulation → Pulse value (0989)]

Prerequisite

In the **Pulse output simulation** parameter (→ 249), the **Down-counting value** option is selected.

Description

Use this function to enter a pulse value for simulation of the double pulse output. In this way, users can verify the correct adjustment of the double pulse output and the correct function of downstream switching units.

User entry

0 to 65,535

Device alarm simulation

Navigation

[Expert → Diagnostics → Simulation → Dev. alarm sim. (0654)]

Description

Use this function to switch the device alarm on and off.

Selection

- **Off**
- **On**

Factory setting

Off

Additional information

Description

The display alternates between the measured value and a diagnostic message of the ‘Function check’ category (C) while simulation is in progress.
Diagnostic event category

Navigation

Expert → Diagnostics → Simulation → Event category (0738)

Description

Use this function to select the category of the diagnostic events that are displayed for the simulation in the Diagnostic event simulation parameter (→ 251).

Selection

- Sensor
- Electronics
- Configuration
- Process

Factory setting

Process

Diagnostic event simulation

Navigation

Expert → Diagnostics → Simulation → Diag. event sim. (0737)

Description

Use this function to select a diagnostic event for the simulation process that is activated.

Selection

- Off
- Diagnostic event picklist (depends on the category selected)

Factory setting

Off

Additional information

Description

For the simulation, you can choose from the diagnostic events of the category selected in the Diagnostic event category parameter (→ 251).
4 Country-specific factory settings

4.1 SI units

Not valid for USA and Canada.

4.1.1 System units

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>kg</td>
</tr>
<tr>
<td>Mass flow</td>
<td>kg/h</td>
</tr>
<tr>
<td>Volume</td>
<td>l</td>
</tr>
<tr>
<td>Volume flow</td>
<td>l/h</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Nl</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Nl/h</td>
</tr>
<tr>
<td>Density</td>
<td>kg/l</td>
</tr>
<tr>
<td>Reference density</td>
<td>kg/Nl</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>Pressure</td>
<td>bar a</td>
</tr>
</tbody>
</table>

4.1.2 Full scale values

The factory settings apply to the following parameters:
- 20 mA value (full scale value of the current output)
- 100% bar graph value 1

For detailed information about the full scale value for measuring devices for custody transfer, see the Special Documentation for the device → 7

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>[kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>400</td>
</tr>
<tr>
<td>15</td>
<td>1300</td>
</tr>
<tr>
<td>15 FB</td>
<td>3600</td>
</tr>
<tr>
<td>25</td>
<td>3600</td>
</tr>
<tr>
<td>25 FB</td>
<td>9000</td>
</tr>
<tr>
<td>40</td>
<td>9000</td>
</tr>
<tr>
<td>40 FB</td>
<td>14000</td>
</tr>
<tr>
<td>50</td>
<td>14000</td>
</tr>
<tr>
<td>50 FB</td>
<td>36000</td>
</tr>
<tr>
<td>80</td>
<td>36000</td>
</tr>
<tr>
<td>100</td>
<td>60000</td>
</tr>
<tr>
<td>150</td>
<td>130 t/h</td>
</tr>
<tr>
<td>250</td>
<td>360 t/h</td>
</tr>
<tr>
<td>350</td>
<td>650 t/h</td>
</tr>
</tbody>
</table>
4.1.3 Output current span

| Current output 1 to n | 4 to 20 mA NAMUR |

4.1.4 Pulse value

For detailed information about the pulse value for measuring devices for custody transfer, see the Special Documentation for the device → 7

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>On-value for liquid [kg/p]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.001</td>
</tr>
<tr>
<td>2</td>
<td>0.01</td>
</tr>
<tr>
<td>4</td>
<td>0.01</td>
</tr>
<tr>
<td>8</td>
<td>0.1</td>
</tr>
<tr>
<td>15</td>
<td>0.1</td>
</tr>
<tr>
<td>15 FB</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>25 FB</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>40 FB</td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>50 FB</td>
<td>10</td>
</tr>
<tr>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td>250</td>
<td>100</td>
</tr>
<tr>
<td>350</td>
<td>100</td>
</tr>
</tbody>
</table>

4.1.5 On value low flow cut off

The switch-on point depends on the type of medium and the nominal diameter.

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>On-value for liquid [kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>1.8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>15 FB</td>
<td>72</td>
</tr>
<tr>
<td>25</td>
<td>72</td>
</tr>
<tr>
<td>25 FB</td>
<td>180</td>
</tr>
<tr>
<td>40</td>
<td>180</td>
</tr>
<tr>
<td>40 FB</td>
<td>300</td>
</tr>
<tr>
<td>50</td>
<td>300</td>
</tr>
<tr>
<td>50 FB</td>
<td>720</td>
</tr>
</tbody>
</table>
Country-specific factory settings

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>On-value for liquid [kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>720</td>
</tr>
<tr>
<td>100</td>
<td>1200</td>
</tr>
<tr>
<td>150</td>
<td>2.6 t/h</td>
</tr>
<tr>
<td>250</td>
<td>7.2 t/h</td>
</tr>
<tr>
<td>350</td>
<td>13 t/h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>Switch-on value for gas [kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>0.45</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>6.5</td>
</tr>
<tr>
<td>15 FB</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>25 FB</td>
<td>45</td>
</tr>
<tr>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>40 FB</td>
<td>75</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>50 FB</td>
<td>180</td>
</tr>
<tr>
<td>80</td>
<td>180</td>
</tr>
<tr>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>150</td>
<td>650</td>
</tr>
<tr>
<td>250</td>
<td>1.8 t/h</td>
</tr>
<tr>
<td>350</td>
<td>3.25 t/h</td>
</tr>
</tbody>
</table>

4.2 US units

Only valid for USA and Canada.

4.2.1 System units

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>lb</td>
</tr>
<tr>
<td>Mass flow</td>
<td>lb/min</td>
</tr>
<tr>
<td>Volume</td>
<td>gal (us)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>gal/min (us)</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Sft³</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Sft³/min</td>
</tr>
<tr>
<td>Density</td>
<td>lb/ft³</td>
</tr>
<tr>
<td>Reference density</td>
<td>lb/Sft³</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F</td>
</tr>
<tr>
<td>Pressure</td>
<td>psi a</td>
</tr>
</tbody>
</table>
4.2.2 Full scale values

The factory settings apply to the following parameters:
- 20 mA value (full scale value of the current output)
- 100% bar graph value 1

For detailed information about the full scale value for measuring devices for custody transfer, see the Special Documentation for the device → 7

<table>
<thead>
<tr>
<th>Nominal diameter</th>
<th>[lb/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹/₂₄</td>
<td>0.15</td>
</tr>
<tr>
<td>¹/₁₂</td>
<td>0.75</td>
</tr>
<tr>
<td>¹/₈</td>
<td>3.3</td>
</tr>
<tr>
<td>³/₈</td>
<td>15</td>
</tr>
<tr>
<td>½</td>
<td>50</td>
</tr>
<tr>
<td>½ FB</td>
<td>130</td>
</tr>
<tr>
<td>1</td>
<td>130</td>
</tr>
<tr>
<td>1 FB</td>
<td>330</td>
</tr>
<tr>
<td>1½</td>
<td>330</td>
</tr>
<tr>
<td>1½ FB</td>
<td>550</td>
</tr>
<tr>
<td>2</td>
<td>550</td>
</tr>
<tr>
<td>2 FB</td>
<td>1300</td>
</tr>
<tr>
<td>3</td>
<td>1300</td>
</tr>
<tr>
<td>4</td>
<td>2200</td>
</tr>
<tr>
<td>6</td>
<td>4800</td>
</tr>
<tr>
<td>10</td>
<td>13000</td>
</tr>
<tr>
<td>¹/₄</td>
<td>23500</td>
</tr>
</tbody>
</table>

4.2.3 Output current span

Current output 1 to n 4 to 20 mA US

4.2.4 Pulse value

For detailed information about the pulse value for measuring devices for custody transfer, see the Special Documentation for the device → 7

<table>
<thead>
<tr>
<th>Nominal diameter</th>
<th>[lb/p]</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹/₂₄</td>
<td>0.002</td>
</tr>
<tr>
<td>¹/₁₂</td>
<td>0.02</td>
</tr>
<tr>
<td>¹/₈</td>
<td>0.02</td>
</tr>
<tr>
<td>³/₈</td>
<td>0.2</td>
</tr>
<tr>
<td>½</td>
<td>0.2</td>
</tr>
<tr>
<td>½ FB</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1 FB</td>
<td>2</td>
</tr>
<tr>
<td>1½</td>
<td>2</td>
</tr>
</tbody>
</table>
Country-specific factory settings

Proline Promass 300 HART

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>[lb/p]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1½ FB</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>2 FB</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
</tr>
<tr>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>14</td>
<td>200</td>
</tr>
</tbody>
</table>

4.2.5 On value low flow cut off

The switch-on point depends on the type of medium and the nominal diameter.

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>On-value for liquid [lb/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/24</td>
<td>0.003</td>
</tr>
<tr>
<td>1/12</td>
<td>0.015</td>
</tr>
<tr>
<td>1/8</td>
<td>0.066</td>
</tr>
<tr>
<td>3/8</td>
<td>0.3</td>
</tr>
<tr>
<td>½</td>
<td>1</td>
</tr>
<tr>
<td>1/2 FB</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>2.6</td>
</tr>
<tr>
<td>1 FB</td>
<td>6.6</td>
</tr>
<tr>
<td>1½</td>
<td>6.6</td>
</tr>
<tr>
<td>1½ FB</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>2 FB</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>95</td>
</tr>
<tr>
<td>10</td>
<td>260</td>
</tr>
<tr>
<td>14</td>
<td>470</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>Switch-on value for gas [lb/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/24</td>
<td>0.001</td>
</tr>
<tr>
<td>1/12</td>
<td>0.004</td>
</tr>
<tr>
<td>1/8</td>
<td>0.016</td>
</tr>
<tr>
<td>3/8</td>
<td>0.075</td>
</tr>
<tr>
<td>½</td>
<td>0.25</td>
</tr>
<tr>
<td>1/2 FB</td>
<td>0.65</td>
</tr>
<tr>
<td>1</td>
<td>0.65</td>
</tr>
<tr>
<td>1 FB</td>
<td>1.65</td>
</tr>
</tbody>
</table>
Proline Promass 300 HART

Country-specific factory settings

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>Switch-on value for gas [lb/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1½</td>
<td>1.65</td>
</tr>
<tr>
<td>1½ FB</td>
<td>2.75</td>
</tr>
<tr>
<td>2</td>
<td>2.75</td>
</tr>
<tr>
<td>2 FB</td>
<td>6.5</td>
</tr>
<tr>
<td>3</td>
<td>6.5</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>23.75</td>
</tr>
<tr>
<td>10</td>
<td>65</td>
</tr>
<tr>
<td>14</td>
<td>117.5</td>
</tr>
</tbody>
</table>
5 Explanation of abbreviated units

5.1 SI units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>g/cm³, g/m³</td>
<td>Gram/volume unit</td>
</tr>
<tr>
<td></td>
<td>kg/dm³, kg/l, kg/m³</td>
<td>Kilogram/volume unit</td>
</tr>
<tr>
<td></td>
<td>SD4°C, SD15°C, SD20°C</td>
<td>Specific density: The specific density is the ratio of the density of the fluid to the density of water at a water temperature of 4 °C (39 °F), 15 °C (59 °F), 20 °C (68 °F).</td>
</tr>
<tr>
<td></td>
<td>SG4°C, SG15°C, SG20°C</td>
<td>Specific gravity: The specific gravity is the ratio of the density of the fluid to the density of water at a water temperature of 4 °C (39 °F), 15 °C (59 °F), 20 °C (68 °F).</td>
</tr>
<tr>
<td>Pressure</td>
<td>Pa a, kPa a, MPa a</td>
<td>Pascal, kilopascal, megapascal (absolute)</td>
</tr>
<tr>
<td></td>
<td>bar</td>
<td>Bar</td>
</tr>
<tr>
<td></td>
<td>Pa g, kPa g, MPa g</td>
<td>Pascal, kilopascal, megapascal (relative/gauge)</td>
</tr>
<tr>
<td></td>
<td>bar g</td>
<td>Bar (relative/gauge)</td>
</tr>
<tr>
<td>Mass</td>
<td>g, kg, t</td>
<td>Gram, kilogram, metric ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>g/s, g/min, g/h, g/d</td>
<td>Gram/time unit</td>
</tr>
<tr>
<td></td>
<td>kg/s, kg/min, kg/h, kg/d</td>
<td>Kilogram/time unit</td>
</tr>
<tr>
<td></td>
<td>t/s, t/min, t/h, t/d</td>
<td>Metric ton/time unit</td>
</tr>
<tr>
<td>Reference density</td>
<td>kg/Nm³, kg/l, g/Scm³, kg/Sm³</td>
<td>Kilogram, gram/standard volume unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Ni, Nm³, Sm³</td>
<td>Normal liter, normal cubic meter, standard cubic meter</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Ni/s, Ni/min, Ni/h, Ni/d</td>
<td>Normal liter/time unit</td>
</tr>
<tr>
<td></td>
<td>Nm³/s, Nm³/min, Nm³/h, Nm³/d</td>
<td>Normal cubic meter/time unit</td>
</tr>
<tr>
<td></td>
<td>Sm³/s, Sm³/min, Sm³/h, Sm³/d</td>
<td>Standard cubic meter/time unit</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C, K</td>
<td>Celsius, Kelvin</td>
</tr>
<tr>
<td>Volume</td>
<td>cm³, dm³, m³</td>
<td>Cubic centimeter, cubic decimeter, cubic meter</td>
</tr>
<tr>
<td></td>
<td>ml, l, hl, MI Mega</td>
<td>Milliliter, liter, hectoliter, megaliter</td>
</tr>
<tr>
<td>Volume flow</td>
<td>cm³/s, cm³/min, cm³/h, cm³/d</td>
<td>Cubic centimeter/time unit</td>
</tr>
<tr>
<td></td>
<td>dm³/s, dm³/min, dm³/h, dm³/d</td>
<td>Cubic decimeter/time unit</td>
</tr>
<tr>
<td></td>
<td>m³/s, m³/min, m³/h, m³/d</td>
<td>Cubic meter/time unit</td>
</tr>
<tr>
<td></td>
<td>ml/s, ml/min, ml/h, ml/d</td>
<td>Milliliter/time unit</td>
</tr>
<tr>
<td></td>
<td>l/s, l/min, l/h, l/d</td>
<td>Liter/time unit</td>
</tr>
<tr>
<td></td>
<td>hl/s, hl/min, hl/h, hl/d</td>
<td>Hectoliter/time unit</td>
</tr>
<tr>
<td></td>
<td>MI/s, MI/min, MI/h, MI/d</td>
<td>Megaliter/time unit</td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
</tbody>
</table>

5.2 US units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>lb/ft², lb/gal (us)</td>
<td>Pound/cubic foot, pound/gallon</td>
</tr>
<tr>
<td></td>
<td>lb/bbl (us:liq.), lb/bbl (us:beer), lb/bbl (us:oil), lb/bbl (us:tank)</td>
<td>Pound/volume unit</td>
</tr>
<tr>
<td>Process variable</td>
<td>Units</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Pressure</td>
<td>psi a</td>
<td>Pounds per square inch (absolute)</td>
</tr>
<tr>
<td></td>
<td>psi g</td>
<td>Pounds per square inch (gauge)</td>
</tr>
<tr>
<td>Mass</td>
<td>oz, lb, STon</td>
<td>Ounce, pound, standard ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>oz/s, oz/min, oz/h, oz/d</td>
<td>Ounce/time unit</td>
</tr>
<tr>
<td></td>
<td>lb/s, lb/min, lb/h, lb/d</td>
<td>Pound/time unit</td>
</tr>
<tr>
<td></td>
<td>STon/s, STon/min, STon/h, STon/d</td>
<td>Standard ton/time unit</td>
</tr>
<tr>
<td>Reference density</td>
<td>lb/ft³</td>
<td>Weight unit/standard volume unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>ft³, Sgal (us), Sbbl (us;liq.)</td>
<td>Standard cubic foot, standard gallon, standard barrel</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>ft³/s, ft³/min, ft³/h, ft³/d</td>
<td>Standard cubic foot/time unit</td>
</tr>
<tr>
<td></td>
<td>Sgal/s (us), Sgal/min (us), Sgal/h (us), Sgal/d (us)</td>
<td>Standard gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Sbbl/s (us;liq.), Sbbl/min (us;liq.), Sbbl/h (us;liq.), Sbbl/d (us;liq.)</td>
<td>Barrel/time unit (normal liquids)</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F, °R</td>
<td>Fahrenheit, Rankine</td>
</tr>
<tr>
<td>Volume</td>
<td>af</td>
<td>Acre foot</td>
</tr>
<tr>
<td></td>
<td>ft³</td>
<td>Cubic foot</td>
</tr>
<tr>
<td></td>
<td>fl oz (us), gal (us), kgal (us), Mgal (us)</td>
<td>Fluid ounce, gallon, kilogallon, million gallon</td>
</tr>
<tr>
<td></td>
<td>bbl (us;liq.), bbl (us;beer), bbl (us;oil), bbl (us;tank)</td>
<td>Barrel (normal liquids), barrel (beer), barrel (petrochemicals), barrel (filling tanks)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>af/s, af/min, af/h, af/d</td>
<td>Acre foot/time unit</td>
</tr>
<tr>
<td></td>
<td>ft³/s, ft³/min, ft³/h, ft³/d</td>
<td>Cubic foot/time unit</td>
</tr>
<tr>
<td></td>
<td>fl oz/s (us), fl oz/min (us), fl oz/h (us), fl oz/d (us)</td>
<td>Fluid ounce/time unit</td>
</tr>
<tr>
<td></td>
<td>gal/s (us), gal/min (us), gal/h (us), gal/d (us)</td>
<td>Gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>kgal/s (us), kgal/min (us), kgal/h (us), kgal/d (us)</td>
<td>Kilogallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Mgal/s (us), Mgal/min (us), Mgal/h (us), Mgal/d (us)</td>
<td>Million gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;liq.), bbl/min (us;liq.), bbl/h (us;liq.), bbl/d (us;liq.)</td>
<td>Barrel/time unit (normal liquids) Normal liquids: 31.5 gal/bbl</td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;beer), bbl/min (us;beer), bbl/h (us;beer), bbl/d (us;beer)</td>
<td>Barrel/time unit (beer) Beer: 31.0 gal/bbl</td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;oil), bbl/min (us;oil), bbl/h (us;oil), bbl/d (us;oil)</td>
<td>Barrel/time unit (petrochemicals) Petrochemicals: 42.0 gal/bbl</td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;tank), bbl/min (us;tank), bbl/h (us;tank), bbl/d (us;tank)</td>
<td>Barrel/time unit (filling tank) Filling tanks: 55.0 gal/bbl</td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
<tr>
<td></td>
<td>am, pm</td>
<td>Ante meridiem (before midday), post meridiem (after midday)</td>
</tr>
</tbody>
</table>
5.3 Imperial units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>lb/gal (imp), lb/bbl (imp;beer), lb/bbl (imp;oil)</td>
<td>Pound/volume unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Sgal (imp)</td>
<td>Standard gallon</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Sgal/s (imp), Sgal/min (imp), Sgal/h (imp), Sgal/d (imp)</td>
<td>Standard gallon/time unit</td>
</tr>
<tr>
<td>Volume</td>
<td>gal (imp), Mgal (imp)</td>
<td>Gallon, mega gallon</td>
</tr>
<tr>
<td></td>
<td>bbl (imp;beer), bbl (imp;oil)</td>
<td>Barrel (beer), barrel (petrochemicals)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>gal/s (imp), gal/min (imp), gal/h (imp), gal/d (imp)</td>
<td>Gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Mgal/s (imp), Mgal/min (imp), Mgal/h (imp), Mgal/d (imp)</td>
<td>Mega gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>bbl/s (imp;beer), bbl/min (imp;beer), bbl/h (imp;beer), bbl/d (imp;beer)</td>
<td>Barrel /time unit (beer)</td>
</tr>
<tr>
<td></td>
<td>Beer: 36.0 gal/bbl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bbl/s (imp;oil), bbl/min (imp;oil), bbl/h (imp;oil), bbl/d (imp;oil)</td>
<td>Barrel/time unit (petrochemicals)</td>
</tr>
<tr>
<td></td>
<td>Petrochemicals: 34.97 gal/bbl</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
<tr>
<td></td>
<td>am, pm</td>
<td>Ante meridiem (before midday), post meridiem (after midday)</td>
</tr>
</tbody>
</table>
Index

0 ... 9
0/4 mA value (Parameter) 103, 111
0% bargraph value 1 (Parameter) 19
0% bargraph value 3 (Parameter) 23
2.4 GHz WLAN channel (Parameter) 188
20 mA value (Parameter) 104, 113
100% bargraph value 1 (Parameter) 20
100% bargraph value 3 (Parameter) 23

A
Access status (Parameter) 13
Activate SW option (Parameter) 44
Active level (Parameter) 107
Actual diagnostics (Parameter) 205
Actual relay state (Parameter) 154
Administration (Submenu) 41
Alarm delay (Parameter) 32
Application (Submenu) 197
Apply changes (Parameter) 189
Apply I/O configuration (Parameter) 101
Assign behavior of diagnostic no. 046 (Parameter) ... 34
Assign behavior of diagnostic no. 140 (Parameter) ... 35
Assign behavior of diagnostic no. 144 (Parameter) ... 35
Assign behavior of diagnostic no. 374 (Parameter) ... 35
Assign behavior of diagnostic no. 441 (Parameter) ... 36
Assign behavior of diagnostic no. 442 (Parameter) ... 36
Assign behavior of diagnostic no. 443 (Parameter) ... 36
Assign behavior of diagnostic no. 444 (Parameter) ... 37
Assign behavior of diagnostic no. 543 (Parameter) ... 37
Assign behavior of diagnostic no. 830 (Parameter) ... 37
Assign behavior of diagnostic no. 831 (Parameter) ... 38
Assign behavior of diagnostic no. 832 (Parameter) ... 38
Assign behavior of diagnostic no. 833 (Parameter) ... 39
Assign behavior of diagnostic no. 834 (Parameter) ... 39
Assign behavior of diagnostic no. 835 (Parameter) ... 39
Assign behavior of diagnostic no. 862 (Parameter) ... 40
Assign behavior of diagnostic no. 912 (Parameter) ... 40
Assign behavior of diagnostic no. 913 (Parameter) ... 40
Assign behavior of diagnostic no. 943 (Parameter) ... 41
Assign behavior of diagnostic no. 944 (Parameter) ... 41
Assign behavior of diagnostic no. 948 (Parameter) ... 41
Assign channel 1 (Parameter) 233
Assign channel 2 (Parameter) 234
Assign channel 3 (Parameter) 234
Assign channel 4 (Parameter) 235
Assign current output 1 to n (Parameter) 109
Assign diagnostic behavior (Parameter) 142, 151
Assign flow direction check (Parameter) 145, 150
Assign frequency output (Parameter) 131
Assign limit (Parameter) 143, 150
Assign process variable (Parameter) 78, 81, 199
Assign pulse output 1 (Parameter) 156
Assign pulse output 1 to n (Parameter) 127
Assign PV (Parameter) 178
Assign QV (Parameter) 181
Assign simulation process variable (Parameter) ... 242
Assign SSID name (Parameter) 188
Assign status (Parameter) 146, 151
Assign status input (Parameter) 106
Assign SV (Parameter) 179
Assign TV (Parameter) 180

B
Backlight (Parameter) 28
Backup state (Parameter) 30
Burst command (Parameter) 162
Burst command 1 to n (Parameter) 169
Burst configuration 1 to n (Submenu) 168
Burst mode 1 to n (Parameter) 169
Burst trigger level (Parameter) 173
Burst trigger mode (Parameter) 173
Burst variable 0 (Parameter) 170
Burst variable 1 (Parameter) 171
Burst variable 2 (Parameter) 171
Burst variable 3 (Parameter) 171
Burst variable 4 (Parameter) 172
Burst variable 5 (Parameter) 172
Burst variable 6 (Parameter) 172
Burst variable 7 (Parameter) 172

C
C0 to 5 (Parameter) 99
Calculated values (Submenu) 88
Calibration (Submenu) 98
Calibration factor (Parameter) 98
Capture mode (Parameter) 161
Carrier mass flow (Parameter) 53
Carrier pipe temperature (Submenu) 224
Clear logging data (Parameter) 236
Communication (Submenu) 159
Comparison result (Parameter) 31
Concentration (Parameter) 52
Concentration (Submenu) 203
Configuration (Submenu) 160, 166
Configuration backup (Submenu) 29
Configuration counter (Parameter) 217
Configuration management (Parameter) 29
Confirm access code (Parameter) 43
Contrast display (Parameter) 28
Control Totalizer 1 to n (Parameter) 201
Conversion code (Parameter) 101
Corrected volume flow (Parameter) 49
Corrected volume flow calculation (Parameter) ... 88
Corrected volume flow calculation (Submenu) ... 88
Corrected volume flow factor (Parameter) ... 96
Corrected volume flow offset (Parameter) 96
Corrected volume flow unit (Parameter) 64
Corrected volume unit (Parameter) 65
Current input 1 to n (Submenu) 55, 102
Current input 1 to n simulation (Parameter) ... 244
Current output 1 to n (Submenu) 108
Current output 1 to n simulation (Parameter) ... 245
Current span (Parameter) 103, 110

Endress+Hauser
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign status input</td>
</tr>
<tr>
<td>Status input 1 to n (1352–1 to n) 106</td>
</tr>
<tr>
<td>Assign SV (0235)</td>
</tr>
<tr>
<td>Assign TV (0236)</td>
</tr>
<tr>
<td>Backlight (0111)</td>
</tr>
<tr>
<td>Backup state (2759)</td>
</tr>
<tr>
<td>Burst command (7006)</td>
</tr>
<tr>
<td>Burst command 1 to n (2031–1 to n)</td>
</tr>
<tr>
<td>Burst mode 1 to n (2032–1 to n)</td>
</tr>
<tr>
<td>Burst trigger level</td>
</tr>
<tr>
<td>Burst configuration 1 to n (2043–1 to n) ... 173</td>
</tr>
<tr>
<td>Burst trigger mode</td>
</tr>
<tr>
<td>Burst configuration 1 to n (2044–1 to n) ... 173</td>
</tr>
<tr>
<td>Burst variable 0</td>
</tr>
<tr>
<td>Burst configuration 1 to n (2033)</td>
</tr>
<tr>
<td>Burst variable 1</td>
</tr>
<tr>
<td>Burst configuration 1 to n (2034)</td>
</tr>
<tr>
<td>Burst variable 2</td>
</tr>
<tr>
<td>Burst configuration 1 to n (2035)</td>
</tr>
<tr>
<td>Burst variable 3</td>
</tr>
<tr>
<td>Burst configuration 1 to n (2036)</td>
</tr>
<tr>
<td>Burst variable 4</td>
</tr>
<tr>
<td>Burst configuration 1 to n (2037)</td>
</tr>
<tr>
<td>Burst variable 5</td>
</tr>
<tr>
<td>Burst configuration 1 to n (2038)</td>
</tr>
<tr>
<td>Burst variable 6</td>
</tr>
<tr>
<td>Burst configuration 1 to n (2039)</td>
</tr>
<tr>
<td>Burst variable 7</td>
</tr>
<tr>
<td>Burst configuration 1 to n (2040)</td>
</tr>
<tr>
<td>C0 to 5 (6022)</td>
</tr>
<tr>
<td>Calibration factor (6025)</td>
</tr>
<tr>
<td>Capture mode (7001)</td>
</tr>
<tr>
<td>Carrier mass flow (1865)</td>
</tr>
<tr>
<td>Clear logging data (0855)</td>
</tr>
<tr>
<td>Comparison result (2760)</td>
</tr>
<tr>
<td>Concentration (1887)</td>
</tr>
<tr>
<td>Configuration counter (0233)</td>
</tr>
<tr>
<td>Configuration management (2758)</td>
</tr>
<tr>
<td>Contrast display (0105)</td>
</tr>
<tr>
<td>Control Totalizer 1 to n (0912–1 to n) ... 201</td>
</tr>
<tr>
<td>Conversion code (2762)</td>
</tr>
<tr>
<td>Corrected volume flow (1851)</td>
</tr>
<tr>
<td>Corrected volume flow calculation (1812) ... 88</td>
</tr>
<tr>
<td>Corrected volume flow factor (1867)</td>
</tr>
<tr>
<td>Corrected volume flow offset (1866)</td>
</tr>
<tr>
<td>Corrected volume flow unit (0558)</td>
</tr>
<tr>
<td>Corrected volume unit (0575)</td>
</tr>
<tr>
<td>Current input 1 to n simulation (1608–1 to n) ... 244</td>
</tr>
<tr>
<td>Current output 1 to n simulation (0354–1 to n) ... 245</td>
</tr>
<tr>
<td>Current span</td>
</tr>
<tr>
<td>Current input 1 to n (1605–1 to n)</td>
</tr>
<tr>
<td>Current output 1 to n (0353–1 to n)</td>
</tr>
<tr>
<td>Damping output 1 to n (0363–1 to n)</td>
</tr>
<tr>
<td>Damping output 1 to n (0477–1 to n)</td>
</tr>
<tr>
<td>Data logging (0860)</td>
</tr>
<tr>
<td>Data logging control (0857)</td>
</tr>
<tr>
<td>Data logging status (0858)</td>
</tr>
<tr>
<td>Date/time format (2812)</td>
</tr>
<tr>
<td>Decimal places 1 (0095)</td>
</tr>
<tr>
<td>Decimal places 2 (0117)</td>
</tr>
<tr>
<td>Decimal places 3 (0118)</td>
</tr>
<tr>
<td>Decimal places 4 (0119)</td>
</tr>
<tr>
<td>Default gateway (7210)</td>
</tr>
<tr>
<td>Density (1850)</td>
</tr>
<tr>
<td>Density damping (1803)</td>
</tr>
<tr>
<td>Density factor (1849)</td>
</tr>
<tr>
<td>Density offset (1848)</td>
</tr>
<tr>
<td>Density unit (0555)</td>
</tr>
<tr>
<td>Device alarm simulation (0654)</td>
</tr>
<tr>
<td>Device ID (0221)</td>
</tr>
<tr>
<td>Device ID (7007)</td>
</tr>
<tr>
<td>Device name (0020)</td>
</tr>
<tr>
<td>Device reset (0000)</td>
</tr>
<tr>
<td>Device revision (0204)</td>
</tr>
<tr>
<td>Device tag (0011)</td>
</tr>
<tr>
<td>Device tag (0215)</td>
</tr>
<tr>
<td>Device type (0209)</td>
</tr>
<tr>
<td>Device type (7008)</td>
</tr>
<tr>
<td>Diagnostic event category (0738)</td>
</tr>
<tr>
<td>Diagnostic event simulation (0737)</td>
</tr>
<tr>
<td>Diagnostics 1 (0692)</td>
</tr>
<tr>
<td>Diagnostics 2 (0693)</td>
</tr>
<tr>
<td>Diagnostics 3 (0694)</td>
</tr>
<tr>
<td>Diagnostics 4 (0695)</td>
</tr>
<tr>
<td>Diagnostics 5 (0696)</td>
</tr>
<tr>
<td>Direct access (0106)</td>
</tr>
<tr>
<td>Display damping (0094)</td>
</tr>
<tr>
<td>Display interval (0096)</td>
</tr>
<tr>
<td>Display language (0104)</td>
</tr>
<tr>
<td>Dynamic viscosity (1854)</td>
</tr>
<tr>
<td>ENP version (0012)</td>
</tr>
<tr>
<td>Enter access code (0003)</td>
</tr>
<tr>
<td>Entire logging duration (0861)</td>
</tr>
<tr>
<td>Event category 046 (0246)</td>
</tr>
<tr>
<td>Event category 140 (0244)</td>
</tr>
<tr>
<td>Event category 374 (0245)</td>
</tr>
<tr>
<td>Event category 441 (0210)</td>
</tr>
<tr>
<td>Event category 442 (0230)</td>
</tr>
<tr>
<td>Event category 443 (0231)</td>
</tr>
<tr>
<td>Event category 444 (0211)</td>
</tr>
<tr>
<td>Event category 543 (0276)</td>
</tr>
<tr>
<td>Event category 830 (0240)</td>
</tr>
<tr>
<td>Event category 831 (0241)</td>
</tr>
<tr>
<td>Event category 832 (0218)</td>
</tr>
<tr>
<td>Event category 833 (0225)</td>
</tr>
<tr>
<td>Event category 834 (0227)</td>
</tr>
<tr>
<td>Event category 835 (0229)</td>
</tr>
<tr>
<td>Event category 862 (0214)</td>
</tr>
<tr>
<td>Event category 912 (0243)</td>
</tr>
<tr>
<td>Event category 913 (0242)</td>
</tr>
<tr>
<td>Event category 948 (0275)</td>
</tr>
<tr>
<td>Extended order code 1 (0023)</td>
</tr>
<tr>
<td>Extended order code 2 (0021)</td>
</tr>
<tr>
<td>Extended order code 3 (0022)</td>
</tr>
<tr>
<td>External pressure (6209)</td>
</tr>
<tr>
<td>External reference density (6198)</td>
</tr>
<tr>
<td>External temperature (6080)</td>
</tr>
<tr>
<td>Function</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>Failure current</td>
</tr>
<tr>
<td>Current output 1 to n (0352–1 to n)</td>
</tr>
<tr>
<td>Failure frequency</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0474–1 to n)</td>
</tr>
<tr>
<td>Failure mode</td>
</tr>
<tr>
<td>Current input 1 to n (1601–1 to n)</td>
</tr>
<tr>
<td>Current output 1 to n (0364–1 to n)</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0451–1 to n)</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0480–1 to n)</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0486–1 to n)</td>
</tr>
<tr>
<td>Relay output 1 to n (0811–1 to n)</td>
</tr>
<tr>
<td>Totalizer 1 to n (0901–1 to n)</td>
</tr>
<tr>
<td>Failure mode (0985)</td>
</tr>
<tr>
<td>Failure mode (7011)</td>
</tr>
<tr>
<td>Failure value</td>
</tr>
<tr>
<td>Current input 1 to n (1602–1 to n)</td>
</tr>
<tr>
<td>Failure value (7012)</td>
</tr>
<tr>
<td>Fieldbus writing access (0273)</td>
</tr>
<tr>
<td>Filter options</td>
</tr>
<tr>
<td>Filter options (0705)</td>
</tr>
<tr>
<td>Firmware version (0010)</td>
</tr>
<tr>
<td>Fixed current</td>
</tr>
<tr>
<td>Current output 1 to n (0365–1 to n)</td>
</tr>
<tr>
<td>Fixed reference density (1814)</td>
</tr>
<tr>
<td>Flow damping (1802)</td>
</tr>
<tr>
<td>Flow override (1839)</td>
</tr>
<tr>
<td>Format display (0098)</td>
</tr>
<tr>
<td>Frequency output simulation 1 to n (0472–1 to n)</td>
</tr>
<tr>
<td>Frequency value 1 to n (0473–1 to n)</td>
</tr>
<tr>
<td>Hardware revision (0206)</td>
</tr>
<tr>
<td>HART address (0219)</td>
</tr>
<tr>
<td>HART date code (0202)</td>
</tr>
<tr>
<td>HART descriptor (0212)</td>
</tr>
<tr>
<td>HART message (0216)</td>
</tr>
<tr>
<td>HART revision (0205)</td>
</tr>
<tr>
<td>HART short tag (0220)</td>
</tr>
<tr>
<td>Header (0097)</td>
</tr>
<tr>
<td>Header text (0112)</td>
</tr>
<tr>
<td>High value partial filled pipe detection (1858)</td>
</tr>
<tr>
<td>I/O module 1 terminal numbers (3902–1)</td>
</tr>
<tr>
<td>I/O module 1 to n information (3906–1 to n)</td>
</tr>
<tr>
<td>I/O module 1 to n terminal numbers (3902–1 to n)</td>
</tr>
<tr>
<td>I/O module 1 to n type (3901–1 to n)</td>
</tr>
<tr>
<td>I/O module 2 terminal numbers (3902–2)</td>
</tr>
<tr>
<td>I/O module 3 terminal numbers (3902–3)</td>
</tr>
<tr>
<td>I/O module 4 terminal numbers (3902–4)</td>
</tr>
<tr>
<td>Input signal level (1356)</td>
</tr>
<tr>
<td>Installation angle pitch (6236)</td>
</tr>
<tr>
<td>Installation angle roll (6282)</td>
</tr>
<tr>
<td>Installation direction (1809)</td>
</tr>
<tr>
<td>Invert output signal</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0470–1 to n)</td>
</tr>
<tr>
<td>Invert output signal (0993)</td>
</tr>
<tr>
<td>IP address (7209)</td>
</tr>
<tr>
<td>Kinematic viscosity (1857)</td>
</tr>
<tr>
<td>Last backup (2757)</td>
</tr>
<tr>
<td>Linear expansion coefficient (1817)</td>
</tr>
<tr>
<td>Locking status (0004)</td>
</tr>
<tr>
<td>Logging delay (0859)</td>
</tr>
<tr>
<td>Logging interval (0856)</td>
</tr>
<tr>
<td>Login page (7273)</td>
</tr>
<tr>
<td>Low value partial filled pipe detection (1861)</td>
</tr>
<tr>
<td>MAC address (7214)</td>
</tr>
<tr>
<td>Manufacturer ID (0259)</td>
</tr>
<tr>
<td>Manufacturer ID (7009)</td>
</tr>
<tr>
<td>Mass flow (1838)</td>
</tr>
<tr>
<td>Mass flow factor (1832)</td>
</tr>
<tr>
<td>Mass flow offset (1831)</td>
</tr>
<tr>
<td>Mass flow unit (0554)</td>
</tr>
<tr>
<td>Mass unit (0574)</td>
</tr>
<tr>
<td>Master terminal number (0981)</td>
</tr>
<tr>
<td>Max. switch cycles number</td>
</tr>
<tr>
<td>Relay output 1 to n (0817–1 to n)</td>
</tr>
<tr>
<td>Max. update period</td>
</tr>
<tr>
<td>Burst configuration 1 to n (2041–1 to n)</td>
</tr>
<tr>
<td>Maximum damping partial filled pipe det. (6040)</td>
</tr>
<tr>
<td>Maximum frequency value</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0454–1 to n)</td>
</tr>
<tr>
<td>Maximum value (6009)</td>
</tr>
<tr>
<td>Maximum value (6014)</td>
</tr>
<tr>
<td>Maximum value (6029)</td>
</tr>
<tr>
<td>Maximum value (6051)</td>
</tr>
<tr>
<td>Maximum value (6068)</td>
</tr>
<tr>
<td>Maximum value (6070)</td>
</tr>
<tr>
<td>Maximum value (6108)</td>
</tr>
<tr>
<td>Maximum value (6119)</td>
</tr>
<tr>
<td>Maximum value (6121)</td>
</tr>
<tr>
<td>Maximum value (6283)</td>
</tr>
<tr>
<td>Measured current 1 to n (0366–1 to n)</td>
</tr>
<tr>
<td>Measured current 1 to n (1604–1 to n)</td>
</tr>
<tr>
<td>Measured values 1 to n (1603–1 to n)</td>
</tr>
<tr>
<td>Measuring mode</td>
</tr>
<tr>
<td>Current output 1 to n (0351–1 to n)</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0457–1 to n)</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0479–1 to n)</td>
</tr>
<tr>
<td>Measuring mode (0984)</td>
</tr>
<tr>
<td>Measuring value at maximum frequency</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0475–1 to n)</td>
</tr>
<tr>
<td>Measuring value at minimum frequency</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0475–1 to n)</td>
</tr>
<tr>
<td>Min. update period</td>
</tr>
<tr>
<td>Burst configuration 1 to n (2042–1 to n)</td>
</tr>
<tr>
<td>Minimum frequency value</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (0453–1 to n)</td>
</tr>
<tr>
<td>Minimum value (6008)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>Minimum value (6010)</td>
</tr>
<tr>
<td>Minimum value (6015)</td>
</tr>
<tr>
<td>Minimum value (6030)</td>
</tr>
<tr>
<td>Minimum value (6052)</td>
</tr>
<tr>
<td>Minimum value (6069)</td>
</tr>
<tr>
<td>Minimum value (6071)</td>
</tr>
<tr>
<td>Minimum value (6109)</td>
</tr>
<tr>
<td>Minimum value (6120)</td>
</tr>
<tr>
<td>Minimum value (6122)</td>
</tr>
<tr>
<td>Minimum value (6284)</td>
</tr>
<tr>
<td>No. of preambles (0217)</td>
</tr>
<tr>
<td>Nominal diameter (2807)</td>
</tr>
<tr>
<td>Off value low flow cutoff (1804)</td>
</tr>
<tr>
<td>On value low flow cutoff (1805)</td>
</tr>
<tr>
<td>Operating mode Pulse/frequency-switch output 1 to n (0469–1 to n)</td>
</tr>
<tr>
<td>Operating time (0652)</td>
</tr>
<tr>
<td>Operating time from restart (0653)</td>
</tr>
<tr>
<td>Order code (0008)</td>
</tr>
<tr>
<td>Output current 1 to n (0361–1 to n)</td>
</tr>
<tr>
<td>Output frequency 1 to n (0471–1 to n)</td>
</tr>
<tr>
<td>Phase shift (0992)</td>
</tr>
<tr>
<td>Pulse/frequency-switch output 1 to n (0452–1 to n)</td>
</tr>
<tr>
<td>Pulse output (0987)</td>
</tr>
<tr>
<td>Pulse output 1 to n (0456–1 to n)</td>
</tr>
<tr>
<td>Pulse output simulation (0988)</td>
</tr>
<tr>
<td>Pulse output simulation 1 to n (0458–1 to n)</td>
</tr>
<tr>
<td>Pulse value (0989)</td>
</tr>
<tr>
<td>Pulse value 1 to n (0459–1 to n)</td>
</tr>
<tr>
<td>Pulse width Pulse/frequency-switch output 1 to n (0452–1 to n)</td>
</tr>
<tr>
<td>Pulse width (0986)</td>
</tr>
<tr>
<td>Quaternary variable (QV) (0203)</td>
</tr>
<tr>
<td>Reference density (1852)</td>
</tr>
<tr>
<td>Reference density factor (1869)</td>
</tr>
<tr>
<td>Reference density offset (1868)</td>
</tr>
<tr>
<td>Reference density unit (0556)</td>
</tr>
<tr>
<td>Reference sound velocity (6147)</td>
</tr>
<tr>
<td>Reference temperature (1816)</td>
</tr>
<tr>
<td>Relay output 1 to n simulation (0802–1 to n)</td>
</tr>
<tr>
<td>Relay output function Relay output 1 to n (0804–1 to n)</td>
</tr>
<tr>
<td>Reset access code (0024)</td>
</tr>
<tr>
<td>Reset all totalizers (2806)</td>
</tr>
<tr>
<td>Reset min/max values (6151)</td>
</tr>
<tr>
<td>Response time Current output 1 to n (0378–1 to n)</td>
</tr>
<tr>
<td>Pulse/frequency-switch output 1 to n (0491–1 to n)</td>
</tr>
<tr>
<td>Response time Part. filled pipe detect. (1859)</td>
</tr>
<tr>
<td>Response time Status input Status input 1 to n (1354–1 to n)</td>
</tr>
<tr>
<td>Secondary variable (SV) (0226)</td>
</tr>
<tr>
<td>Security type (2705)</td>
</tr>
<tr>
<td>Select antenna (2713)</td>
</tr>
<tr>
<td>Select gas type (6074)</td>
</tr>
<tr>
<td>Select medium (6062)</td>
</tr>
<tr>
<td>Separator (0101)</td>
</tr>
<tr>
<td>Serial number (0009)</td>
</tr>
<tr>
<td>Signal mode Current input 1 to n (1610–1 to n)</td>
</tr>
<tr>
<td>Current output 1 to n (0377–1 to n)</td>
</tr>
<tr>
<td>Pulse/frequency-switch output 1 to n (0490–1 to n)</td>
</tr>
<tr>
<td>Signal mode (0991)</td>
</tr>
<tr>
<td>Slave terminal number (0990)</td>
</tr>
<tr>
<td>Slot number (7010)</td>
</tr>
<tr>
<td>Software option overview (0015)</td>
</tr>
<tr>
<td>Software revision l/O module 1 (0072)</td>
</tr>
<tr>
<td>l/O module 2 (0072)</td>
</tr>
<tr>
<td>l/O module 3 (0072)</td>
</tr>
<tr>
<td>l/O module 4 (0072)</td>
</tr>
<tr>
<td>Software revision (0072)</td>
</tr>
<tr>
<td>Software revision (0224)</td>
</tr>
<tr>
<td>Square expansion coefficient (1818)</td>
</tr>
<tr>
<td>SSID name (2707)</td>
</tr>
<tr>
<td>Status (7004)</td>
</tr>
<tr>
<td>Status input simulation (1355)</td>
</tr>
<tr>
<td>Subnet mask (7211)</td>
</tr>
<tr>
<td>Switch cycles Relay output 1 to n (0815–1 to n)</td>
</tr>
<tr>
<td>Switch output function Pulse/frequency-switch output 1 to n (0481–1 to n)</td>
</tr>
<tr>
<td>Switch output simulation 1 to n (0462–1 to n)</td>
</tr>
<tr>
<td>Switch status Relay output 1 to n (0801–1 to n)</td>
</tr>
<tr>
<td>Switch status 1 to n (0461–1 to n)</td>
</tr>
<tr>
<td>Switch status 1 to n (0463–1 to n)</td>
</tr>
<tr>
<td>Switch status 1 to n (0803–1 to n)</td>
</tr>
<tr>
<td>Switch-off delay Pulse/frequency-switch output 1 to n (0465–1 to n)</td>
</tr>
<tr>
<td>Pulse/frequency-switch output 1 to n (0464–1 to n)</td>
</tr>
<tr>
<td>Relay output 1 to n (0813–1 to n)</td>
</tr>
<tr>
<td>Switch-off value Pulse/frequency-switch output 1 to n (0467–1 to n)</td>
</tr>
<tr>
<td>Relay output 1 to n (0814–1 to n)</td>
</tr>
<tr>
<td>Switch-on delay Pulse/frequency-switch output 1 to n (0466–1 to n)</td>
</tr>
<tr>
<td>Relay output 1 to n (0809–1 to n)</td>
</tr>
</tbody>
</table>
Index

Relay output 1 to n (0810–1 to n) 153
Target mass flow (1864) 52
Temp. compensated dynamic viscosity (1872) 51
Temp. compensated kinematic viscosity (1863) 51
Temperature (1853) 50
Temperature coefficient sound velocity (6181) 85
Temperature damping (1822) 76
Temperature factor (1871) 98
Temperature mode (6184) 87
Temperature offset (1870) 97
Temperature unit (0557) 67
Terminal number
Current input 1 to n (1611–1 to n) 102
Current output 1 to n (0379–1 to n) 108
Pulse/frequency/switch output 1 to n (0492–1 to n) 124
Relay output 1 to n (0812–1 to n) 149
Status input 1 to n (1358–1 to n) 105
Tertiary variable (TV) (0228) 181
Timeout (7005) 163
Timestamp 205, 206, 208, 209, 210, 211
Totalizer operation mode
Totalizer 1 to n (0908–1 to n) 200
Totalizer overflow 1 to n (0910–1 to n) 54
Totalizer value 1 to n (0911–1 to n) 53
Unit totalizer 1 to n (0915–1 to n) 199
User corrected volume factor (0590) 72
User corrected volume offset (0602) 73
User density factor (0572) 73
User density offset (0571) 74
User density text (0570) 73
User mass factor (0561) 70
User mass offset (0562) 70
User mass text (0560) 70
User pressure factor (0579) 74
User pressure offset (0580) 74
User pressure text (0581) 74
User volume factor (0568) 71
User volume offset (0569) 71
User volume text (0567) 71
Value (7003) 165
Value 1 display (0107) 18
Value 2 display (0108) 21
Value 3 display (0110) 22
Value 4 display (0109) 24
Value current input 1 to n (1609–1 to n) 245
Value current output 1 to n (0355–1 to n) 245
Value per pulse
Pulse/frequency/switch output 1 to n (0455–1 to n) 58, 127
Value per pulse (0983) 156
Value status input
Status input 1 to n (1353–1 to n) 106
Value status input 1 to n (1353–1 to n) 56
Volume flow (1847) 49
Volume flow factor (1846) 95
Volume flow offset (1841) 95
Volume flow unit (0553) 62
Volume unit (0563) 64
Web server functionality (7222) 184
Web server language (7221) 183
WLAN (2702) 186
WLAN IP address (2711) 186
WLAN MAC address (2703) 187
WLAN passphrase (2706) 187
WLAN subnet mask (2709) 186
Zero point (6195) 99
Zero point adjustment control (6196) 93
Direct access (Parameter) 11
Display (Submenu) 14
Display channel 1 (Submenu) 238
Display channel 2 (Submenu) 240
Display channel 3 (Submenu) 240
Display channel 4 (Submenu) 240
Display damping (Parameter) 26
Display interval (Parameter) 25
Display language (Parameter) 15
Display module (Submenu) 221
Document
Explanation of the structure of a parameter description 6
Function 4
Structure 4
Symbols used 6
Target group 4
Using the document 4
Document function 4
Double pulse output (Submenu) 60, 155
Dynamic viscosity (Parameter) 50
E
Electronic temperature (Submenu) 223
ENP version (Parameter) 217
Enter access code (Parameter) 13
Entire logging duration (Parameter) 238
Event category 046 (Parameter) 190
Event category 140 (Parameter) 191
Event category 374 (Parameter) 191
Event category 441 (Parameter) 192
Event category 442 (Parameter) 192
Event category 443 (Parameter) 192
Event category 444 (Parameter) 193
Event category 543 (Parameter) 193
Event category 830 (Parameter) 194
Event category 831 (Parameter) 194
Event category 832 (Parameter) 194
Event category 833 (Parameter) 195
Event category 834 (Parameter) 195
Event category 835 (Parameter) 195
Event category 862 (Parameter) 196
Event category 912 (Parameter) 196
Event category 948 (Parameter) 197
Event list (Submenu) 212
Event logbook (Submenu) 211
Extended order code 1 (Parameter) 216
Extended order code 2 (Parameter) 217
Index

F
Factory settings ... 252
 SI units .. 252
 US units .. 254
Failure current (Parameter) 122
Failure frequency (Parameter) 140
Failure mode (Parameter) 104, 121, 129, 139, 147,
 153, 158, 164, 202
Failure value (Parameter) 105, 164
Fieldbus writing access (Parameter) 167
Filter options (Parameter) 211, 212
Firmware version (Parameter) 215
Fixed current (Parameter) 111
Fixed reference density (Parameter) 89
Flow damping (Parameter) 75
Flow override (Parameter) 77
Format display (Parameter) 16
Frequency output simulation 1 to n (Parameter) 246
Frequency value 1 to n (Parameter) 246
Function
 see Parameter

H
Hardware revision (Parameter) 177
HART address (Parameter) 167
HART date code (Parameter) 177
HART descriptor (Parameter) 176
HART input (Submenu) 160
HART message (Parameter) 176
HART output (Submenu) 165
HART revision (Parameter) 176
HART short tag (Parameter) 166
Header (Parameter) 26
Header text (Parameter) 27
Heartbeat (Submenu) 241
High value partial filled pipe detection (Parameter) . 82

I
I/O configuration (Submenu) 99
I/O module 1 (Submenu) 219
I/O module 1 terminal numbers (Parameter) 219, 220
I/O module 1 to n information (Parameter) 100
I/O module 1 to n terminal numbers (Parameter) ... 100
I/O module 1 to n type (Parameter) 101
I/O module 2 (Submenu) 219
I/O module 2 terminal numbers (Parameter) 219, 220
I/O module 3 (Submenu) 220
I/O module 3 terminal numbers (Parameter) 219, 220
I/O module 4 terminal numbers (Parameter) 219, 220
Information (Submenu) 174
Input (Submenu) 102, 165
Input signal level (Parameter) 244
Input values (Submenu) 55
Installation angle pitch (Parameter) 92
Installation angle roll (Parameter) 92
Installation direction (Parameter) 91
Invert output signal (Parameter) 148, 159
IP address (Parameter) 184

K
Kinematic viscosity (Parameter) 51

L
Last backup (Parameter) 29
Linear expansion coefficient (Parameter) 90
Locking status (Parameter) 12
Logging delay (Parameter) 236
Logging interval (Parameter) 235
Login page (Parameter) 185
Low flow cut off (Submenu) 77
Low flow cutoff (Parameter) 78
Low value partial filled pipe detection (Parameter) . 81

M
MAC address (Parameter) 183
Mainboard module (Submenu) 218
Manufacturer ID (Parameter) 162, 176
Mass flow (Parameter) 48
Mass flow factor (Parameter) 94
Mass flow offset (Parameter) 94
Mass flow unit (Parameter) 61
Mass unit (Parameter) 62
Master terminal number (Parameter) 155
Max. switch cycles number (Parameter) 59
Max. update period (Parameter) 174
Maximum damping partial filled pipe det. (Parameter) ... 83
Maximum frequency value (Parameter) 133
Maximum value (Parameter) 223, 224, 225, 226,
 227, 228, 229, 230, 231
Measured current 1 to n (Parameter) 55, 57, 123
Measured values (Submenu) 47
Measured values 1 to n (Parameter) 55
Measurement mode (Submenu) 83
Measurement mode (Parameter) 114, 129, 136, 157
Measuring value at maximum frequency (Parameter) 135
Measuring value at minimum frequency (Parameter) 134
Minimum temperature (Submenu) 224
Min. update period (Parameter) 174
Min/max values (Submenu) 221
Minimum frequency value (Parameter) 132
Minimum value (Parameter) 223, 224, 225, 226,
 227, 228, 229, 230, 231

N
No. of preambles (Parameter) 167
Nominal diameter (Parameter) 99

O
Off value low flow cutoff (Parameter) 79
On value low flow cutoff (Parameter) 78
Operating mode (Parameter) 125
<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating time (Parameter)</td>
<td>29, 43, 207</td>
</tr>
<tr>
<td>Operating time from restart (Parameter)</td>
<td>206</td>
</tr>
<tr>
<td>Order code (Parameter)</td>
<td>216</td>
</tr>
<tr>
<td>Oscillation amplitude (Submenu)</td>
<td>227</td>
</tr>
<tr>
<td>Oscillation damping (Submenu)</td>
<td>229</td>
</tr>
<tr>
<td>Oscillation frequency (Submenu)</td>
<td>226</td>
</tr>
<tr>
<td>Output (Submenu)</td>
<td>107, 178</td>
</tr>
<tr>
<td>Output current 1 to n (Parameter)</td>
<td>57, 122</td>
</tr>
<tr>
<td>Output frequency 1 to n (Parameter)</td>
<td>57, 141</td>
</tr>
<tr>
<td>Output values (Submenu)</td>
<td>56</td>
</tr>
<tr>
<td>Partially filled pipe detection (Parameter)</td>
<td>81</td>
</tr>
<tr>
<td>Pulse output 1 to n (Parameter)</td>
<td>128, 157</td>
</tr>
<tr>
<td>Pulse width (Parameter)</td>
<td>123</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (Submenu)</td>
<td>57, 130, 157</td>
</tr>
<tr>
<td>Process parameters (Submenu)</td>
<td>75</td>
</tr>
<tr>
<td>Pressure compensation (Parameter)</td>
<td>86</td>
</tr>
<tr>
<td>Pressure shock suppression (Parameter)</td>
<td>79</td>
</tr>
<tr>
<td>Pressure unit (Parameter)</td>
<td>68</td>
</tr>
<tr>
<td>Pressure value (Parameter)</td>
<td>50, 86</td>
</tr>
<tr>
<td>Previous diagnostics (Parameter)</td>
<td>206</td>
</tr>
<tr>
<td>Primary variable (PV) (Parameter)</td>
<td>179</td>
</tr>
<tr>
<td>Progress (Parameter)</td>
<td>93</td>
</tr>
<tr>
<td>Process variable adjustment (Submenu)</td>
<td>93</td>
</tr>
<tr>
<td>Process variable value (Parameter)</td>
<td>243</td>
</tr>
<tr>
<td>Process variables (Submenu)</td>
<td>48</td>
</tr>
<tr>
<td>Process variables (Submenu)</td>
<td>48</td>
</tr>
<tr>
<td>Progress (Parameter)</td>
<td>93</td>
</tr>
<tr>
<td>Pulse output (Parameter)</td>
<td>60, 159</td>
</tr>
<tr>
<td>Pulse output 1 to n (Parameter)</td>
<td>130</td>
</tr>
<tr>
<td>Pulse output simulation (Parameter)</td>
<td>249</td>
</tr>
<tr>
<td>Pulse output simulation 1 to n (Parameter)</td>
<td>247</td>
</tr>
<tr>
<td>Pulse value (Parameter)</td>
<td>250</td>
</tr>
<tr>
<td>Pulse value 1 to n (Parameter)</td>
<td>247</td>
</tr>
<tr>
<td>Pulse width (Parameter)</td>
<td>123</td>
</tr>
<tr>
<td>Pulse/frequency/switch output 1 to n (Submenu)</td>
<td>57, 130, 157</td>
</tr>
<tr>
<td>Q Quaternary variable (QV) (Parameter)</td>
<td>182</td>
</tr>
<tr>
<td>R Reference density (Parameter)</td>
<td>49</td>
</tr>
<tr>
<td>Reference density factor (Parameter)</td>
<td>97</td>
</tr>
<tr>
<td>Reference density offset (Parameter)</td>
<td>97</td>
</tr>
<tr>
<td>Reference density unit (Parameter)</td>
<td>66</td>
</tr>
<tr>
<td>Reference sound velocity (Parameter)</td>
<td>85</td>
</tr>
<tr>
<td>Reference temperature (Parameter)</td>
<td>90</td>
</tr>
<tr>
<td>Relay output 1 to n (Submenu)</td>
<td>59, 148</td>
</tr>
<tr>
<td>Relay output 1 to n simulation (Parameter)</td>
<td>248</td>
</tr>
<tr>
<td>Relay output function (Parameter)</td>
<td>149</td>
</tr>
<tr>
<td>Reset access code (Parameter)</td>
<td>43</td>
</tr>
<tr>
<td>Reset access code (Submenu)</td>
<td>43</td>
</tr>
<tr>
<td>Reset all totalizers (Parameter)</td>
<td>198</td>
</tr>
<tr>
<td>Reset min/max values (Parameter)</td>
<td>222</td>
</tr>
<tr>
<td>Reset write protection (Parameter)</td>
<td>46</td>
</tr>
<tr>
<td>Response time (Parameter)</td>
<td>119, 138</td>
</tr>
<tr>
<td>Response time part. filled pipe detect. (Parameter)</td>
<td>82</td>
</tr>
<tr>
<td>Response time status input (Parameter)</td>
<td>107</td>
</tr>
<tr>
<td>S Secondary variable (SV) (Parameter)</td>
<td>180</td>
</tr>
<tr>
<td>Security type (Parameter)</td>
<td>187</td>
</tr>
<tr>
<td>Select antenna (Parameter)</td>
<td>188</td>
</tr>
<tr>
<td>Select gas type (Parameter)</td>
<td>84</td>
</tr>
<tr>
<td>Select medium (Parameter)</td>
<td>84</td>
</tr>
<tr>
<td>Sensor (Submenu)</td>
<td>47</td>
</tr>
<tr>
<td>Sensor adjustment (Submenu)</td>
<td>91</td>
</tr>
<tr>
<td>Sensor electronic module (ISEM) (Submenu)</td>
<td>218</td>
</tr>
<tr>
<td>Separator (Parameter)</td>
<td>28</td>
</tr>
<tr>
<td>Serial number (Parameter)</td>
<td>215</td>
</tr>
<tr>
<td>Signal asymmetry (Submenu)</td>
<td>230</td>
</tr>
<tr>
<td>Signal mode (Parameter)</td>
<td>103, 109, 125, 156</td>
</tr>
<tr>
<td>Simulation (Submenu)</td>
<td>241</td>
</tr>
<tr>
<td>Slave terminal number (Parameter)</td>
<td>155</td>
</tr>
<tr>
<td>Slot number (Parameter)</td>
<td>163</td>
</tr>
<tr>
<td>Software option overview (Parameter)</td>
<td>45</td>
</tr>
<tr>
<td>Square expansion coefficient (Parameter)</td>
<td>91</td>
</tr>
<tr>
<td>SSID name (Parameter)</td>
<td>188</td>
</tr>
<tr>
<td>Status (Parameter)</td>
<td>165</td>
</tr>
<tr>
<td>Status input 1 to n (Submenu)</td>
<td>105</td>
</tr>
<tr>
<td>Status input simulation (Parameter)</td>
<td>243</td>
</tr>
<tr>
<td>Startup</td>
<td></td>
</tr>
<tr>
<td>Administration</td>
<td>41</td>
</tr>
<tr>
<td>Application</td>
<td>197</td>
</tr>
<tr>
<td>Burst configuration 1 to n</td>
<td>168</td>
</tr>
<tr>
<td>Calculated values</td>
<td>88</td>
</tr>
<tr>
<td>Calibration</td>
<td>98</td>
</tr>
<tr>
<td>Carrier pipe temperature</td>
<td>224</td>
</tr>
<tr>
<td>Communication</td>
<td>159</td>
</tr>
<tr>
<td>Concentration</td>
<td>203</td>
</tr>
<tr>
<td>Configuration</td>
<td>160, 166</td>
</tr>
<tr>
<td>Configuration backup</td>
<td>29</td>
</tr>
<tr>
<td>Corrected volume flow calculation</td>
<td>88</td>
</tr>
<tr>
<td>Current input 1 to n</td>
<td>55, 102</td>
</tr>
<tr>
<td>Current output 1 to n</td>
<td>108</td>
</tr>
<tr>
<td>Custody transfer</td>
<td>203</td>
</tr>
<tr>
<td>Custody transfer logbook</td>
<td>213</td>
</tr>
<tr>
<td>Data logging</td>
<td>232</td>
</tr>
<tr>
<td>Device information</td>
<td>214</td>
</tr>
<tr>
<td>Diagnostic behavior</td>
<td>32</td>
</tr>
<tr>
<td>Diagnostic configuration</td>
<td>189</td>
</tr>
<tr>
<td>Diagnostic handling</td>
<td>32</td>
</tr>
<tr>
<td>Diagnostic list</td>
<td>207</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>204</td>
</tr>
<tr>
<td>Display</td>
<td>14</td>
</tr>
<tr>
<td>Display channel 1</td>
<td>238</td>
</tr>
<tr>
<td>Display channel 2</td>
<td>240</td>
</tr>
<tr>
<td>Display channel 3</td>
<td>240</td>
</tr>
<tr>
<td>Display channel 4</td>
<td>240</td>
</tr>
<tr>
<td>Display module</td>
<td>221</td>
</tr>
<tr>
<td>Double pulse output</td>
<td>60, 155</td>
</tr>
<tr>
<td>Electronic temperature</td>
<td>223</td>
</tr>
<tr>
<td>Event list</td>
<td>212</td>
</tr>
<tr>
<td>Event logbook</td>
<td>211</td>
</tr>
<tr>
<td>External compensation</td>
<td>85</td>
</tr>
<tr>
<td>HART input</td>
<td>160</td>
</tr>
<tr>
<td>HART output</td>
<td>165</td>
</tr>
</tbody>
</table>
Heartbeat .. 241
I/O configuration 99
I/O module 1 ... 219
I/O module 2 ... 219
I/O module 3 ... 220
Information .. 174
Input ... 102, 165
Input values 55
Low flow cut off 77
Main board module 218
Measured values 47
Measurement mode 83
Medium temperature 224
Min/max values 221
Oscillation amplitude 227
Oscillation damping 229
Oscillation frequency 226
Output .. 107, 178
Output values 56
Partially filled pipe detection 81
Process parameters 75
Process variable adjustment 93
Process variables 48
Pulse/frequency switch output 1 to n 57, 123
Relay output 1 to n 59, 148
Reset access code 43
Sensor ... 47
Sensor adjustment 91
Sensor electronic module (ISEM) 218
Signal asymmetry 230
Simulation ... 241
Status display 1 to n 105
System .. 14
System units ... 60
Torsion oscillation amplitude 228
Torsion oscillation damping 229
Torsion oscillation frequency 226
Torsion signal asymmetry 231
Totalizer ... 53
Totalizer 1 to n 198
User-specific units 69
Value current output 1 to n 56
Value status input 1 to n 56
Viscosity ... 203
Web server .. 182
WLAN settings 185
Zero point adjustment 92
Subnet mask (Parameter) 184
Switch cycles (Parameter) 59
Switch output function (Parameter) 141
Switch output simulation 1 to n (Parameter) 247
Switch status (Parameter) 59, 154
Switch status 1 to n (Parameter) 58, 147, 248, 249
Switch-off delay (Parameter) 146, 152
Switch-off value (Parameter) 145, 152
Switch-on delay (Parameter) 146, 153
Switch-on value (Parameter) 144, 153
System (Menu) 14
System units (Menu) 60
I
Index
T

Target group .. 4
Target mass flow (Parameter) 52
Temp. compensated dynamic viscosity (Parameter) 51
Temp. compensated kinematic viscosity (Parameter) 51
Temperature (Parameter) 50
Temperature coefficient sound velocity (Parameter) 85
Temperature damping (Parameter) 76
Temperature factor (Parameter) 98
Temperature mode (Parameter) 87
Temperature offset (Parameter) 97
Temperature unit (Parameter) 67
Terminal number (Parameter) 102, 105, 108, 124, 149
Tertiary variable (TV) (Parameter) 181
Timeout (Parameter) 163
Timestamp (Parameter) 205, 206, 208, 209, 210, 211
Torsion oscillation amplitude (Submenu) 228
Torsion oscillation damping (Submenu) 229
Torsion oscillation frequency (Submenu) 226
Torsion signal asymmetry (Submenu) 231
Totalizer (Submenu) 53
Totalizer 1 to n (Submenu) 198
Totalizer operation mode (Parameter) 200
Totalizer overflow 1 to n (Parameter) 54
Totalizer value 1 to n (Parameter) 53
U

Unit totalizer 1 to n (Parameter) 199
User corrected volume factor (Parameter) 72
User corrected volume offset (Parameter) 73
User corrected volume text (Parameter) 72
User density factor (Parameter) 73
User density offset (Parameter) 74
User density text (Parameter) 73
User mass factor (Parameter) 70
User mass offset (Parameter) 70
User mass text (Parameter) 70
User pressure factor (Parameter) 74
User pressure offset (Parameter) 74
User pressure text (Parameter) 74
User volume factor (Parameter) 71
User volume offset (Parameter) 71
User volume text (Parameter) 71
User-specific units (Submenu) 69
V

Value (Parameter) 165
Value 1 display (Parameter) 18
Value 2 display (Parameter) 21
Value 3 display (Parameter) 22
Value 4 display (Parameter) 24
Value current input 1 to n (Parameter) 245
Value current output 1 to n (Parameter) 245
Value current output 1 to n (Submenu) 56
Value per pulse (Parameter) 58, 127, 156
Value status input (Parameter) 56, 106
Value status input 1 to n (Submenu) 56
Viscosity (Submenu) 203
Volume flow (Parameter) 49
Index

Volume flow factor (Parameter) 95
Volume flow offset (Parameter) 95
Volume flow unit (Parameter) 62
Volume unit (Parameter) 64

W
Web server (Submenu) 182
Web server functionality (Parameter) 184
Web server language (Parameter) 183
Wizard
 Define access code 42
WLAN (Parameter) 186
WLAN IP address (Parameter) 186
WLAN MAC address (Parameter) 187
WLAN passphrase (Parameter) 187
WLAN settings (Submenu) 185
WLAN subnet mask (Parameter) 186

Z
Zero point (Parameter) 99
Zero point adjustment (Submenu) 92
Zero point adjustment control (Parameter) 93