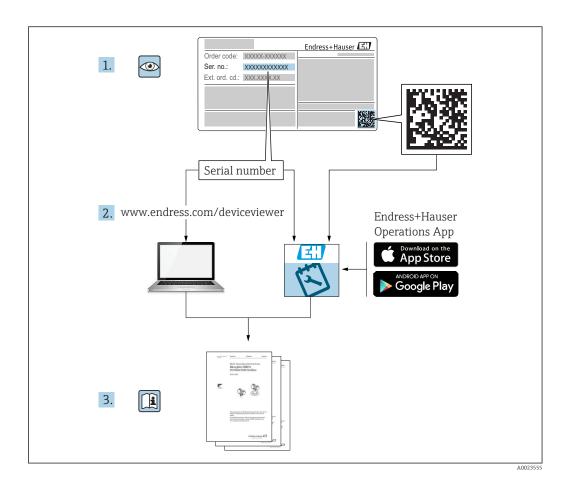

01.02.zz (Device firmware)


Products Solutions Services

Operating Instructions **Proservo NMS80**

Tank Gauging

Proservo NMS80 Table of contents

Table of contents

1	About this document	. 4	9	Commissioning	. 78
1.1 1.2 1.3	Document function	. 4	9.1 9.2 9.3	Terms related to tank measurement Initial settings	. 79 . 81
1.4	Registered trademarks	. 9	9.4 9.5	Configuring the measuring device Configuring the tank gauging application	100
2 2.1	Basic safety instructions		9.6 9.7	Advanced settings	
2.2 2.3	Designated use	10 11	9.8	Protecting settings from unauthorized access	121
2.4 2.5	Operational safety		10	Operation	122
3 3.1	Product description Product design		10.1 10.2 10.3	Reading off the device locking status Reading off measured values	122
4	Incoming acceptance and product		11	Diagnostics and troubleshooting	129
7	_	13	11.1	General trouble shooting	
4.1 4.2 4.3	Incoming acceptance		11.2 11.3 11.4 11.5 11.6	Diagnostic information on local display Diagnostic information in FieldCare	133 135 142
5	Installation	17	11.0 11.7 11.8	Reset measuring device	143
5.1 5.2	Requirements	31	11.0 12	Maintenance	
5.3	Post-installation check		12.1 12.2	Maintenance tasks Endress+Hauser services	. 144
6		42	12.2	Endress Thauser Services	11.
6.1 6.2	Terminal assignment		13	Repair	
6.3 6.4	Ensuring the degree of protection Post-connection check		13.1 13.2 13.3	General information on repairs	145
7 7.1	Operability	57 57	13.4 13.5	Return	. 146
7.2	Structure and function of the operating		14	Accessories	147
7.3	menu	58	14.1	Device-specific accessories	147
7.4	Access to the operating menu via the service	60	14.2 14.3	Communication-specific accessories Service-specific accessories	. 150
7.5	interface and FieldCare	73	14.4	System components	. 150
	Tank Scanner NXA820 and FieldCare	74	15	Operating menu	
8	System integration	77	15.1 15.2	Overview of the operating menu	
8.1	Overview of the Device Description files (DTM)	77	15.3 15.4	"Setup" menu	178
			Inde	x	322

About this document Proservo NMS80

1 About this document

1.1 Document function

These Operating Instructions contain all the information that is required in various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.

1.2 Symbols

1.2.1 Safety symbols

Symbol	Meaning
▲ DANGER	DANGER! This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.
A WARNING	WARNING! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.
▲ CAUTION	CAUTION! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.
NOTICE	NOTE! This symbol contains information on procedures and other facts which do not result in personal injury.

1.2.2 Electrical symbols

Symbol	Meaning
===	Direct current
~	Alternating current
$\overline{\sim}$	Direct current and alternating current
<u></u>	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.
	Protective ground connection A terminal which must be connected to ground prior to establishing any other connections.
\$	Equipotential connection A connection that has to be connected to the plant grounding system: This may be a potential equalization line or a star grounding system depending on national or company codes of practice.

Proservo NMS80 About this document

1.2.3 Tool symbols

Symbol	Meaning
0	Torx screwdriver
A0013442	
0	Flat blade screwdriver
A0011220	
06	Cross-head screwdriver
A0011219	
06	Allen key
A0011221	
W.	Hexagon wrench
A0011222	

1.2.4 Symbols for certain types of information

Symbol	Meaning
✓	Permitted Procedures, processes or actions that are permitted.
✓ ✓	Preferred Procedures, processes or actions that are preferred.
X	Forbidden Procedures, processes or actions that are forbidden.
i	Tip Indicates additional information.
	Reference to documentation
	Reference to page
	Reference to graphic
•	Notice or individual step to be observed
1., 2., 3	Series of steps
L	Result of a step
?	Help in the event of a problem
	Visual inspection

1.2.5 Symbols in graphics

Symbol	Meaning
1, 2, 3	Item numbers
1., 2., 3	Series of steps
A, B, C,	Views
A-A, B-B, C-C,	Sections

About this document Proservo NMS80

Symbol	Meaning
EX	Hazardous area Indicates a hazardous area.
×	Safe area (non-hazardous area) Indicates the non-hazardous area.

1.2.6 Symbols at the device

S	ymbol	Meaning
Δ	Z → 🖪	Safety instructions Observe the safety instructions contained in the associated Operating Instructions.
(Temperature resistance of the connection cables Specifies the minimum value of the temperature resistance of the connection cables.

Proservo NMS80 About this document

1.3 **Documentation**

For an overview of the scope of the associated Technical Documentation, refer to the following:

- The W@M Device Viewer: Enter the serial number from the nameplate (www.endress.com/deviceviewer)
- The Endress+Hauser Operations App: Enter the serial number from the nameplate or scan the 2-D matrix code (QR code) on the nameplate.

1.3.1 **Technical Information (TI)**

The Technical Information contains all the technical data on the device and provides an overview of the accessories and other products that can be ordered for the device.

Device	Technical Information
Proservo NMS80	TI01248G

1.3.2 **Brief Operating Instructions (KA)**

The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.

Device	Brief Operating Instructions
Proservo NMS80	KA01200G

1.3.3 Operating Instructions (BA)

The Operating Instructions contain all the information that is required in various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.

It also contains a detailed explanation of each individual parameter in the operating menu (except the **Expert** menu). The description is aimed at those who work with the device over the entire life cycle and perform specific configurations.

Device	Operating Instructions
Proservo NMS80	BA01456G

1.3.4 **Description of Device Parameters (GP)**

The Description of Device Parameters provides a detailed explanation of each individual parameter in the 2nd part of the operating menu: the **Expert** menu. It contains all the device parameters and allows direct access to the parameters by entering a specific code. The description is aimed at those who work with the device over the entire life cycle and perform specific configurations.

Device	Description of Device Parameters
Proservo NMS80	GP01074G (in preparation)

About this document Proservo NMS80

1.3.5 Safety instructions (XA)

Ordering feature 010 "Approval"	Meaning	XA
BC	ATEX II 1/2G Ex db [ia Ga] IIC T6Ga/Gb	XA01495G
FD	FM C/US XP-AIS Cl.I Div.1 Gr.BCD T6 AEx db [ia Ga] IIC T6 Ga/Gb	XA01496G
GC	EAC Ex-R 0 Ex d[ia] IIC T1T6	in preparation
IC	IEC Ex db [ia Ga] IIC T6 Ga/Gb	XA01495G
KC	KC Ex d[ia] IIC T6 Ga/Gb	in preparation
MC	INMETRO Ex d[ia] IIC T6 Ga/Gb	in preparation
NC	NEPSI Ex d[ia] IIC T6 Ga/Gb	in preparation
TC	TIIS Ex d[ia] IIC T4 Ga/Gb	in preparation

Proservo NMS80 About this document

1.4 Registered trademarks

FieldCare®

Registered trademark of the Endress+Hauser Process Solutions AG, Reinach, Switzerland

Registered trademark of the MODBUS-IDA, Hopkinton, MA, USA

Basic safety instructions Proservo NMS80

2 Basic safety instructions

2.1 Requirements for the personnel

The personnel for installation, commissioning, diagnostics and maintenance must fulfill the following requirements:

- ► Trained, qualified specialists must have a relevant qualification for this specific function and task.
- ► Are authorized by the plant owner/operator.
- ► Are familiar with federal/national regulations.
- ▶ Before starting work, read and understand the instructions in the manual and supplementary documentation as well as the certificates (depending on the application).
- ► Follow instructions and comply with basic conditions.

The operating personnel must fulfill the following requirements:

- ► Are instructed and authorized according to the requirements of the task by the facility's owner-operator.
- ▶ Follow the instructions in this manual.

2.2 Designated use

Application and measured materials

Depending on the version ordered, the measuring device can also measure potentially explosive, flammable, poisonous and oxidizing media.

Measuring devices for use in hazardous areas, in hygienic applications or in applications where there is an increased risk due to process pressure, are labeled accordingly on the nameplate.

To ensure that the measuring device remains in proper condition for the operation time:

- ▶ Only use the measuring device in full compliance with the data on the nameplate and the general conditions listed in the Operating Instructions and supplementary documentation.
- ► Check the nameplate to verify if the device ordered can be put to its intended use in the approval-related area (e.g. explosion protection, pressure vessel safety).
- ► Use the measuring device only for media against which the process-wetted materials are adequately resistant.
- ▶ If the measuring device is not operated at atmospheric temperature, compliance with the relevant basic conditions specified in the associated device documentation is absolutely essential.
- ► Protect the measuring device permanently against corrosion from environmental influences.
- ▶ Observe the limit values in the "Technical Information".

The manufacturer is not liable for damage caused by improper or non-designated use.

Residual risk

During operation the sensor may assume a temperature near the temperature of the measured material.

Danger of burns due to heated surfaces!

► For high process temperatures: Install protection against contact in order to prevent burns.

Proservo NMS80 Basic safety instructions

2.3 Workplace safety

For work on and with the device:

► Wear the required personal protective equipment according to federal/national regulations.

2.4 Operational safety

Risk of injury.

- ▶ Operate the device in proper technical condition and fail-safe condition only.
- ▶ The operator is responsible for interference-free operation of the device.

Conversions to the device

Unauthorized modifications to the device are not permitted and can lead to unforeseeable dangers.

▶ If, despite this, modifications are required, consult with the manufacturer.

Repair

To ensure continued operational safety and reliability,

- ► Carry out repairs on the device only if they are expressly permitted.
- ▶ Observe federal/national regulations pertaining to repair of an electrical device.
- ▶ Use original spare parts and accessories from the manufacturer only.

Hazardous area

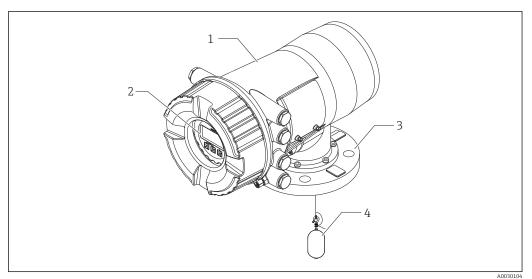
To eliminate a danger for persons or for the facility when the device is used in the hazardous area (e.g. explosion protection, pressure vessel safety):

- ▶ Based on the nameplate, check whether the ordered device is permitted for the intended use in the hazardous area.
- ▶ Observe the specifications in the separate supplementary documentation that is an integral part of these Instructions.

2.5 Product safety

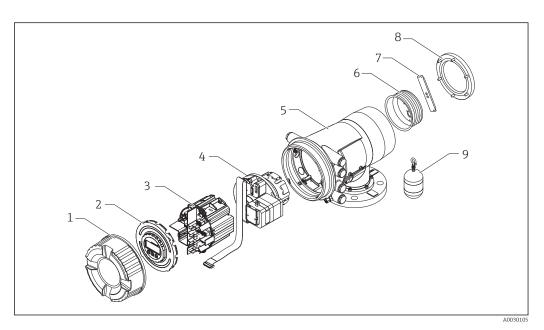
This measuring device is designed in accordance with good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate. It meets general safety standards and legal requirements.

2.5.1 **CE** mark


The measuring system meets the legal requirements of the applicable EC guidelines. These are listed in the corresponding EC Declaration of Conformity together with the standards applied.

Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.

Product description Proservo NMS80


3 Product description

3.1 Product design

■ 1 Design of Proservo NMS80

- 1 Housing
- 2 Display and operating module (can be operated without opening the cover)
- *3 Process connection (Flange)*
- 4 Displacer

 \blacksquare 2 Configuration of NMS80

- 1 Front cover
- 2 Display
- 3 Modules
- 4 Sensor unit
- 5 Housing
- 6 Wire drum
- 7 Bracket
- 8 Housing cover
- 9 Displacer

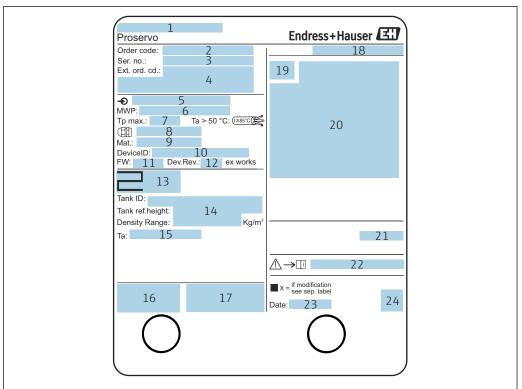
4 Incoming acceptance and product identification

4.1 Incoming acceptance

Upon receipt of the goods check the following:

- Are the order codes on the delivery note and the product sticker identical?
- Are the goods undamaged?
- Do the nameplate data match the ordering information on the delivery note?
- If required (see nameplate): Are the Safety Instructions (XA) enclosed?
- If one of these conditions is not satisfied, contact your Endress+Hauser Sales Center.

4.2 Product identification


The following options are available for identification of the measuring device:

- Nameplate specifications
- Extended order code with breakdown of the device features on the delivery note
- Enter serial numbers from nameplates in *W@M Device Viewer* (www.endress.com/deviceviewer): All information about the measuring device is displayed.
- Enter the serial number from the nameplates into the *Endress+Hauser Operations App* or scan the 2-D matrix code (QR code) on the nameplate with the *Endress+Hauser Operations App*: all the information for the measuring device is displayed.

For an overview of the scope of the associated Technical Documentation, refer to the following:

- The *W@M Device Viewer*: Enter the serial number from the nameplate (www.endress.com/deviceviewer)
- The *Endress+Hauser Operations App*: Enter the serial number from the nameplate or scan the 2-D matrix code (QR code) on the nameplate.

4.2.1 Nameplate

A0032428

■ 3 Nameplate Proservo NMS8x

- 1 Manufacturer address
- 2 Order code
- 3 Serial number
- 4 Extended order code
- 5 Supply voltage
- 6 Maximum process pressure
- 7 *Maximum process temperature*
- 8 Thread for cable entry
- 9 Material in contact with process
- 10 Device ID
- 11 Firmware version
- 12 Device revision
- 13 Metrology certification numbers
- 14 Customized parameterization data
- 15 Ambient temperature range
- 16 CE mark / C-tick mark
- 17 Additional information on the device version
- 18 Ingress protection
- 19 Certificate symbol
- 20 Data concerning the Ex approval
- 21 General certificate of approval
- 22 Associated Safety Instructions (XA)
- 23 Manufacturing date
- 24 QR code for the Endress+Hauser Operations App

防爆構造等 Ex d[ia] 防爆型式:NMS	IIC T4 Ga/Gb Endress+Hauser 3		
本安回路 ************************************	2		
入出力回路(1) 入出力回路(2)	3		
	<u>4</u> 5		
信号回路(1) 信号回路(2)			
	6		
信号回路(3)	7		
出力回路(1)	8		
非本安回路	0		
電源	9		
入出力回路(3)	10		
入出力回路(4)	11		
信号回路(4)	12		
信号回路(5) 信号回路(6)	13		
信亏凹路(0) 接点出力回路(1)(2)	14		
接点面刀凹路(1)(2) 接点入力回路(1)(2)	15 16		
周囲温度: -20℃~			
注意: 機器内部部品及び配線の変更、改造等を行わないでください。 爆発性雰囲気が存在しないことを確認してから容器を 開けてください。 通電中は容器を開放しないでください。 耐熱温度85℃以上のケーブルを使用してください。 警告: 乾いた布で機器の表面を擦らないでください。 防爆注意事項説明書 △→Ⅲ XA01600G 参照			

€ 4 Nameplate Proservo NMS8x for TIIS

- 1 Product type
- 2 Ex type
- 3 Input/Output circuit (1)
- Input/Output circuit (2)
- Signal circuit (1)
- Signal circuit (2)
- Signal circuit (3)
- Output circuit (1)
- Power supply
- 10 Input/output circuit (3)
- 11 Input/output circuit (4)
- 12 Signal circuit (4)
- 13 Signal circuit (5)
- 14 Signal circuit (6)
- 15 Contact output circuit (1) (2)
- 16 Contact input circuit (1) (2)
- 17 Drawing number

4.2.2 Manufacturer address

Endress+Hauser GmbH+Co. KG Hauptstraße 1 79689 Maulburg, Germany

Address of the manufacturing plant: See nameplate.

4.3 Storage and transport

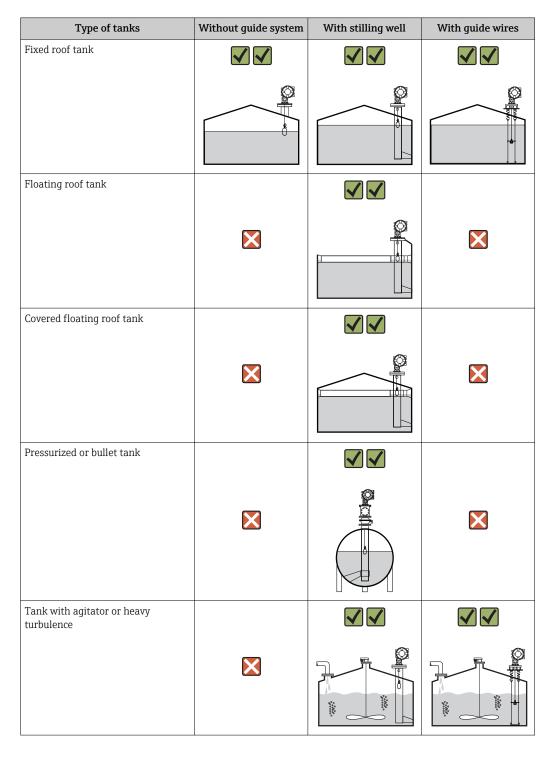
4.3.1 Storage conditions

- Storage temperature: -50 to +80 °C (-58 to +176 °F)
- Store the device in its original packaging.

4.3.2 Transport

NOTICE

Risk of injury

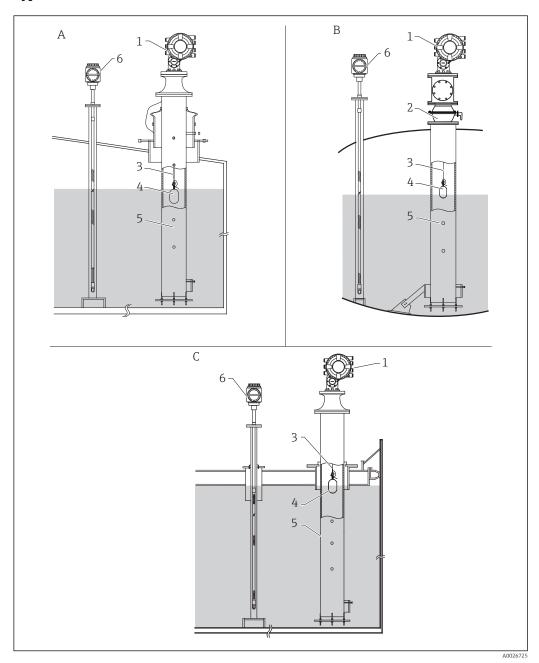

- ► Transport the measuring device to the measuring point in its original packaging.
- ► Take into account the mass center of the device in order to avoid unintended tilting.
- ► Comply with the safety instructions, transport conditions for devices over 18kg (39.6lbs) (IEC61010).

5 Installation

5.1 Requirements

5.1.1 Type of tanks

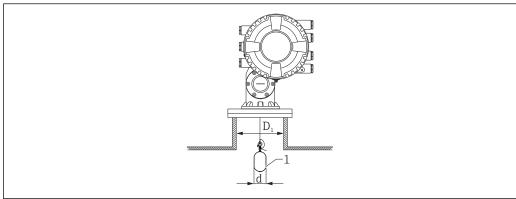
Depending on the type of tank and application, different installation procedures are recommended for NMS8x.



• A stilling well is required in a floating roof tank and a covered floating roof tank.

• Guide wires cannot be installed in a floating roof tank. When the measuring wire is exposed to free space, it may break due to an external shock.

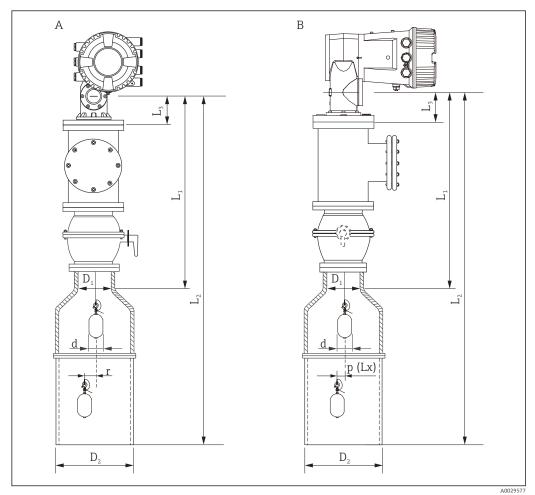
■ Installing guide wires is not allowed in pressurized tanks because the wires would prevent closing the valve for replacing the wire, wire drum, or displacer. NMS8x installation position is important for applications without the guide wire system in order to prevent the measuring wire from being broken (refer to Operating Instructions for details).


Typical tank installation

№ 5 Typical tank installation

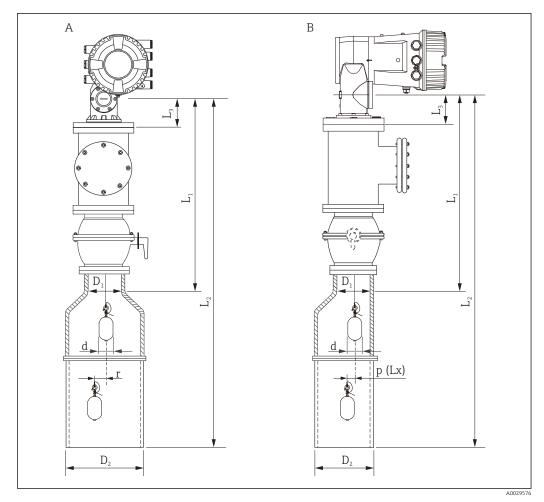
- Α Fixed roof tank
- В
- High pressure tank Floating roof tank with stilling well С
- NMS8x
- Ball valve
- Measuring wire Displacer
- Stilling well
- Prothermo NMT53x

5.1.2 Mounting without a guide system


A002673

■ 6 No guide system

- D_1 Inner diameter of the tank nozzle
- d Diameter of the displacer
- 1 Displacer


5.1.3 Mounting with a stilling well

The stilling well diameter that is required to protect the measuring wire without disturbing its operation varies depending on the tank height. The stilling well could either be of constant diameter, or narrower at its upper part and wider at its lower part. The following figure shows two examples of the latter case, namely a concentric stilling well and an asymmetric stilling well.

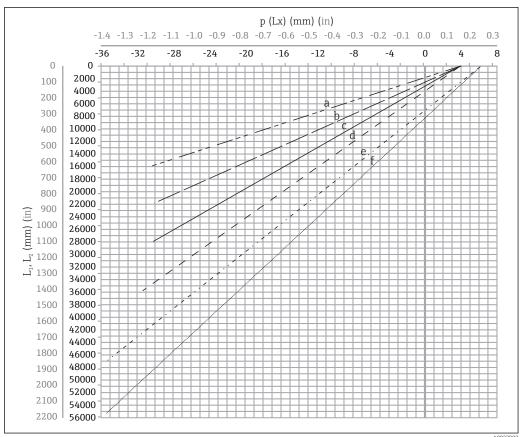
■ 7 Mounting with concentric stilling well

- A Front view
- B Side view
- L_1 Length from the center of the calibration window to the upper part of the stilling well
- L_2 Length from the center of the calibration window to the bottom of the stilling well
- L_3 Length from the center of the calibration window to the bottom of the flange
- D_1 Diameter of upper part of stilling well
- D₂ Diameter of stilling well
- d Diameter of displacer
- p Longitudinal wire position from the center of the flange
- (Lx)
- r Radial direction offset

■ 8 Mounting with asymmetric stilling well

- A Front view
- B Side view
- L_1 Length from the center of the calibration window to the upper part of the stilling well
- L_2 Length from the center of the calibration window to the bottom of the stilling well
- L_3 Length from the center of the calibration window to the bottom of the flange
- D_1 Diameter of upper part of stilling well
- D₂ Diameter of stilling well
- d Diameter of displacer
- p Longitudinal wire position from the center of the flange

(Lx)


- r Radial direction offset
- L₃: length from center of the calibration window to the bottom of the flange (77 mm (3.03 in) + flange thickness).
 For JIS 10K 150A RF, the flange thickness is 22 mm (0.87 in).
 - When using an asymmetric stilling well, take into account the lateral shift of the displacer and follow the NMS8x mounting direction as shown in the figure.
 - To calculate the required stilling well diameters, the formula below should be used. The following tables contain the necessary parameters in order to calculate the dimensions of the stilling well. Be sure to have appropriate dimensions of the stilling well according to each dimension in the table.
 - The radial direction offset (r) is required for only the 47 m (154.20 ft) and 55 m (180.45 ft) wire drum. For all other drums, the offset is 0 mm/in.

Feature: 110	Description (Measuring range; Wire; Diameter)	NMS80	NMS81	NMS83	r
G1	47 m (154.20 ft); 316L; 0.15 mm (0.00591 in)		✓		6 mm (0.24 in)
H1	55 m (180.45 ft); 316L 0.15 mm (0.00591 in)		✓		6 mm (0.24 in)

Feature: 120	Description (Displacer material; Type)	NMS80	NMS81	NMS83	d
1AA	316L; 30 mm (1.18 in) cylindrical	\checkmark	\checkmark		30 mm (1.18 in)
1AC	316L; 50 mm (1.97 in) cylindrical	~	✓		50 mm (1.97 in)
1BE	316L; 70 mm (2.76 in) conical	~	✓		70 mm (2.76 in)
1BJ	316L;110 mm (4.33 in) conical	~	✓		110 mm (4.33 in)
2AA	PTFE; 30 mm (1.18 in) cylindrical	\	✓		30 mm (1.18 in)
2AC	PTFE; 50 mm (1.97 in) cylindrical	~	✓		50 mm (1.97 in)
3AC	AlloyC276; 50 mm (1.97 in) cylindrical	✓	✓		50 mm (1.97 in)
4AC	316L polished; 50 mm (1.97 in) cylindrical			✓	50 mm (1.97 in)
4AE	316L polished; 70 mm (2.76 in) conical			✓	70 mm (2.76 in)
5AC	PTFE; 50 mm (1.97 in) cylindrical, hygienic white			~	50 mm (1.97 in)

Parameter	Description	
d	Diameter of displacer	
p(Lx)	Longitudinal wire position from the center of the flange The value can be determined by using following graph.	
r	Radial direction offset	
S	Safety factor recommended: 5 mm (0.197 in)	

The following graph shows the lateral shift of the displacer depending on the measured distance for the different wire drums.

 \blacksquare 9 Lateral shift of displacer according to measurement range

- a 16 m (A3) (NMS80/NMS81/NMS83)
- b 22 m (C2) (NMS80/NMS81/NMS83)
- c 28 m (D1) (NMS80/NMS81)
- d 36 m (F1) (NMS80/NMS81)
- e 47 m (G1) (NMS81)
- f 55 m(H1) (NMS81)

Upper diameter of stilling well

The dimension of D_1 has to be the largest value of the dimensions D_{1a} , D_{1b} , D_{1c} , and D_{1d} according to the following formula.

D ₁ Dimension	D _{1x} Di	mension	Decemention	Formula
(Example)	Example	Parameter	Description	rormuia
>68.1 mm (2.68 in)	68.1 mm (2.68 in)	D_{1a}	D_1 dimension when the displacer is at the center of the calibration window	$= 2 \times (p(0) + d/2 + s)$
	65.6 mm (2.58 in)	D_{1b}	D_1 dimension when the displacer is at the upper part of the stilling well	$= 2 \times (p(L_1) + d/2 + s)$

D ₁ Dimension	D _{1x} Di	mension	Description	Formula
(Example)	Example	Parameter	Description	Formula
	50.9 mm (2.00 in)	D_{1c}	D_1 dimension when the displacer is at the bottom of the stilling well	$= 2 \times (p(L_2) + s)$
		D_{1d}	D_1 dimension when the radial direction offset is considered. This calculation is used only with the 47 m (154.20 ft) wire drum (G1 in Feature110) and 55 m (180.45 ft) (H1 in feature 110)	$= 2 \times (d/2 + r + s)$

Example: $L_1 = 1000 \text{ mm}$, $L_2 = 20000 \text{ mm}$, d = 50 mm, s = 5.0, 28 m drum

Lower diameter of stilling well

The dimension of D_2 has to be the larger value of the dimensions D_1 and D_{2b} . See the table below.

Concentric pipe

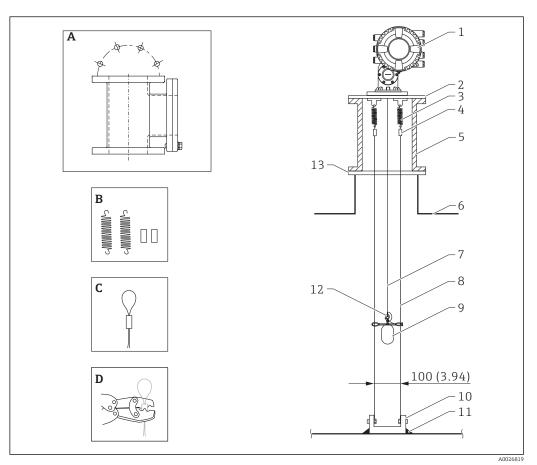
D ₂ Dimension	D _{2x} Dimension		Description	Formula
(Example)	Example	Parameter	Description	romuia
>100.9 mm (3.97 in)	68.1 mm (2.68 in)	D_1	Calculated D ₁ value	
	100.9 mm (3.97 in)	D _{2b}	${\rm D_2}$ dimension when the displacer is in ${\rm L_2}$ length	$= 2 \times (p(L_2) + d/2 + s)$

Example: $L_2 = 20\,000$ mm, d = 50 mm, s = 5.0, 28 m drum

Asymmetric pipe

D ₂ Dimension	D _{2x} Dimension		Description	Formula
(Example)	Example	Parameter	Description	Formula
>84.5 mm (3.33 in)	68.1 mm (2.68 in)	D_1	Calculated D ₁ value	
	84.5 mm (3.33 in)	D _{2b}	D_2 dimension that the displacer can pass through (nth groove)	$= p(L_2) + d/2 + s + D_1/2$

Example: $L_2 = 20\,000$ mm, d = 50 mm, s = 5.0, 28 m drum


Recommendations for NMS8x mounting with a stilling well

Follow the recommendations for mounting NMS8x with a stilling well.

- Keep the pipe connection welds smooth.
- When drilling holes into the pipe, keep the interior surface of the holes clear of metal chips and burrs.
- Coat or paint the interior surface of the pipe to prevent corrosion.
- Keep the pipe as vertical as possible. Check using a plumb bob.
- Install the asymmetric pipe under the valve and align the centers of the NMS8x and the valve.
- Set the center of the lower part of the asymmetric pipe in the direction of the lateral motion.
- Observe the recommendations as per API MPMS chapter 3.1B.
- Confirm grounding between NMS8x and the tank nozzle.

5.1.4 Mounting with guide wires

It is also possible to guide the displacer with guide wires to prevent swinging.

 $\blacksquare 10$ Guide wire; dimensions mm (in)


No.	Description			
A	Calibration chamber			
В	Spring and sleeve			
С	Guide wire sleeve			
D	Crimp tool			
1	NMS8x			
2	Reducer plate			
3	Spring, SUS304			
4	Sleeve, SUS316			
5	Calibration chamber for maintenance			
6	Tank			
7	Measuring wire			
8	Guide wire, SUS316			
9	Displacer			
10	Anchor hook plate, SUS304			
11	Welding point			
12	Wire ring, SUS316L			
13	Flange			

Guide wire installation

Guide wire installation procedure

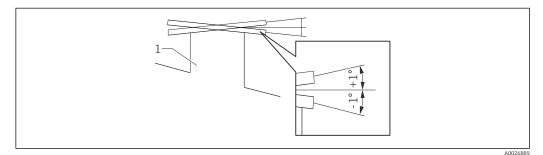
- 1. Install NMS8x [1] on the reducer plate.
- 2. Perform calibration steps ($\rightarrow \implies 81$) before the displacer [3] is attached to the guide wires.
 - Make sure that the displacer does not touch the guide wires during calibration. This could be done by mounting the NMS8x to the reducer plate [2] prior to fitting the guide wires [4].
- Perform calibration steps so that displacer does not touch the guide wires if the guide wires are already installed to the reducer plate.
- 3. Secure the guide wires to the hooks of the springs [5].
- 4. Secure the springs to the reducer plate.
- 5. Put the guide wires through the displacer guide ring [6] and set the displacer.

This completes the guide wire installation procedure.

A002688

■ 11 Guide wire installation

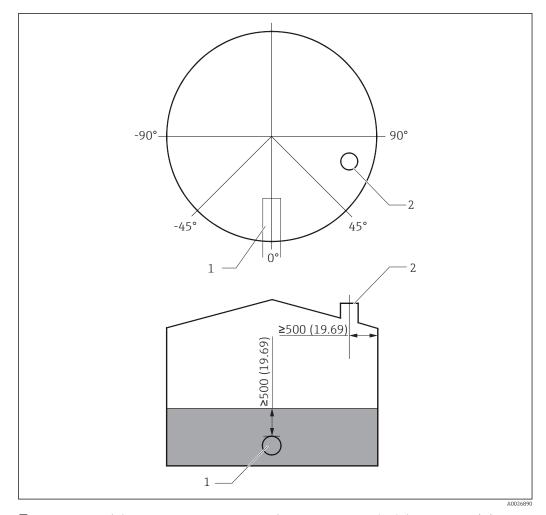
- 1 NMS8x
- 2 Reducer plate
- 3 Displacer
- 4 Guide wires
- 5 Springs
- 6 Displacer guide ring


5.1.5 Alignment of NMS8x

Flange

Confirm that the size of the nozzle and the flange is matched prior to mounting NMS8x on the tank. The flange size and the rating of NMS8x vary depending on the customer's specifications.

- Check the flange size of NMS8x.
- Mount the flange on the top of the tank. The deviation of the flange from the horizontal plane should not exceed +/- 1 degree.
- When mounting NMS8x on a long nozzle, make sure that the displacer does not touch the inner wall of the nozzle.



■ 12 Allowable inclination of mounting flange

1 Nozzle

When NMS8x is installed without a guide system, follow the recommendations below:

- Confirm the mounting nozzle is in the sector between 45 and 90 degrees (or -45 and -90 degrees) away from the inlet pipe of the tank. This prevents heavy swinging of the displacer caused by waves or turbulence from the inlet liquid.
- Confirm the mounting nozzle is 500 mm (19.69 in) or more away from the tank
- Confirm the minimum measuring level is at 500 mm (19.69 in) or more above the top of the inlet pipe by setting the low stop (for details of low stop setting,
 → ≅ 90). This protects the displacer from direct flow of the inlet liquid.
- If a stilling well cannot be mounted in the tank due to the shape or condition of the tank, attaching a guide system is recommended. Consult E+H services for further information.

 \blacksquare 13 Recommended position for mounting NMS8x and minimum measuring level; dimensions mm (in)

- 1 Inlet pipe
- 2 Tank nozzle
- Before pouring liquid into the tank, confirm that liquid flowing through the inlet of the pipe will not contact the displacer directly.
 - When discharging liquid out of the tank, ensure that the displacer will not get caught in the liquid current and sucked into the outlet pipe.

5.1.6 Electrostatic charge

When liquid measured by NMS8x has a conductivity of $1\,\mathrm{uS/m}$ or less, it is quasinonconductive. In this case, using a stilling well or guide wire is recommended. This releases the electrostatic charge on the liquid surface.

5.2 Mounting of the device

The NMS8x is delivered in two different packing styles depending on the mounting method of the displacer.

- For the all-in-one method, the displacer is mounted on the measuring wire of NMS8x.
- For the displacer shipped separately method, it is necessary to install the displacer on the measuring wire inside NMS8x.

5.2.1 Available installations


The following installation procedures are available for NMS8x.

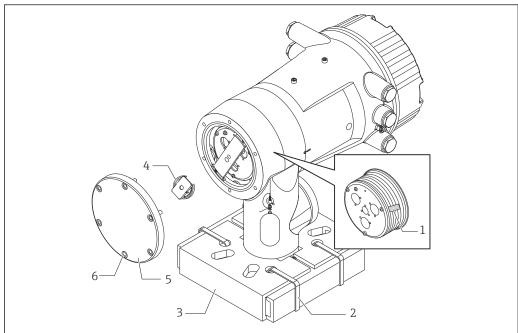
- Mounting without guide system
- Mounting with stilling well
- Mounting with guide wire

Mounting options	Without guide system (Free-space mounting)	With stilling well	With guide wire
Type of tanks			
Type of installations	 All-in one Displacer shipped separately Displacer installation through calibration window 	 All-in one Displacer shipped separately Displacer installation through calibration window 	Displacer shipped separately

5.2.2 Verification of displacer and wire drum

Prior to installation of NMS8x, confirm that the serial numbers of displacer and the wire drum match with those printed to the label attached on the housing.

■ 14 Verification of displacer and wire drum


5.2.3 Tools to be required for installation

The following tools are required when installing NMS8x.

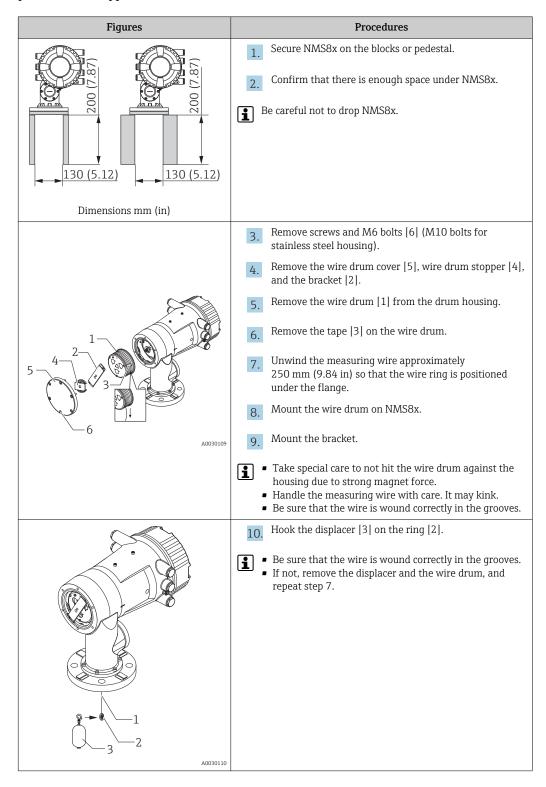
Tools	Figures	Notes
Crescent wrench		Use the size of 350 mm (13.78 in)
Allen key		Use the size of 3 mm (0.12 in)or 5 mm (0.17 in)
Screw driver Cross-head screwdriver	•	
Flat-blade screwdriver		
Wire cutters or terminal pliers		
Crimp	A A	A: Max. 2.5 mm (0.1 in)/ 4 mm (0.16 in)
Water pump pliers		
Density calibration test weight		This tool is used especially for density measurement application (optional).

5.2.4 Installation for all-in-one method

In the case of a 50 mm (1.97 in) or 70 mm (2.76 in) diameter displacer, the device can be delivered by all-in-one method.

■ 15 Removing packing materials

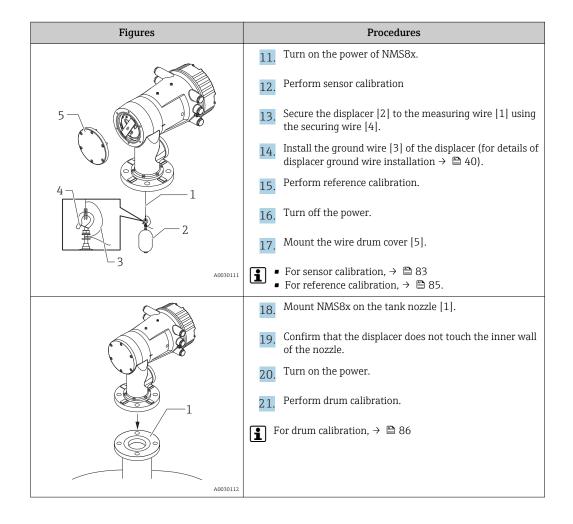
- Tape Fixing band 2
- Displacer holder 3
- Wire drum stopper 4
- Drum housing cover Screws and bolts


Steps	Procedures	Notes
1	 Hold the gauge so that it stays horizontal against the flange. Cut the fixing bands [2]. Remove the displacer holder [3] and packing material of the displacer. 	 Perform these steps before mounting NMS8x on the nozzle. Do not tilt NMS8x after removing the displacer holder.
2	4. Mount NMS8x on the nozzle.	 Make sure that the measuring wire hangs vertically. Confirm that there are no kinks or other defects in the measuring wire.
3	 5. Remove screws and M6 bolts [6] (M10 bolts for stainless steel housing) to remove the drum housing cover [5]. 6. Loosen two screws and remove the wire drum stopper [4]. 	Be sure not to lose the O-ring and the fixing bolts for the cover of the drum housing.
4	7. Remove the tape [1] from the wire drum carefully.	 Remove the tape by hand to avoid damaging the wire drum. Make sure that the measuring wire is wound so that it fits correctly in the grooves.

Steps	Procedures	Notes
5	8. Mount the drum housing cover.	Confirm that the O-ring is in the drum housing cover.
6	9. Turn on the power of NMS8x.	Sensor, reference, and drum calibration steps are not required because they are all performed prior to delivery.

5.2.5 Installation for displacer shipped separately method

It is necessary to remove the wire drum from NMS8x, remove the tape on the wire drum, mount the wire drum in the drum housing, and install the displacer on the measuring wire.

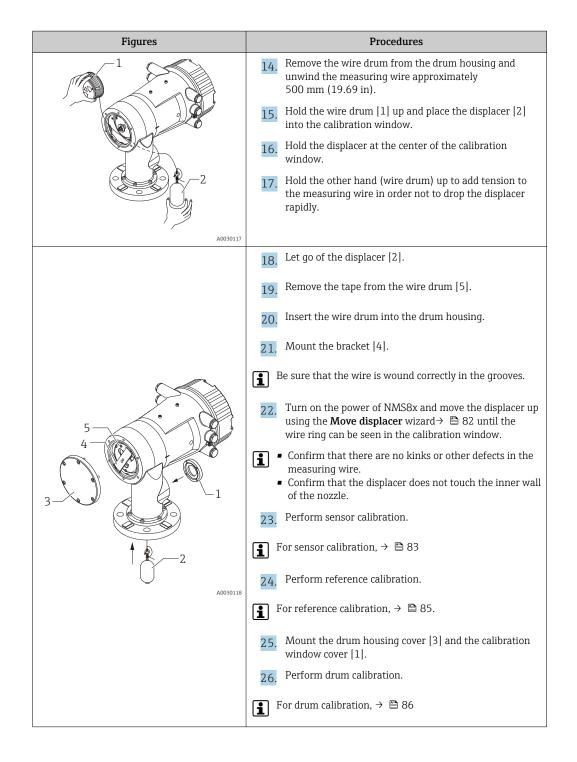

Use blocks or a pedestal to secure NMS8x and provide an environment where electrical power can be supplied to NMS8x.

Endress+Hauser

36

Proservo NMS80 Installation

Installation Proservo NMS80


5.2.6 Installation through the calibration window

In the case of a 50~mm (1.97 in) diameter displacer, the displacer can be installed through the calibration window.

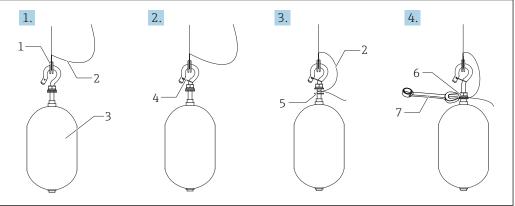
It is only possible to install the following displacers through the calibration window: 50 mm SUS, 50 mm alloy C, 50 mm PTFE

Figures	Procedures
A0030113	1. Remove the calibration window cover [1].
<i>S</i> -S	Remove M6 bolts and screws [6] (M10 bolts for stainless steel housing).
1-0	Remove the cover [5], wire drum stopper [4], and the bracket [3].
5-4-	4. Remove the wire drum [1] from the drum housing.
2 2 2 3	5. Remove the tape [2] that is securing the wire.
6	Handle the measuring wire with care. It may kink.
-1	6. Holding the wire drum [1] with one hand, unwind the measuring wire [3] approximately 500 mm (19.69 in).
	7. Secure the wire [3] temporarily with the tape [2].
	8. Insert the wire ring [4] into the drum housing.
4	9. Pull the wire ring out through the calibration window.
A0030115	Handle the measuring wire with care.
	10. Insert the wire drum [4] temporarily into the drum housing.
4	Hook the displacer [3] on the wire ring.
_1	12. Secure the displacer to the measuring wire using the securing wire [2].
	Install the ground wire [1] for the displacer (for details of displacer ground wire installation $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
3 - 2 - A0030116	 Take special care to not hit the wire drum against the housing due to strong magnet force. Handle the measuring wire with care. It may kink.

Proservo NMS80 Installation

Installation Proservo NMS80

5.2.7 Displacer ground wire installation


Depending on the application and Ex requirements, electrical grounding of the displacer is required. There are different procedures depending on the displacer type, which are described below.

For details of displacer installation $\rightarrow \triangleq 31$

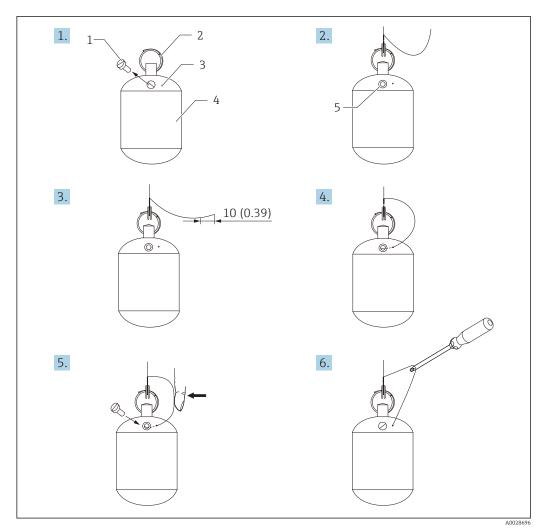
Standard displacer installation

- 1. Mount the displacer [3] on the wire ring [1].
- 2. Wind the securing wire [4] on the wire hook.
- 3. Wind the ground wire [2] between the washers [5] twice.
 - └ If grounding is not required for non-explosion-proof applications, skip this step.
- 4. Secure the nut [6] with a wrench [7].

This completes the displacer installation procedure.

A0028694

■ 16 Displacer installation


- 1 Wire ring
- 2 Ground wire
- 3 Displacer
- 4 Securing wire
- 5 Washer
- 6 Nut
- 7 Wrench

PTFE displacer installation

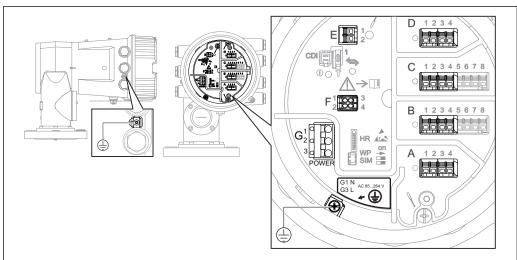
- 1. Remove the screw [1] using a flathead screwdriver.
- 2. Mount the displacer [4] on the PFA covered ring [2].
- 3. Remove the PFA cover approximately 10 mm (0.39 in) for conductivity.
- 4. Install the ground wire [6] onto the displacer from the wire insertion slot [3] until the ground wire contacts to the wall of the screw hole [5].
- 5. Tighten the screw [1].
 - ► Hold the ground wire with finger tips so that the wire does not come out from the slot.
- 6. Lift the displacer using a screwdriver and confirm that the ground wire does not come out from the slot.

This completes the PTFE displacer installation.

Proservo NMS80 Installation

■ 17 PTFE displacer installation; dimensions mm (in)

- 2 3 PFA covered ring
- Wire insertion slot
- Displacer
- Screw hole
- Ground wire

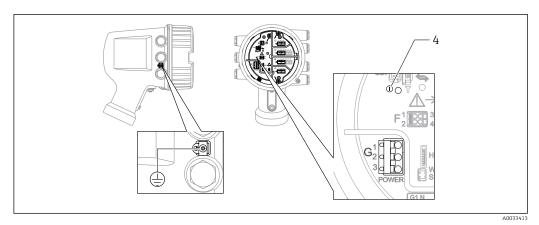

5.3 Post-installation check

0	Is the device undamaged (visual inspection)?
0	Does the device conform to the measuring point specifications? For example: Process temperature Process pressure (refer to the chapter on "Material load curves" of the "Technical Information" document) Ambient temperature range Measuring range
0	Are the measuring point identification and labeling correct (visual inspection)?
0	Is the device adequately protected from precipitation and direct sunlight?

Electrical connection Proservo NMS80

6 Electrical connection

6.1 Terminal assignment


A002690

 $\blacksquare~18~$ Terminal compartment (typical example) and ground terminals

Terminal area	Module	
A/B/C/D (slots for I/O modules)	Up to four I/O modules, depending on the order code ■ Modules with four terminals can be in any of these slots. ■ Modules with eight terminals can be in slot B or C. The exact assignment of the modules to the slots is dependent on the device version → 44.	
Е	HART Ex i/IS interface • E1: H+ • E2: H-	
F	Remote display (in preparation)	
G	Power supply: 85 to 264 V _{AC} G1: N G2: not connected G3: L	
A0018339	Protective ground connection	

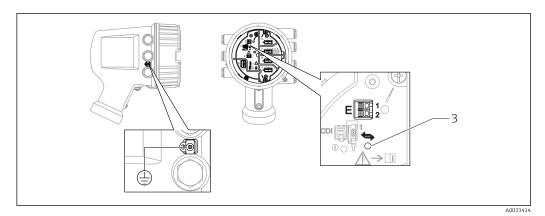
Proservo NMS80 Electrical connection

6.1.1 Power supply

G1 N

G2 not connected

G3 L


4 Green LED: indicates power supply

Supply voltage

85 to 264 $V_{AC},\,50/60$ Hz, 28.8 VA $^{1)}$

The supply voltage is also indicated on the nameplate.

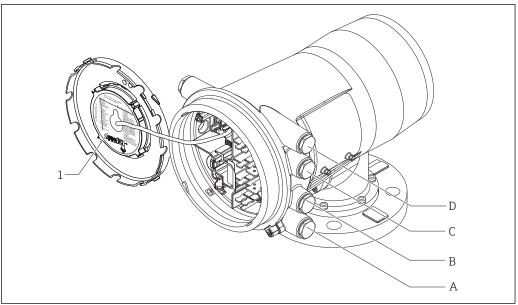
6.1.2 HART Ex i/IS interface

E1 H+

E2 H

3 Orange LED: indicates data communication

This interface always operates as the main HART master for connected HART slave transmitters. The Analog I/O modules, on the other hand, can be configured as a HART master or slave $\rightarrow \implies 50 \rightarrow \implies 52$.


¹⁾ maximum value; actual value depending on modules installed

Electrical connection Proservo NMS80

6.1.3 Slots for I/O modules

The terminal compartment contains four slots (A, B, C and D) for I/O modules. Depending on the device version (ordering features 040, 050 and 060) these slots contain different I/O modules. The table below shows which module is located in which slot for a specific device version.

The slot assignment for the device is also indicated on a label attached to the back cover of the display module.

- 1 Label showing (among other things) the modules in the slots A to D.
- Cable entry for slot A
- Cable entry for slot B
 Cable entry for slot C В
- С
- Cable entry for slot D

Proservo NMS80 Electrical connection

"Primary Output" (040) = "Modbus" (A1)

Ordering feature		Terminal area				
NMx8	3x - xxxx XX X	XX XX				
040 050 060						
040 Primary Output	050 Secondary IO Analog	060 Secondary IO Digital Ex d/XP	A 1234	B 12345678	C 1 2 3 4 5 6 7 8	D 1 2 3 4
A1	X0	X0	Modbus	-	-	-
A1	X0	A1	Modbus	-	-	Digital
A1	X0	A2	Modbus	-	Digital	Digital
A1	X0	A3	Modbus	Digital	Digital	Digital
A1	X0	B1	Modbus	Modbus	-	-
A1	X0	B2	Modbus	Modbus	-	Digital
A1	X0	В3	Modbus	Modbus	Digital	Digital
A1	A1	X0	Modbus	Analog Ex d/XP	-	-
A1	A1	A1	Modbus	Analog Ex d/XP	-	Digital
A1	A1	A2	Modbus	Analog Ex d/XP	Digital	Digital
A1	A1	B1	Modbus	Modbus	Analog Ex d/XP	-
A1	A1	B2	Modbus	Modbus	Analog Ex d/XP	Digital
A1	A2	X0	Modbus	Analog Ex d/XP	Analog Ex d/XP	-
A1	A2	A1	Modbus	Analog Ex d/XP	Analog Ex d/XP	Digital
A1	A2	B1	Modbus	Analog Ex d/XP	Analog Ex d/XP	Modbus
A1	B1	X0	Modbus	Analog Ex i/IS	-	-
A1	B1	A1	Modbus	Analog Ex i/IS	-	Digital
A1	B1	A2	Modbus	Analog Ex i/IS	Digital	Digital
A1	B1	B1	Modbus	Modbus	Analog Ex i/IS	-
A1	B1	B2	Modbus	Modbus	Analog Ex i/IS	Digital
A1	B2	X0	Modbus	Analog Ex i/IS	Analog Ex i/IS	-
A1	B2	A1	Modbus	Analog Ex i/IS	Analog Ex i/IS	Digital
A1	B2	B1	Modbus	Analog Ex i/IS	Analog Ex i/IS	Modbus
A1	C2	X0	Modbus	Analog Ex i/IS	Analog Ex d/XP	-
A1	C2	A1	Modbus	Analog Ex i/IS	Analog Ex d/XP	Digital
A1	C2	B1	Modbus	Analog Ex i/IS	Analog Ex d/XP	Modbus

Electrical connection Proservo NMS80

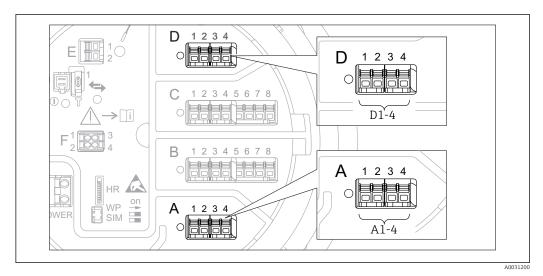
"Primary Output" (040) = "V1" (B1)

Ordering feature		Terminal area				
NMx8	3x - xxxx <u>XX</u> <u>X</u>	XX XX 50 060				
040 Primary Output	050 Secondary IO Analog	060 Secondary IO Digital Ex d/XP	A 1234	B 12345678	C 1 2 3 4 5 6 7 8	D 1 2 3 4
						A0023888
B1	X0	X0	V1	-	-	-
B1	X0	A1	V1	-	-	Digital
B1	X0	A2	V1	-	Digital	Digital
B1	X0	A3	V1	Digital	Digital	Digital
B1	X0	B1	V1	Modbus		-
B1	X0	B2	V1	Modbus		Digital
B1	X0	B3	V1	Modbus	Digital	Digital
B1	A1	X0	V1	Analog Ex d/XP	-	-
B1	A1	A1	V1	Analog Ex d/XP	-	Digital
B1	A1	A2	V1	Analog Ex d/XP	Digital	Digital
B1	A1	B1	V1	Modbus	Analog Ex d/XP	-
B1	A1	B2	V1	Modbus	Analog Ex d/XP	Digital
B1	A2	X0	V1	Analog Ex d/XP	Analog Ex d/XP	-
B1	A2	A1	V1	Analog Ex d/XP	Analog Ex d/XP	Digital
B1	A2	B1	V1	Analog Ex d/XP	Analog Ex d/XP	Modbus
B1	B1	X0	V1	Analog Ex i/IS	-	-
B1	B1	A1	V1	Analog Ex i/IS	-	Digital
B1	B1	A2	V1	Analog Ex i/IS	Digital	Digital
B1	B1	B1	V1	Modbus	Analog Ex i/IS	-
B1	B1	B2	V1	Modbus	Analog Ex i/IS	Digital
B1	B2	X0	V1	Analog Ex i/IS	Analog Ex i/IS	-
B1	B2	A1	V1	Analog Ex i/IS	Analog Ex i/IS	Digital
B1	B2	B1	V1	Analog Ex i/IS	Analog Ex i/IS	Modbus
B1	C2	X0	V1	Analog Ex i/IS	Analog Ex d/XP	-
B1	C2	A1	V1	Analog Ex i/IS	Analog Ex d/XP	Digital
B1	C2	B1	V1	Analog Ex i/IS	Analog Ex d/XP	Modbus

Proservo NMS80 Electrical connection

"Primary Output" (040) = "4-20mA HART Ex d" (E1)

Ordering feature		Terminal area				
NMx8	NMx8x - xxxx <u>XX</u> <u>XX</u> <u>XX</u> 040 050 060					
040 Primary Output	050 Secondary IO Analog	060 Secondary IO Digital Ex d/XP	A 1234	B 12345678	C 1 2 3 4 5 6 7 8	D 1 2 3 4 4
E1	X0	X0	-	Analog Ex d/XP	-	-
E1	X0	A1	-	Analog Ex d/XP	-	Digital
E1	X0	A2	-	Analog Ex d/XP	Digital	Digital
E1	X0	A3	Digital	Analog Ex d/XP	Digital	Digital
E1	X0	B1	Modbus	Analog Ex d/XP	-	-
E1	X0	B2	Modbus	Analog Ex d/XP	-	Digital
E1	X0	В3	Modbus	Analog Ex d/XP	Digital	Digital
E1	A1	X0	-	Analog Ex d/XP	Analog Ex d/XP	-
E1	A1	A1	-	Analog Ex d/XP	Analog Ex d/XP	Digital
E1	A1	A2	Digital	Analog Ex d/XP	Analog Ex d/XP	Digital
E1	A1	B1	Modbus	Analog Ex d/XP	Analog Ex d/XP	-
E1	AQ1	B2	Modbus	Analog Ex d/XP	Analog Ex d/XP	Digital
E1	B1	XO	-	Analog Ex d/XP	Analog Ex i/IS	-
E1	B1	A1	-	Analog Ex d/XP	Analog Ex i/IS	Digital
E1	B1	A2	Digital	Analog Ex d/XP	Analog Ex i/IS	Digital
E1	B1	B1	Modbus	Analog Ex d/XP	Analog Ex i/IS	-
E1	B1	B2	Modbus	Analog Ex d/XP	Analog Ex i/IS	Digital


Electrical connection Proservo NMS80

"Primary Output" (040) = "4-20mA HART Ex i" (H1)

Ordering feature		Terminal area				
NMx8x - xxxx XX XX XX XX 040 050 060						
040 Primary Output	050 Secondary IO Analog	060 Secondary IO Digital Ex d/XP	A 1234	B 12345678	C 1 2 3 4 5 6 7 8	2 3 4 A0023888
H1	X0	X0	-	Analog Ex i/IS	-	-
H1	X0	A1	-	Analog Ex i/IS	-	Digital
H1	X0	A2	-	Analog Ex i/IS	Digital	Digital
H1	X0	A3	Digital	Analog Ex i/IS	Digital	Digital
H1	X0	B1	Modbus	Analog Ex i/IS	-	-
H1	X0	B2	Modbus	Analog Ex i/IS	-	Digital
H1	X0	В3	Modbus	Analog Ex i/IS	Digital	Digital
H1	A1	X0	-	Analog Ex i/IS	Analog Ex d/XP	-
H1	A1	A1	-	Analog Ex i/IS	Analog Ex d/XP	Digital
H1	A1	A2	Digital	Analog Ex i/IS	Analog Ex d/XP	Digital
H1	A1	B1	Modbus	Analog Ex i/IS	Analog Ex d/XP	-
H1	A1	B2	Modbus	Analog Ex i/IS	Analog Ex d/XP	Digital
H1	B1	X0	-	Analog Ex i/IS	Analog Ex i/IS	-
H1	B1	A1	-	Analog Ex i/IS	Analog Ex i/IS	Digital
H1	B1	A2	Digital	Analog Ex i/IS	Analog Ex i/IS	Digital
H1	B1	B1	Modbus	Analog Ex i/IS	Analog Ex i/IS	-
H1	B1	B2	Modbus	Analog Ex i/IS	Analog Ex i/IS	Digital

Proservo NMS80 Electrical connection

6.1.4 Terminals of the "Modbus" or "V1" module

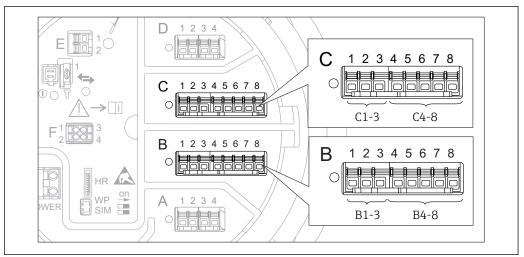
Designation of the "Modbus" or "V1" modules (examples); depending on the device version these modules may also be in slot B or C.

Depending on the device version, the "Modbus" and/or "V1" module may be in different slots of the terminal compartment. In the operating menu the "Modbus" and "V1" interfaces are designated by the respective slot and the terminals within this slot: **A1-4**, **B1-4**, **C1-4**, **D1-4**.

Terminals of the "Modbus" module

Terminal 1)	Name	Description
X1	S	Cable shielding connected via a capacitor to EARTH
X2	0V	Common reference
Х3	B-	Non-inverting signal line
X4	A+	Inverting signal line
Designation of the module in the operating menu: Modbus X1-4 ; (X = A, B, C or D)		

I) In this column, "X" stands for one of the slots "A", "B", "C", or "D".

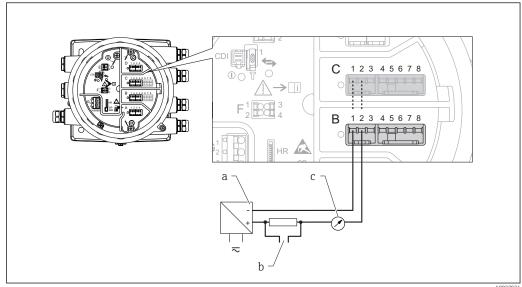

Terminals of the "V1" module

Terminal 1)	Name	Description
X1	S	Cable shielding connected via capacitor to EARTH
X2		not connected
Х3	B-	Protocol loop signal -
X4	A+	Protocol loop signal +
Designation of the module in the operating menu: $V1 X1-4$; (X = A, B, C or D)		

1) In this column, "X" stands for one of the slots "A", "B", "C", or "D".

Electrical connection Proservo NMS80

Terminals of the "Analog I/O" module (Ex d /XP or Ex i/IS) 6.1.5

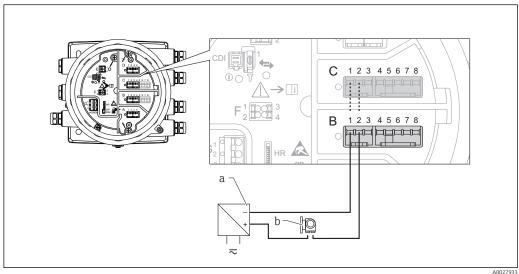


Terminals	Function	Connection diagrams	Designation in the operating menu
B1-3	Analog input or output	■ Passive usage: → 🖺 50	Analog I/O B1-3 (→ 🗎 206)
C1-3 (configurable)		■ Active usage: → 🖺 52	Analog I/O C1-3 (→ 🖺 206)
B4-8	Analog input	RTD: → 🖺 53	Analog IP B4-8 (→ 🖺 200)
C4-8			Analog IP C4-8 (→ 🖺 200)

6.1.6 Connection of the "Analog I/O" module for passive usage

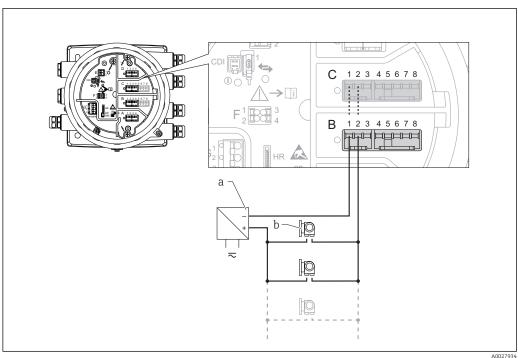
- In the passive usage the supply voltage for the communication line must be supplied by an external source.
 - The wiring must be in accordance with the intended operating mode of the Analog I/O module ($\rightarrow \triangle$ 206); see the drawings below.

"Operating mode" = "4..20mA output" or "HART slave +4..20mA output"



■ 20 Passive usage of the Analog I/O module in the output mode

- Power supply
- HART signal output
- Analog signal evaluation

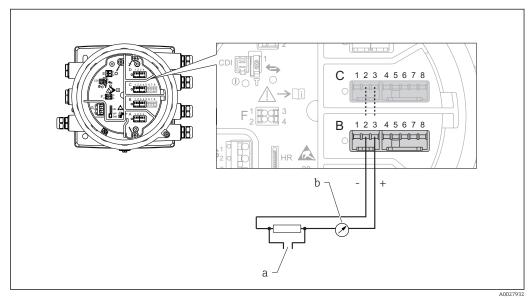

Proservo NMS80 Electrical connection

"Operating mode" = "4..20mA input" or "HART master+4..20mA input"

- \blacksquare 21 Passive usage of the Analog I/O module in the input mode
- а Power supply
- External device with 4...20mA and/or HART signal output

"Operating mode" = "HART master"

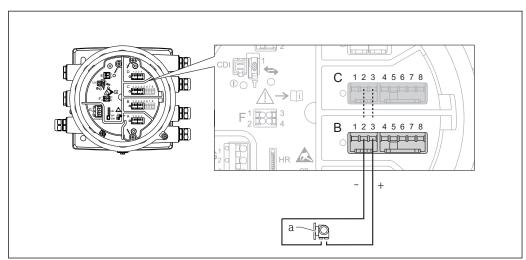
 \blacksquare 22 Passive usage of the Analog I/O module in the HART master mode


- Up to 6 external devices with HART signal output

Electrical connection Proservo NMS80

6.1.7 Connection of the "Analog I/O" module for active usage

- In the active usage the supply voltage for the communication line is supplied by the device itself. There is no need of an external power supply.
- Maximum current consumption of the connected HART devices: 24 mA (i.e. 4 mA per device if 6 devices are connected).
 - Output voltage of the Ex-d module: 17.0 V@4 mA to 10.5 V@22 mA
 - Output voltage of the Ex-ia module: 18.5 V@4 mA to 12.5 V@22 mA

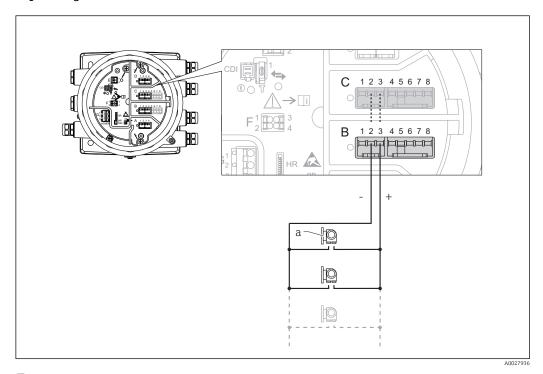

"Operating mode" = "4..20mA output" or "HART slave +4..20mA output"

 \blacksquare 23 Active usage of the Analog I/O module in the output mode

- a HART signal output
- b Analog signal evaluation

"Operating mode" = "4..20mA input" or "HART master+4..20mA input"

 \blacksquare 24 Active usage of the Analog I/O module in the input mode

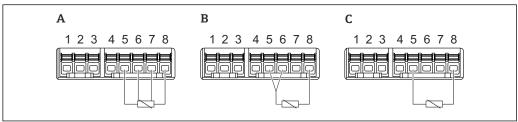

a External device with 4...20mA and/or HART signal output

52 Endress+Hauser

A002793

Proservo NMS80 Electrical connection

"Operating mode" = "HART master"

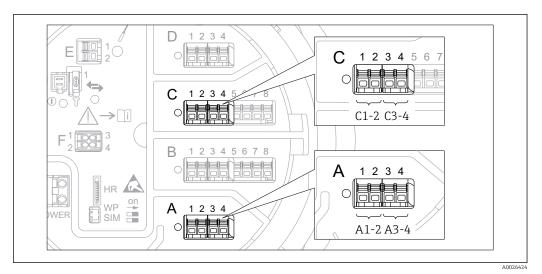


 \blacksquare 25 Active usage of the Analog I/O module in the HART master mode

a Up to 6 external devices with HART signal output

The maximum current consumption for the connected HART devices is 24 mA (i.e. 4 mA per device if 6 devices are connected).

6.1.8 Connection of a RTD


A002637

A 4-wire RTD connection B 3-wire RTD connection

C 2-wire RTD connection

Electrical connection Proservo NMS80

6.1.9 Terminals of the "Digital I/O" module

■ 26 Designation of the digital inputs or outputs (examples)

- Each Digital IO Module provides two digital inputs or outputs.
- In the operating menu each input or output is designated by the respective slot and two terminals within this slot. **A1-2**, for example, denotes terminals 1 and 2 of slot **A**. The same is valid for slots **B**, **C** and **D** if they contain a Digital IO module.
- For each of these pairs of terminals, one of the following operating modes can be selected in the operating menu ($\rightarrow \triangleq 216$):
 - Disable
 - Passive Output
 - Passive Input
 - Active Input

Proservo NMS80 Electrical connection

6.2 Connecting requirements

6.2.1 Cable specification

Terminals

Terminal	Wire cross section
Signal and power supply Spring terminals (NMx8x-xx1) Screw terminals (NMx8x-xx2)	0.2 to 2.5 mm ² (24 to 13 AWG)
Ground terminal in the terminal compartment	max. 2.5 mm ² (13 AWG)
Ground terminal at the housing	max. 4 mm ² (11 AWG)

Power supply line

Standard device cable is sufficient for the power line.

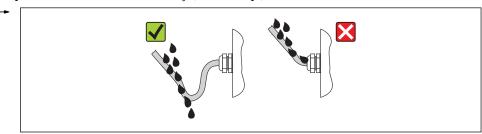
HART communication line

- Standard device cable is sufficient if only the analog signal is used.
- Shielded cable is recommended if using the HART protocol. Observe the grounding concept of the plant.

Modbus communication line

- Observe the cable conditions from the TIA-485-A, Telecommunications Industry Association.
- Additional conditions: Use shielded cable.

V1 communication line


- Two wire (twisted pair) screened or un-screened cable
- Resistance in one cable: $\leq 120 \Omega$
- Capacitance between lines: $\leq 0.3 \mu F$

Electrical connection Proservo NMS80

6.3 Ensuring the degree of protection

To guarantee the specified degree of protection, carry out the following steps after the electrical connection:

- 1. Check that the housing seals are clean and fitted correctly. Dry, clean or replace the seals if necessary.
- 2. Tighten all housing screws and screw covers.
- 3. Firmly tighten the cable glands.
- 4. To ensure that moisture does not enter the cable entry, route the cable so that it loops down before the cable entry ("water trap").

5. Insert blind plugs appropriate for the safety rating of the device (e.g. Ex d/XP).

6.4 Post-connection check

0	Are cables or the device undamaged (visual inspection)?
О	Do the cables comply with the requirements?
О	Do the cables have adequate strain relief?
О	Are all cable glands installed, firmly tightened and correctly sealed?
О	Does the supply voltage match the specifications on the transmitter nameplate?
О	Is the terminal assignment correct → 🖺 42?
0	If required: Is the protective earth connected correctly?
0	If supply voltage is present: Is the device ready for operation and do values appear on the display module?
0	Are all housing covers installed and firmly tightened?
О	Is the securing clamp tightened correctly?

7 Operability

7.1 Overview of the operation options

- The display and operating module at the device (local operation; $\rightarrow \triangleq 60$).

- FieldCare connected through Commubox FXA195 (\rightarrow 🖺 150) to a HART interface of the device.
- Confirm that the servo motor stops before changing parameters for safety use.

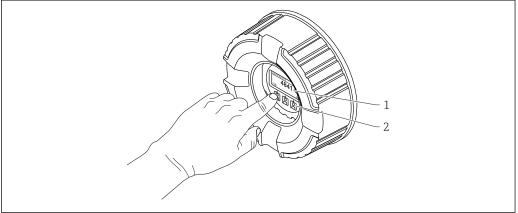
Operability Proservo NMS80

7.2 Structure and function of the operating menu

Menu	Submenu / parameter	Meaning
Operation	Proservo parameters	Contains parameters to operate Proservo (e.g. Gauge command).
	Level	Shows the measured and calculated level values.
	Temperature	Shows the measured and calculated temperature values.
	Density	Shows the measured and calculated density values.
	Pressure	Shows the measured and calculated pressure values.
	GP values	Shows the general purpose values.
Setup	Standard parameters	Standard commissioning parameters
	Calibration	Calibration of the measurement
	Advanced setup	Contains further parameters and submenus: • to adapt the device to special measuring conditions. • to process the measured value. • to configure the signal output.
Diagnostics	Diagnostic parameters	 Indicates: The latest diagnostic messages and their timestamps. The operating time (overall time and time since last restart). The time according to the real-time clock.
	Diagnostic list	Contains up to 5 currently active error messages.
	Device information	Contains information needed to identify the device.
	Simulation	Used to simulate measured values or output values.
	Device check	Contains all parameters needed to check the measurement capability of the device.
Expert ¹⁾ Contains all parameters of the device (including those which are already contained in	System	Contains all general device parameters which do not affect the measurement or the communication interface.
one of the other menus). This menu is organized according to the function blocks of the device.	Sensor	Contains all parameters needed to configure the measurement.
The parameter of the Expert menu are described in: GP01074G (NMS80)	Input/output	Contains submenus to configure the analog and discrete I/O modules and connected HART devices.
	Communication	Contains all parameters needed to configure the digital communication interface.
	Application	Contains submenus to configure the tank gauging application the tank calculations the alarms.

Menu	Submenu / parameter	Meaning
	Tank values	Shows measured and calculated tank values
	Diagnostics	Contains all parameters needed to detect and analyze operational errors.

1) On entering the "Expert" menu, an access code is always requested. If a customer specific access code has not been defined, "0000" has to be entered.

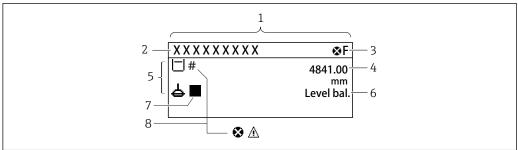

Operability Proservo NMS80

7.3 Access to the operating menu via the local display

7.3.1 Display and operating elements

The device has an illuminated **liquid crystal display (LCD)** that shows measured and calculated values as well as the device status in the standard view. Other views are used to navigate through the operating menu and to set parameter values.

The device is operated by **three optical keys**, namely "-", "+" and "E". They are actuated when the appropriate field on the protective glass of the front is touched with the finger ("touch control").



A002834

■ 27 Display and operating elements

- 1 Liquid crystal display (LCD)
- 2 Optical keys; can be operated through the cover glass.

7.3.2 Standard view (measured value display)

Δ0028702

■ 28 Typical appearance of the standard view (measured value display)

- 1 Display module
- 2 Device tag
- 3 Status area
- 4 Display area for measured values
- 5 Display area for measured value and status symbols
- 6 Gauge status indication
- 7 Gauge status symbol
- 8 Measured value status symbol

Status symbols

Symbol	Meaning
A0013956	"Failure" A device error is present. The measured value is no longer valid.
A0013959	"Function check" The device is in service mode (e.g. during a simulation).
S	"Out of specification" The device is operated: Outside of its technical specifications (e.g. during startup or a cleaning) Outside of the configuration carried out by the user (e.g. level outside configured span)
A0013957	"Maintenance required" Maintenance is required. The measured value is still valid.

Measured value symbols

Symbol 1	Symbol 2	Measured value
A0028148		Tank levelMeasured levelTank level %
A0028149		Water level
T		Liquid temperature
Т	V	Vapor temperature
A0028528	A0027990	
Т	A	Air temperature
A0028528	A0027991	
A0027993		■ Tank ullage ■ Tank ullage %
P		Observed density value
A0028150		

Operability Proservo NMS80

Symbol 1	Symbol 2	Measured value
P	Α	Average profile density
A0028150	A0027991	
p	1	P1 (bottom)
A0028151	A0028141	
p	(2)	P2 (middle)
A0028151	A0028142	
p	3	P3 (top)
A0028151	A0028146	
G	1	GP 1 value
A0027992	A0028141	This is used for an external device.
G	(2)	GP 2 value
A0027992	A0028142	This is used for an external device.
G	3	GP 3 value
A0027992	A0028146	This is used for an external device.
G	4	GP 4 value
A0027992	A0028147	This is used for an external device.
	U	Upper I/F level
A0028149	A0028529	
	L	Lower I/F level
A0028149	A0027989	
ρ	U	Upper density
A0028150	A0028529	Middle deseite
ρ	M	Middle density
A0028150	A0013957	Lower density
P	L	Lower density
A0028150	A0027989	Bottom level
A0028145		Dottom iever
运		Displacer position
A0027994		

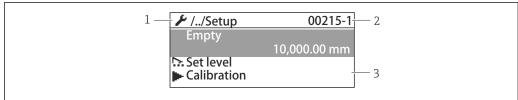
Gauge command and gauge status symbols

Symbol 1	Symbol 2	Meaning
A0028139		Gauge command This shows current command.
A0028143 A0028144	A0027995 A0028138 A0028140	Gauge status d: Displacer is unbalanced (Level/Interface not found yet). d: Displacer is balanced (Level/Interface measurement valid). f: Displacer is moving up. li>Displacer is moving down. li>Displacer stopped.

Measured value status symbols

Symbol	Meaning
A0012102	Status "Alarm" The measurment is interrupted. The output assumes the defined alarm value. A diagnostic message is generated.
A0012103	Status "Warning" The device continues measuring. A diagnostic message is generated.
A0031169	Calibration to regulatory standards disturbed Is displayed in the following situations: ■ The write protection switch is OFF. → 🗎 71 ■ The write protection switch is ON but the level value can currently not be guaranteed because the displacer is not balanced.

Locking state symbols


Symbol	Meaning
A0011978	Display parameter Marks display-only parameters which cannot be edited.
Д	Device locked
A0011979	 In front of a parameter name: The device is locked via software and/or hardware. In the header of the measured value screen: The device is locked via hardware.

${\it Meaning of the keys in the standard view}$

Key	Meaning
—————————————————————————————————————	 Enter key Pressing the key briefly opens the operating menu. Pressing the key for 2 s opens the context menu: Level (visible if the keylock is inactive):

Operability Proservo NMS80

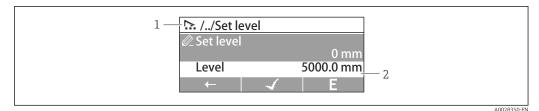
7.3.3 Navigation view

A0028347-E

■ 29 Navigation view

- 1 Current submenu or wizard
- 2 Quick access code
- 3 Display area for navigation

Navigation symbols


Symbol	Meaning
A0011975	Operation Is displayed: in the main menu next to the selection Operation in the header, if you are in the Operation menu.
A0011974	Setup Is displayed: in the main menu next to the selection Setup in the header, if you are in the Setup menu
A0011976	Expert Is displayed: in the main menu next to the selection Expert in the header, if you are in the Expert menu
Q _r	Diagnostics Is displayed: ■ in the main menu next to the selection Diagnostics ■ in the header, if you are in the Diagnostics menu
A0013967	Submenu
A0013968	Wizard
A0013963	Parameter locked When displayed in front of a parameter name, indicates that the parameter is locked.

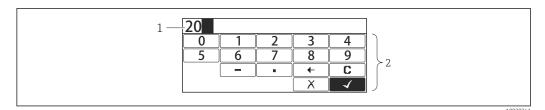
Meaning of the keys in the navigation view

Кеу	Meaning
	Minus key Moves the selection bar upwards in a picklist.
—	Plus key Moves the selection bar downwards in a picklist.
— ⊕ ⊕ t A0028326	 Enter key Pressing the key briefly opens the selected menu, submenu or parameter. For parameters: Pressing the key for 2 s opens the help text for the function of the parameter (if present).
—————————————————————————————————————	Escape key combination (press keys simultaneously) ■ Pressing the keys briefly — Exits the current menu level and takes you to the next higher level. — If help text is open, closes the help text of the parameter. ■ Pressing the keys for 2 s returns you to the measured value display ("standard view").

Operability Proservo NMS80


7.3.4 Wizard view

 \blacksquare 30 Wizard view on the display module


- Current wizard
- 2 Display area for navigation

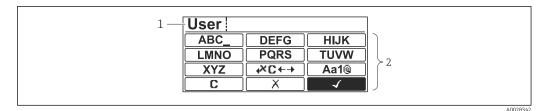
Wizard navigation symbols

In the wizard view the meaning of the keys is indicated by the navigation symbol directly above the respective key (softkey functionality).

7.3.5 Numeric editor

 \blacksquare 31 Numeric editor on the display module

- Display area of the entered value
- 2 Input mask


Symbol	Meaning
0	Selection of numbers from 0 to 9.
9	
A0013998	
	Inserts decimal separator at the input position.
A0016619	
	Inserts minus sign at the input position.
A0016620	
4	Confirms selection.
A0013985	
+	Moves the input position one position to the left.
A0016621	
X	Exits the input without applying the changes.
A0013986	
C	Clears all entered characters.
A0014040	

Meaning of the keys in the numeric editor

	Key			Meaning
<u> </u>	0+		A0028324	Minus key In the input mask, moves the selection bar to the left (backwards).
	0+	OE C	A0028325	Plus key In the input mask, moves the selection bar to the right (forwards).
	©+	() E	A0028326	 Enter key Pressing the key briefly adds the selected number to the current decimal place or carries out the selected action. Pressing the key for 2 s confirms the edited parameter value.
O _	0+	©E	A0028327	Escape key combination (press keys simultaneously) Closes the text or numeric editor without applying changes.

Operability Proservo NMS80

7.3.6 Text editor

 \blacksquare 32 Text editor on the display module

- 1 Display area of the entered text
- 2 Input mask

Text editor symbols

Symbol	Meaning
(ABC_)	Selection of letters from A to Z
XYZ	
A0013997	
Aa1 @	Toggle Between upper-case and lower-case letters For entering numbers For entering special characters
A0013985	Confirms selection.
4× C ← →	Switches to the selection of the correction tools.
X A0013986	Exits the input without applying the changes.
A0014040	Clears all entered characters.

Correction symbols under $\nearrow c \leftrightarrow$

A0013989	Clears all entered characters.
A0013991	Moves the input position one position to the right.
A0013990	Moves the input position one position to the left.
*	Deletes one character immediately to the left of the input position.
A0013988	

Meaning of the keys in the text editor

	Key			Meaning
<u> </u>	(a)	©E	A0028324	Minus key In the input mask, moves the selection bar to the left (backwards).
	+	□ E	A0028325	Plus key In the input mask, moves the selection bar to the right (forwards).
				Enter key
<u> </u>	©+		A0028326	 Pressing the key briefly Opens the selected group. Carries out the selected action. Pressing the key for 2 s confirms the edited parameter value.
© -	0+	□ E	A0028327	Escape key combination (press keys simultaneously) Closes the text or numeric editor without applying changes.

7.3.7 Keypad lock

Automatic keypad lock

Operation via the local display is automatically locked:

- after a start-up or restart of the device.
- if the device has not been operated via the display for > 1 minute.
- When attempting to access the operating menu while the keylock is enabled, the **Keylock on** message appears.

Disabling the keypad lock

- 1. The keylock is enabled.
 - Press E for at least 2 seconds.
 - ► A context menu appears.
- 2. Select **Keylock off** from the context menu.
 - The keylock is disabled.

Manual activation of the keypad lock

After commissioning of the device the keypad lock can be activated manually.

- 1. The device is in the measured value display.
 - Press E for at least 2 seconds.
 - ► A context menu appears.
- 2. Select **Keylock on** from the context menu.
 - ► The keylock is enabled.

Operability Proservo NMS80

7.3.8 Access code and user roles

Meaning of the access code

An access code can be defined in order to distinguish between the following user roles:

User role	Definition	
Maintenance	Knows the access code.Has write access to all parameters (except service parameters).	
Operator	Doesn't know the access code.Has write access to only a few parameters.	

- The description of parameters states which role is needed at least for read and write access to each parameter.
 - The current user role is indicated by the **Access status display** parameter.
 - If the access code is "0000", every user is in the **Maintenance** role. This is the default setting on delivery of the device.

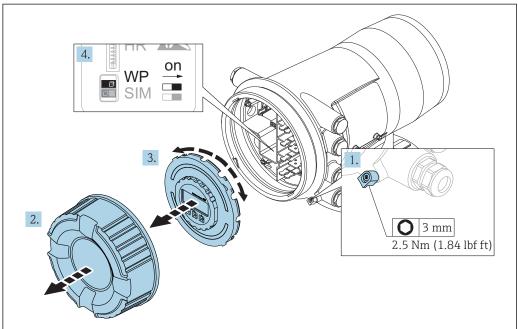
Defining an access code

- Navigate to: Setup → Advanced setup → Administration → Define access code
 Define access code
- 2. Enter the intended access code (max. 4 digits).
- 3. Repeat the same code in the **Confirm access code** parameter.
 - The user is in the **Operator** role. The symbol appears in front of all write-protected parameters.

Switching to the "Maintenance" role

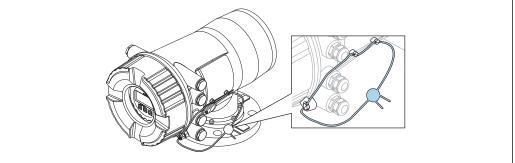
If the $\widehat{\mbox{\ }}$ -symbol appears on the local display in front of a parameter, the parameter is write-protected because the user is in the **Operator** role. To switch to the **Maintenance** role, proceed as follows:

- 1. Press E.
 - ► The input prompt for the access code appears.
- 2. Enter the access code.
 - The user is in the **Maintenance** role. The a-symbol in front of the parameters disappears; all previously write-protected parameters are now re-enabled.


Switching back to the "Operator" role automatically

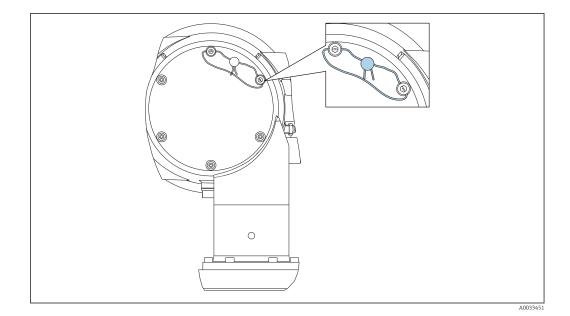
The user automatically switches back to the **Operator** role:

- if no key is pressed for 10 minutes in the navigation and editing mode.
- 60 s after going back from the navigation and editing mode to the standard view (measured value display).

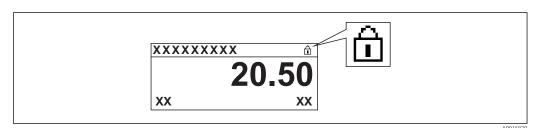

7.3.9 Write protection switch

The operating menu can be locked by a hardware switch in the connection compartment. In this locking state W&M related parameters are read only.

A0030122


- 1. Loosen the securing clamp.
- 2. Unscrew the housing cover.
- 3. Pull out the display module with a gentle rotation movement.
- 4. Using a flat blade screwdriver or a similar tool, set the write protection switch **(WP)** into the desired position. **ON:** operating menu is locked; **OFF:** operating menu is unlocked.
- 5. Put the display module onto the connection compartment, screw the cover closed and tighten the securing clamp.
- To avoid acces to the write protection switch, the cover of the connection compartment can be secured by a lead seal.

A0033284

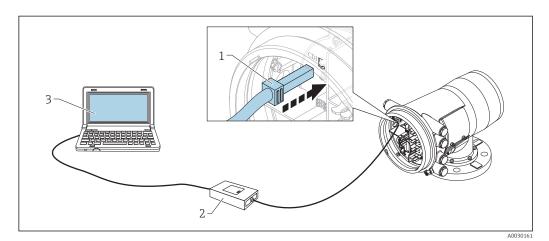

The display module can be attached to the edge of the electronics compartment. This makes it easier to access the lock switch.

Operability Proservo NMS80

NMS80: Display module attached to the edge of the terminal compartment

Indication of the locking state

₹ 34 Write protection symbol in the header of the display


Write protection via locking switch is indicated as follows:

■ Locking status (→ 🖺 192) = Hardware locked

■ 📾 appears in the header of the display.

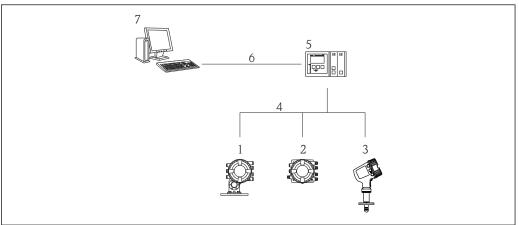
Proservo NMS80 Operability

7.4 Access to the operating menu via the service interface and FieldCare

■ 35 Operation via service interface

- 1 Service interface (CDI = Endress+Hauser Common Data Interface)
- 2 Commbox FXA291
- 3 Computer with "FieldCare" operating tool and "CDI Communication FXA291" COM DTM

The "Save/Restore" function


After a device configuration has been saved to a computer and restored to the device using the **Save/Restore** function of FieldCare, the device must be restarted by the following setting:

Setup \rightarrow Advanced setup \rightarrow Administration \rightarrow Device reset = Restart device. This ensures correct operation of the device after the restore.

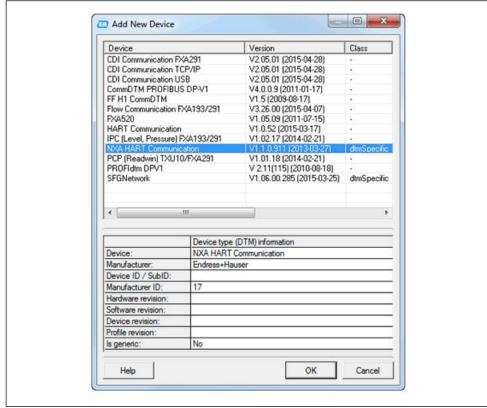
Operability Proservo NMS80

7.5 Access to the operating menu via Tankvision Tank Scanner NXA820 and FieldCare

7.5.1 Wiring scheme

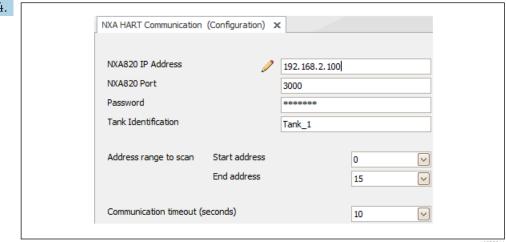
A0025621

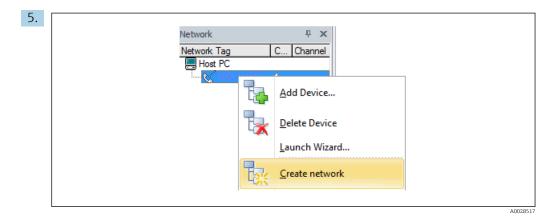
 \blacksquare 36 Connection of Tank Gauging devices to FieldCare via the Tankvision Tank Scanner NXA820


- 1 Proservo NMS8x
- 2 Tankside Monitor NRF81
- 3 Micropilot NMR8x
- 4 Field protocol (e.g. Modbus, V1)
- 5 Tankvision Tank Scanner NXA820
- 6 Ethernet
- 7 Computer with FieldCare installed

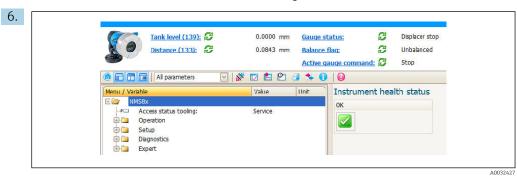
Proservo NMS80 Operability

7.5.2 Establishing the connection between FieldCare and the device


- 1. Make sure the **HART CommDTM NXA** is installed and update the DTM catalogue if required.
- 2. Create a new project in FieldCare.


Add a new device: NXA HART Communication

4.


Open the configuration of the DTM and enter the required data (IP address of the NXA820; "Password" = "hart"; "Tank identification" only with NXA V1.05 or higher)

Operability Proservo NMS80

Select **Create network** from the context menu.

► The device is detected and the DTM is assigned.

The device can be configured.

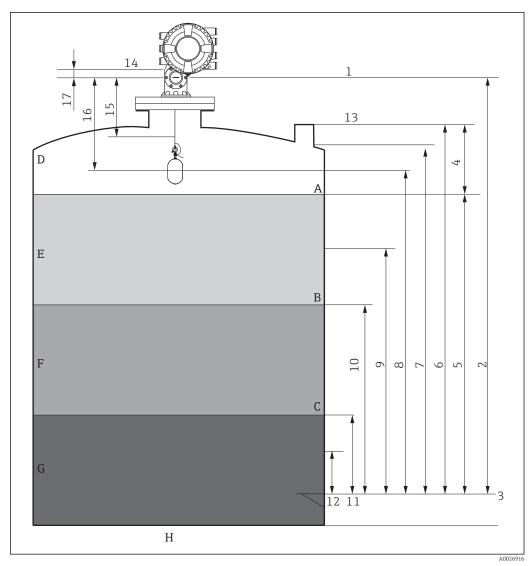
The "Save/Restore" function

After a device configuration has been saved to a computer and restored to the device using the **Save/Restore** function of FieldCare, the device must be restarted by the following setting:

Setup \rightarrow Advanced setup \rightarrow Administration \rightarrow Device reset = Restart device. This ensures correct operation of the device after the restore.

Proservo NMS80 System integration

8 System integration


8.1 Overview of the Device Description files (DTM)

To integrate the device via HART into FieldCare, a Device Description file (DTM) according to the following specification is required:

Manufacturer ID	0x11
Device type (NMS8x)	0x112D
HART specification	7.0
DD files	For information and files see: www.endress.com

9 Commissioning

9.1 Terms related to tank measurement

■ 37 Terms concerning NMS8x installation (e.g. NMS81)

- A Liquid level
- B Upper interface
- C Lower interface
- D Gas phase
- E Upper phase
- F Middle phase
- G Lower phase
- H Tank bottom
- 1 Gauge reference height
- 2 Empty
- 3 Datum plate
- 4 Tank ullage
- 5 Tank level
- 6 Tank reference height
- 7 High stop level
- 8 Displacer position
- 9 Standby level
- 10 Upper interface level
- 11 Lower interface level
- 12 Low stop level
- 13 Dipping reference

- 14 Mechanical stop
- 15 Slow hoist zone
- 16 Distance
- 17 Reference position

9.2 Initial settings

Depending on NMS8x specification, some of the initial settings described below may not be required.

9.2.1 Setting the display language

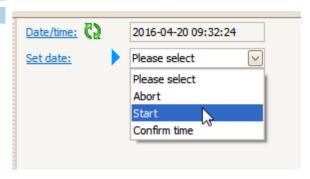
Setting the display language via the display module

- 1. While in the standard view ($\rightarrow \triangleq 61$), press "E". If required, select **Keylock off** from the context menu and press "E" again.
 - **└** The **Language** parameter appears.
- 2. Open the **Language** parameter and select the display language.

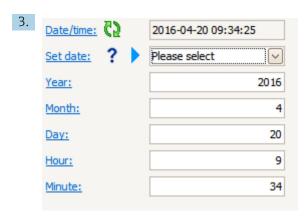
Setting the display language via an operating tool (e.g. FieldCare)

- 1. Navigate to: Setup → Advanced setup → Display → Language
- 2. Select the display language.
- This setting only affects the language on the display module. To set the language in the operating tool use the language setting functionality of FieldCare or DeviceCare, respectively.

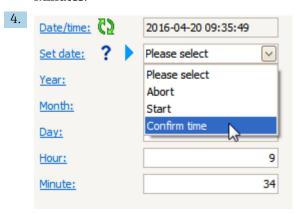
9.2.2 Setting the real-time clock


Setting the real-time clock via the display module

- 1. Navigate to: Setup \rightarrow Advanced setup \rightarrow Date / time \rightarrow Set date
- 2. Use the following parameters to set the the real-time clock to the current date and time: Year, Month, Day, Hour, Minutes.


Setting the real-time clock via an operating tool (e.g. FieldCare)

1. Navigate to: Setup → Advanced setup → Date / time



Go to the **Set date** parameter and select the **Start** option.

Use the following parameters to set the date and time: Year, Month, Day, Hour, Minutes.

Go to the **Set date** parameter and select the **Confirm time** option.

► The real-time clock is set to the current date and time.

80

9.3 Calibration

After installing or replacing NMS8x or its parts (sensor module, detector unit, wire drum, or measuring wire), several calibration steps are required. All calibration steps may not be required, depending on whether the device is being installed, adjusted, or replaced (see table below).

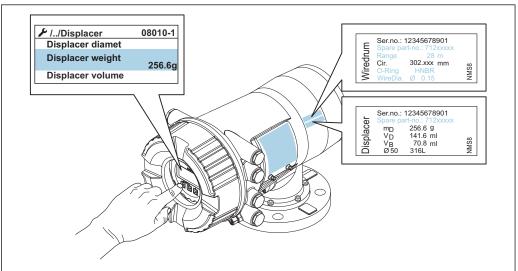
Type of install	ation/replacement	Calibration step		
		Sensor calibration	Reference calibration	Drum calibration
All-in one		Not required	Not required	Not required
Displacer shipped separately		Required	Required	Required
Displacer installation through calibration window		Required	Required	Required
Replacement/ Drum		Required	Required	Required
maintenance	Displacer	Not required	Required	Required
	Sensor module	Not required	Required	Required
	Detector unit	Required	Required	Required

9.3.1 Verification of displacer and wire drum

Prior to installation of NMS8x, confirm that all of the following data of the displacer and the wire drum on the nameplate match with those programmed into the device.

Parameters to be confirmed

Parameters	Navigate to:
Displacer diameter	$Setup \to Advanced \ setup \to Sensor \ config \to Displacer \to Displacer \ diameter$
Displacer weight	$Setup \to Advanced \ setup \to Sensor \ config \to Displacer \to Displacer \ weight$
Displacer volume	$Setup \to Advanced \ setup \to Sensor \ config \to Displacer \to Displacer \ volume$
Displacer balance volume	$Setup \to Advanced \ setup \to Sensor \ config \to Displacer \to Displacer \ balance$ $volume$
Drum circumference	Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Wiredrum
Wire weight	Expert \rightarrow Sensor \rightarrow Sensor config \rightarrow Wiredrum \rightarrow Wire weight

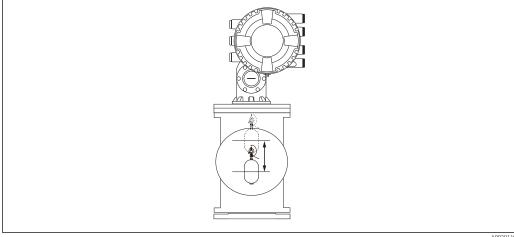

Data verification

Data verification procedure

1. Check the displacer diameter, weight, volume, and balance volume for the **Displacer** diameter parameter, the **Displacer weight** parameter, the **Displacer volume** parameter, and the **Displacer balance volume** parameter.

2. Check the drum circumference and wire weight for the **Drum circumference** parameter and **Wire weight** parameter.

This completes the data verification procedure.


A0030107

9.3.2 Move displacer

The move displacer operation is optional and can be used to change the current position of the displacer in order to perform the calibration steps more easily.

- 1. Make sure that the wire drum stopper has been removed.
- 2. Navigate to: Setup \rightarrow Calibration \rightarrow Move displacer \rightarrow Move distance
- 3. Input the relative moving distance for the **Move distance** parameter.
- 4. Select the **Move down** option or the **Move up** option
- 5. Select the **Yes**.

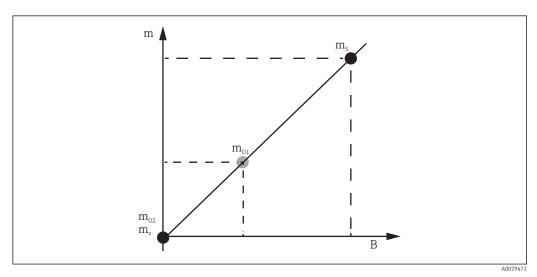
This completes move displacer commands procedure.

A002911

■ 38 Move displacer

82

9.3.3 Sensor calibration


Sensor calibration adjusts the weight measurement of the detector unit. The calibration consists of three steps as follows.

- ADC zero calibration
- ADC offset calibration
- ADC span calibration

For the ADC offset weight calibration, either $0\ g$ or an offset weight (0 to $100\ g$) can be used.

Using an offset weight other than $0\ g$ is recommended for density measurement.

m Weight of displacer

B Binary value of AD-Converter

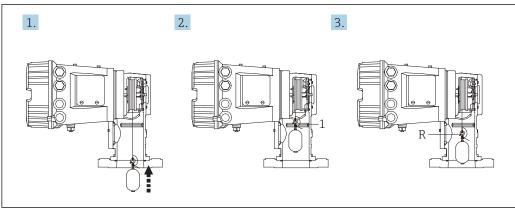
 m_S Span weight

 m_{o1} Offset weight in case of 0 to 100 g (50 g is recommended.)

 m_{o2} Offset weight in case of 0 g

m_z Zero weight

Calibration procedure


Step	Using displacer	Using offset weight	Description
1.	A0028000	A0028000	 Navigate to: Setup → Calibration → Sensor calibration → Sensor calibration Input the offset weight for the Offset weight parameter used in step 3 (0.0 g in case of using the displacer only). Input the value for the Span weight parameter used in step 4 (weight of displacer indicated on nameplate).
2.	A0027999	A0028001	 ■ Hold up or remove the displacer. ■ Select for next parameter. ■ Measuring zero weight option is shown on the display. ■ Wait until the Zero calibration parameter shows the Finished option and calibration status shows Idle. ■ When the displacer is being held up, do not release it until this step is completed.
3.	A0027999	A0028002	 Confirm that the Offset calibration parameter shows the Place offset weight option. Hold up the displacer or attach the offset weight. Select for next parameter. Measuring offset weight option is shown on the display. Wait until the Offset calibration parameter shows the Finished option and Calibration status shows Idle. When the displacer is being held up, do not release it until this step is completed.
4.	A0028000	A0028000	 Release the displacer or mount it on the measuring ring if an offset weight was used in the previous step. Select for next parameter. Measuring span weight option is shown on the display. Confirm that the Span calibration parameter shows the Finished option and Calibration status shows Idle. Select the Next option. Confirm that the Sensor calibration parameter shows the Calibration finished option and Calibration status shows Idle. This completes sensor calibration procedure. Do not swing the displacer and keep it in as stable a position as possible.

9.3.4 Reference calibration

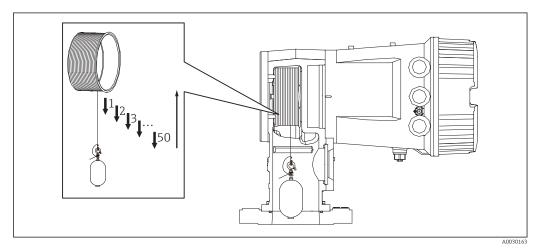
The reference calibration defines the zero distance position of the displacer from the mechanical stop.

- 1. Navigate to: Setup \rightarrow Calibration \rightarrow Reference calibration \rightarrow Reference calibration
- 2. Select the **Start** option
- 3. Check the reference position (e.g. 70 mm (2.76 in)).
 - ► The reference position is preset prior to delivery.
- 4. Confirm that the displacer is correctly attached to the measuring wire.
- 5. The reference calibration starts automatically.

This completes the reference calibration.

A0030162

- **■** 40 Reference calibration sequence
- Mechanical stop
- R Reference position


9.3.5 Drum calibration

- 1. Navigate to: Setup \rightarrow Calibration \rightarrow Drum calibration \rightarrow Drum calibration
- 2. Ensure a distance of 500 mm (19.69 in) or more from the bottom of the displacer to the liquid level.
- 3. Confirm that the displacer weight is correct for the **Set high weight** parameter.
- 4. Select the **Start** option.
 - The drum calibration starts automatically.

 The drum calibration records fifty points which will take approximately eleven minutes.
- 5. Select the **No** option as usual for the **Make low table** parameter.
 - ► To make a low table for special applications, select the **Yes** and use 50 g weight.

This completes drum calibration procedure.

To cancel any calibration, press \Box + \oplus simultaneously. If the drum calibration is canceled while making the new table, the old table remains effective. If making a new table fails due to an obstruction, NMS8x will not accept the new table and shows an error message.

■ 41 Making drum table

9.3.6 Commissioning check

This procedure is to confirm that all calibration steps have been completed appropriately.

- 1. Navigate to: Diagnostics → Device check → Commissioning check → Commissioning check
- 2. Select the **Start** option.
 - **Executing** option is shown on the verify drum table.
- 3. Select the **Next** option.
- 4. Confirm that the **Commissioning check** wizard shows the **Finished** option.
- 5. Confirm that the **Result drum check** parameter is passed.

This completes the commissioning check procedure.

9.4 Configuring the measuring device

Configuration task		Description
Configuring the level and interface	Setting density	→ 🖺 88
measurement	Setting tank height	→ 🖺 89
	Setting high and low stop	→ 🗎 90
Level calibration	Setting for open tank with liquid	→ 🗎 91
	Setting for open tank without liquid	→ 🗎 92
	Setting for closed tank	→ 🗎 93
	Setting process condition	→ 🗎 94
Configuring the density measurement	Setting spot density	→ 🖺 94
	Setting tank profile	→ 🗎 97
	Setting interface profile	→ 🗎 98
	Setting manual profile	→ 🖺 99

9.4.1 Configuring the level and interface measurement

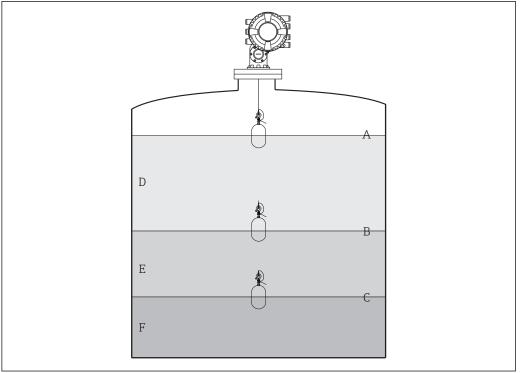
The level measurement is to measure the position where the displacer is balanced (immersion point) in the liquid. When the liquid surface level changes, the displacer continuously follows the position to measure the liquid level. To define the appropriate level measurement, the following settings are required prior to operation.

The interface measurement can determine the interface between different liquids in a tank (e.g. water and oil). Up to two different interfaces can be determined within a maximum of three phases in a tank.

Setting the density of application

Density values for three liquid phases are set as follows prior to delivery.

Upper density: 800 kg/m³
 Middle density: 1000 kg/m³
 Lower density: 1200 kg/m³


Change the data to reflect the actual density values. For tanks with only one liquid phase, set the upper density. For tanks with two or three phases, set middle and bottom densities as well.

Number of phases	Parameters to be set
1 phase	Upper density
2 phases	Upper/middle density
3 phases	Upper/middle/lower density

When performing an interface measurement, the minimum density difference between phases should be at least 100 kg/m^3 .

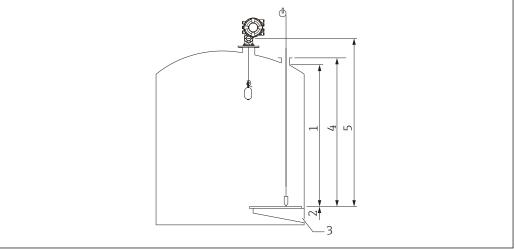
Setting the density

- Navigate to: Setup → Upper density , Setup → Middle density and Setup → Lower density
- 2. Input the value to Upper, Middle, and Lower densities accordingly.

■ 42 Tank configuration

- Liquid level
- В Upper interface
- С Lower interface
- Upper phase (density)
- Middle phase (density)
- Lower phase (density)

Setting the tank height


To measure the tank level correctly, the tank reference height and empty (distance from reference point to datum plate) must be set in advance.

- Tank reference height: Set by the customer to represent the height of the tank. Distance between the dipping reference and the datum plate. Used for percentage calculation and as reference for the ullage level.
- Empty: Distance between the zero point of device and datum plate. Empty is automatically adjusted by the **Set level** parameter.
- Refer to Level calibration for details how to determine the empty parameter accurately. \rightarrow \triangleq 91

Setting the tank reference height and empty

- 1. Navigate to: Setup → Empty
- 2. Input the empty value.
- 3. Navigate to: Setup → Tank reference height
- 4. Input the value of tank reference height.

A002803

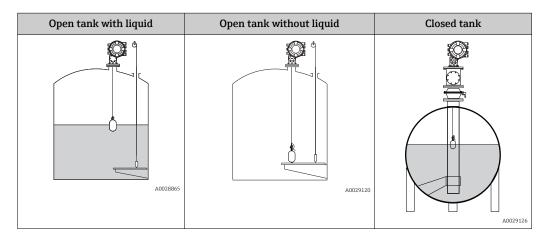
■ 43 Tank height

- 1 High stop
- 2 Low stop
- 3 Datum plate
- 4 Tank reference height
- 5 Empty

Setting the high stop and low stop

The high stop and low stop determine the highest and lowest points of displacer movement. Set these data to the desired actual upper and lower limit values.

If the displacer should be able to determine a tank bottom that is below the datum plate, set the low stop to a negative value. To make sure that the displacer travels up to the reference position, set the high stop to a value greater than or equal to empty.

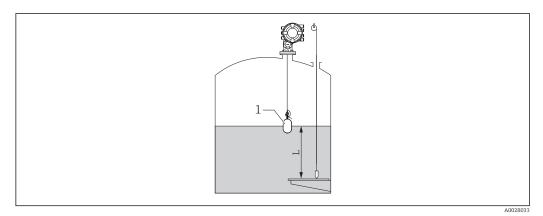

High stop and low stop setting procedure

- 1. Navigate to: Setup → High stop level
- 2. Input the actual value for high stop.
- 3. Navigate to: Setup → Low stop level
- 4. Input the actual value for low stop.

This completes upper and lower stop setting procedure.

9.4.2 Level calibration

The following table shows the most likely options for setting the level calibration.



Setting for an open tank with liquid

Level setting procedure

- 1. Navigate to: Setup → Gauge command
- 2. Select the **Level** option for the **Gauge command** parameter.
 - ► The displacer automatically searches for the point where it balances.
- 3. Wait until the displacer is balanced on the liquid.
- 4. Perform dipping to determine the liquid level (L) in the tank.
- 5. Navigate to: Setup \rightarrow Set level
- 6. Input the determined level value for the **Set level** parameter.
- The **Set level** parameter adjusts the **Empty** parameter to reflect the new level value.

This completes setting for open tank with liquid procedure.

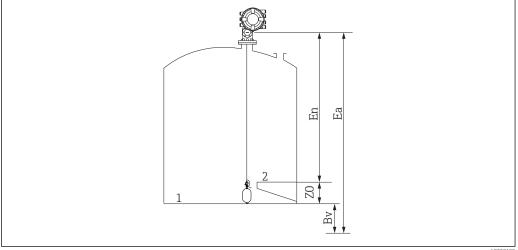
🖪 44 🛮 Set level for opened tank

- 1 Displacer
- L Measured value

Setting for an open tank without liquid

If there is no liquid in the tank, the following procedure can be used to set the tank bottom or datum plate to 0 mm for the tank level.

Level setting procedure


- 1. Navigate to: Operation \rightarrow Gauge command \rightarrow Gauge command
- 2. Select the **Bottom level** option to measure the tank bottom.
- 3. Navigate to: Operation \rightarrow One-time command status
- 4. Wait until the **Finished** option is shown.
- 5. Navigate to: Operation \rightarrow Level \rightarrow Bottom level
- 6. Read the **Bottom level** parameter (Bv).
- 7. Navigate to: Setup → Empty
- 8. Read the actual empty value (Ea).
- 9. Calculate the new empty value using following formula.

10. Input the calculated value for the **Empty** parameter.

A00294

- The parameter Z0 defines the distance between the desired 0mm level value and the physical tank bottom (if displacer measures the datum plate, Z0 = 0 mm (0 in)).
 - Bottom level operation considers the immersion depth of the displacer in the measurement.

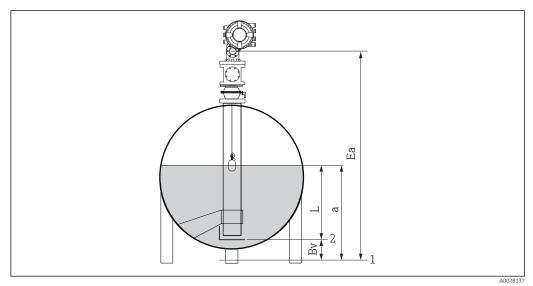
This completes the level setting for open tank without liquid procedure.

A002813

- 45 Open tank without liquid
- 1 Tank bottom
- 2 Datum plate
- Ea Initial empty setting
- Bv Initial bottom level
- En New empty
- 20 Distance from tank bottom to datum plate

It is recommended to repeating the level calibration when there is liquid in the tank $(\rightarrow \bigcirc 91)$.

Setting for a closed tank


For tanks that cannot be hand-dipped, follow the procedure shown below.

Level setting procedure

- 1. Navigate to: Operation \rightarrow Gauge command \rightarrow Gauge command
- 2. Select the **Bottom level** option to measure the tank bottom.
 - NMS8x measures the tank bottom and returns to level if the post gauge command is set to level (default).
- 3. Navigate to: Operation \rightarrow One-time command status
- 4. Wait until the **Finished** option is shown.
- 5. Navigate to: Operation \rightarrow Level \rightarrow Bottom level
- 6. Read the bottom value (Bv).
- 7. Navigate to: Operation \rightarrow Level \rightarrow Tank level (a)
- 8. Calculate the level value (L) by using following formula.
 - **-** L = a Bv
- 9. Navigate to: Setup → Set level
- 10. Input the value L for the **Set level** parameter.

This completes the level setting procedure.

If the datum plate is not zero (e.g. Z mm), adjust the set level value (L) by subtracting Z from the value L (L= a-Bv-Z).

€ 46 Closed tank

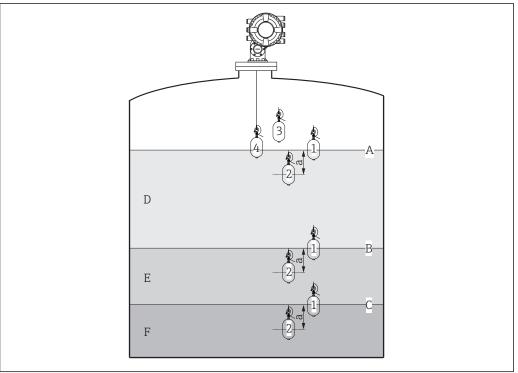
- 1 Initial zero level position
- 2 Datum plate
- Ea Initial setting of Empty
- Bv Bottom level
- a Tank level
- L Set level value

Selecting the process condition

The process condition is used to adjust the device to the application. By changing this parameter, several balancing parameters are adjusted automatically to make setup easier.

- 1. Navigate to: Setup → Process condition
- 2. Select an appropriate condition for the **Process condition** parameter.

Parameter name	Process condition		
Parameter setting	Universal (Default setting)	Calm surface	Turbulent surface
Description			
	Provides reliable results in various applications and for various liquids.	For storage tanks with a calm surface and focus on highest accuracy measurement.	For applications where the surface is turbulent.


9.4.3 Configuring the density measurement

The density measurement is performed to confirm and maintain the quality of the liquid. The density measurement is largely divided into two methods as shown below.

Density methods	Gauge command	Description
Spot density	Upper density Middle density Lower density	One spot density measurement for designated layer Upper density is for upper layer. Middle density is for middle layer. Lower density is for lower layer.
Profile density	Tank profile	Profile between the bottom of the tank and the level position Normal mode Compensation mode
	Interface profile	Profile between the upper interface (I/F) and the level position Normal mode Compensation mode
	Manual profile	Profile between the desired start point and the level position Normal mode Compensation mode

Spot density measurement

Three different spot density gauge commands are available as shown below.

A0029469

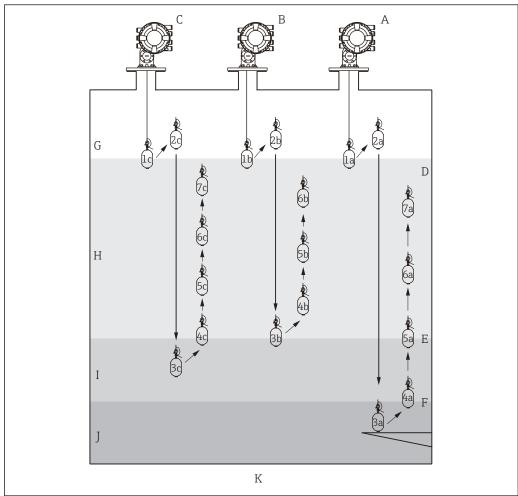
Spot density (The numbers show the order of displacer movement.)

- A Liquid level
- B Upper interface
- C Lower interface
- D Upper density
- E Middle density
- F Lower density
- a Submersion depth

The submersion depth (a) is set to 150 mm (5.91 in) prior to delivery. To change the submersion depth, perform the following steps.

- 1. Navigate to: Setup → Advanced setup → Sensor config → Spot density → Submersion depth
- 2. Input the desired value for the **Submersion depth** parameter.

Setting the spot density


- 1. Navigate to: Operation \rightarrow Gauge command \rightarrow Gauge command
- 2. Select the **Upper density** option, the **Middle density** option, or the **Lower density** option for the **Gauge command** parameter.
- 3. Verify that the value that was examined in a laboratory and the actual value that was measured in the tank are the same or within an allowable range.
- 4. Adjust the value if necessary.
 - Navigate to: Setup → Advanced setup → Sensor config → Spot density
 Select the **Upper density offset** parameter, the **Middle density offset**parameter, and the **Lower density offset** parameter and input the desired values for each offset.

This completes the setting spot density procedure.

Profile density measurement

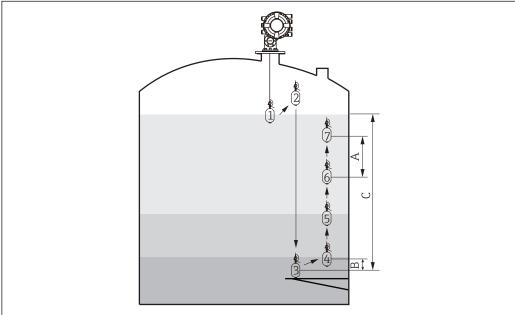
Profile density has three gauge commands as shown below.

NMS8x measures a density profile according to a defined interval of up to 50 points.

€ 48 Overview of profile density (1a, 2a, 3a...show the order of displacer movements.)

- Α Tank profile
- Interface profile В
- CManual profile
- Liquid level D
- Е Upper interface
- Lower interface F
- G Gas phase
- Upper density Н Middle density Ι
- Lower density
- Tank bottom
- Density measurement has two types of modes.
 - Normal measure mode: Profile points are measured at exactly configured positions.
 - Compensation mode: Profile points are measured at multiples of the wire drum circumference to further improve accuracy.

Select normal mode as usual. However, when selecting compensation mode, NMS8x automatically adjusts the measurement positions to where the density measurement can be the most accurate.


Tank profile measurement

Setting tank profile procedure

The tank profile operation measures a profile starting at the physical tank bottom up to the liquid level.

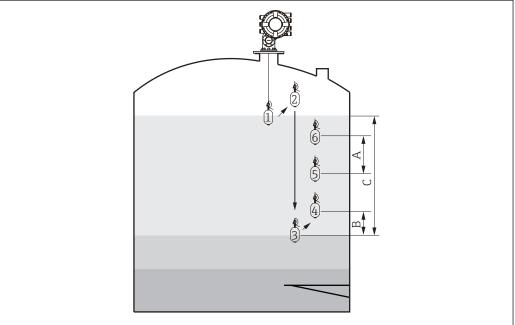
- 1. Navigate to: Setup → Advanced setup → Sensor config → Profile density → Profile density offset distance
- 2. Input the desired value for the **Profile density offset distance** parameter.
 - The value of the profile density offset distance defines the distance between the start point (upper interface) and the first measurement point.
- 3. Navigate to: Setup → Advanced setup → Sensor config → Profile density → Profile density interval
- 4. Input the desired value for the **Profile density interval** parameter.
- 5. Set **Tank profile** option in the **Gauge command** parameter to start measurement.

This completes the setting tank profile procedure.

A0029107

■ 49 Tank profile movement (The numbers show the order of the displacer movement.)

- A Profile density interval
- B Profile density offset distance
- C Datum plate
- D Tank profile range


Interface profile measurement

Setting interface profile procedure

The interface profile operation measures a profile starting at the upper interface level up to the liquid level.

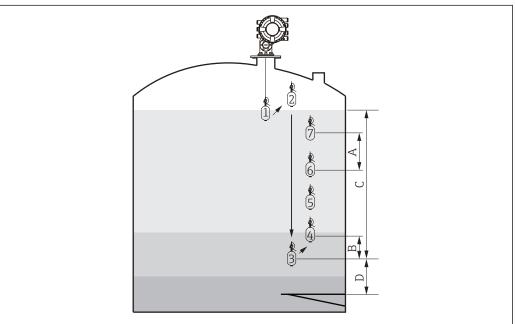
- 1. Navigate to: Setup → Advanced setup → Sensor config → Profile density → Profile density offset distance
- 2. Input the desired value for the **Profile density offset distance** parameter.
 - The value of the profile density offset distance defines the distance between the start point (upper interface profile) and the first measurement point.
- 3. Navigate to: Setup → Advanced setup → Sensor config → Profile density → Profile density interval
- 4. Input the desired value for the **Profile density interval** parameter.
- 5. Set **Interface profile** option in the **Gauge command** parameter to start measurement.

This completes the setting interface profile procedure.

A002910

 \blacksquare 50 Interface profile movement (The numbers show the order of the displacer movement.)

- A Profile density interval
- B Profile density offset distance
- C Tank profile range


Manual profile measurement

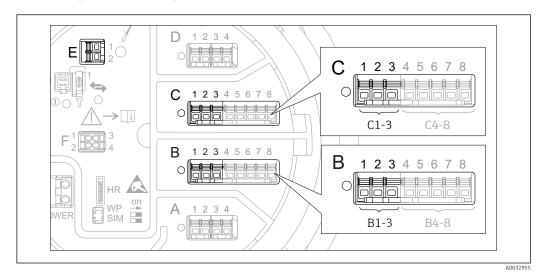
Setting manual profile procedure

The manual profile operation measures a profile starting at a manually specified level up to the liquid level.

- 1. Navigate to: Setup → Advanced setup → Sensor config → Profile density → Manual profile level
- 2. Input the desired value for the **Manual profile level** parameter.
- 3. Navigate to: Setup → Advanced setup → Sensor config → Profile density → Profile density offset distance
 - For the manual profile, the level offset can be set to 0 so that the first point can be measured at the manual profile level.
- 4. Input the desired value for the **Profile density offset distance** parameter.
 - The value of the profile density offset distance defines the distance between the start point (manual profile) and the first measurement point.
- 5. Navigate to: Setup → Advanced setup → Sensor config → Profile density → Profile density interval
- 6. Input the desired value for the **Profile density interval** parameter.
- 7. Set **Manual profile** option in the **Gauge command** parameter to start measurement.

This competes the setting manual profile.

A002911


- 51 Manual profile movement (The numbers show the order of the displacer movement.)
- A Profile density interval
- B Profile density offset distance
- C Manual profile range
- D Manual profile level

9.5 Configuring the tank gauging application

Configuration of the inputs:	Description
HART inputs	→ 🖺 101
NMT532/539 connected via HART	→ 🖺 103
4-20mA inputs	→ 🖺 104
RTD input	→ 🖺 105
Digital inputs	→ 🖺 107
Configuration of the data processing in the device:	Description
Linking input values to tank variables	→ 🖺 109
Tank calculation: Direct Level Measurement	→ 🖺 110
Tank calculation: Hybrid Tank Measurement System (HTMS)	→ 🖺 111
Tank calculation: Correction of the Hydrostatic Tank Deformation (HyTD)	→ 1 112
Tank calculation: Thermal Tank Shell Correction (CTSh)	→ 🖺 113
Alarms (limit evaluation)	→ 🖺 114
Configuration of the signal output:	Description
4-20mA output	→ 🖺 115
HART slave + 4-20mA output	→ 🖺 116
Modbus	→ 🖺 117
V1	→ 🖺 118
Digital outputs	→ 🖺 119

9.5.1 Configuration of the HART inputs

Connecting and addressing HART devices

■ 52 Possible terminals for HART loops

E HART Ex is output (available in all device versions)

HART devices must be configured and given a unique HART address $^{2)}$ via their own user interface before they are connected to the Proservo NMS8x. Make sure they are connected as defined by the terminal assignment $\rightarrow \stackrel{\triangle}{=} 50$.

Slot B or C: Setting the operating mode of the Analog I/O module

This section is not relevant for the HART Ex is output (Slot E). This output always functions as a HART master for the connected HART slaves.

If HART devices are connected to an Analog I/O module (slot B or C in the terminal compartment), this module must be configured as follows:

- 1. Navigate to the submenu of the respective Analog I/O module: Setup → Advanced setup → Input/output → Analog I/O X1-3
- 2. Go to the **Operating mode** parameter ($\rightarrow \triangleq 206$).
- 3. If only one HART device is connected to this loop:

 Select the **HART master+4..20mA input** option. In this case the 4-20mA signal can be used in addition to the HART signal. For the configuration of the 4-20mA input:

 → 104.
- 4. If up to 6 HART devices are connected to this loop: Select the **HART master** option.

²⁾ The current software does not support HART devices with adress 0 (zero).

Defining the type of measured value

This setting can be skipped for a connected Prothermo NMT5xx as the type of measured value is automatically recognized by the Proservo NMS8x in this case.

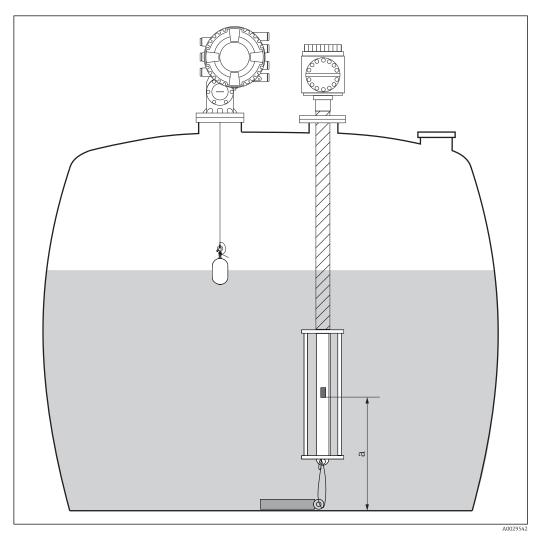
- The measured values can only be used in the system if the unit of the assigned HART variable fits the type of measured value. The HART variable assigned to **Output temperature**, for example, has to be in °C or °F.
 - A HART variable with unit "%" can not be used for **Output level**. Instead, the HART variable must be in mm, m, ft or in.

The type of measured value must be specified for each HART variable (PV, SV, TV and QV). To do so, proceed as follows:

- Navigate to: Setup → Advanced setup → Input/output → HART devices
 There is a submenu for each connected HART device.
- 2. For each device go to the corresponding submenu.
- 3. If the device measures a pressure:

Go to the **Output pressure** parameter ($\rightarrow \equiv 196$) and specify which of the four HART variables contains the measured pressure. Only a HART variable with a pressure unit may be selected.

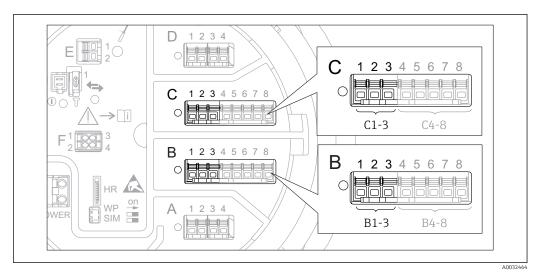
- 4. If the device measures a density: Go to the **Output density** parameter (→ ■ 197) and specify which of the four HART variables contains the measured density. Only a HART variable with a density unit may be selected.
- 5. If the device measures a temperature:
 Go to the **Output temperature** parameter (→ 🗎 197) and specify which of the four HART variables contains the measured temperature. Only a HART variable with a temperature unit may be selected.
- 6. If the device measures the vapor temperature:
 Go to the **Output vapor temperature** parameter (→ 🗎 198) and specify which of the four HART variables contains the measured vapor temperature. Only a HART variable with a temperature unit may be selected.
- 7. If the device measures a level:


 Go to the **Output level** parameter (→

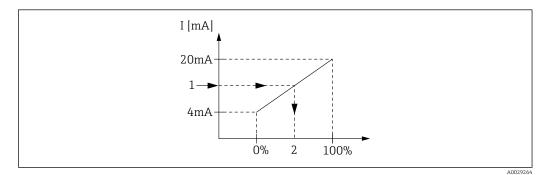
 198) and specify which of the four HART variables contains the measured level. Only a HART variable with a level unit (not "%") may be selected.

9.5.2 Configuration of a connected Prothermo NMT532/NMT539

If a Prothermo NMT532 or NMT539 temperature transmitter is connected via HART, it can be configured as follows:


- 1. Navigate to: Expert \rightarrow Input/output \rightarrow HART devices \rightarrow HART Device(s) \rightarrow NMT device config; here, **HART Device(s)** is the name of the connected Prothermo.
- 2. Go to the **Configure device?** parameter and select **Yes**.
- 3. Go to the **Bottom point** parameter and enter the position of the bottom temperature element (see picture below).

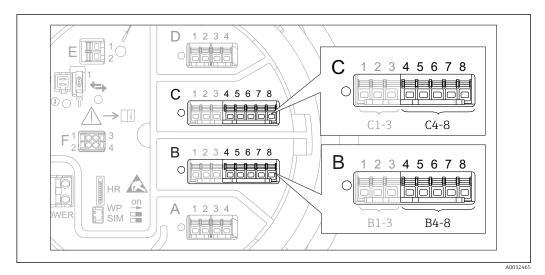
■ 53 Position of the bottom temperature element


- a Distance from bottom temperature element to zero reference (tank bottom or datum plate). The standard factory default setting is 500 mm (19.69 in), and it can be adjusted according to the actual installation.
- To check the temperatures measured by the individual elements, go to the following submenu: Operation \rightarrow Temperature \rightarrow NMT element values \rightarrow Element temperature There is a **Element temperature X** parameter for each element of the Prothermo.

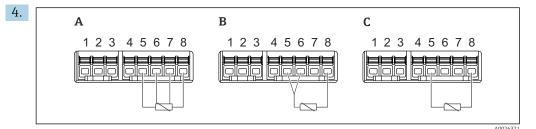
9.5.3 Configuration of the 4-20mA inputs

For each Analog I/O module to which a 4-20mA device is connected, proceed as follows:

- 2. Navigate to the submenu of the respective Analog I/O module: Setup → Advanced setup → Input/output → Analog I/O X1-3
- Go to the **Operating mode** parameter ($\rightarrow \triangleq 206$) and select **4..20mA input** or **HART master+4..20mA input**.
- 4. Go to the **Process variable** parameter ($\rightarrow \triangleq 212$) and specify which process variable is transmitted by the connected device.
- 5. Go to the **Analog input 0% value** parameter ($\Rightarrow \triangleq 212$) and define which value of the process variable corresponds to an input current of 4 mA (see diagram below).
- 6. Go to the **Analog input 100% value** parameter ($\rightarrow \stackrel{\triangle}{=} 212$) and define which value of the process variable corresponds to an input current of 20 mA (see diagram below).
- 7. Go to the **Process value** parameter ($\rightarrow \triangleq 213$) and check whether the indicated value matches the actual value of the process variable.



 \blacksquare 55 Scaling of the 4-20mA input to the process variable

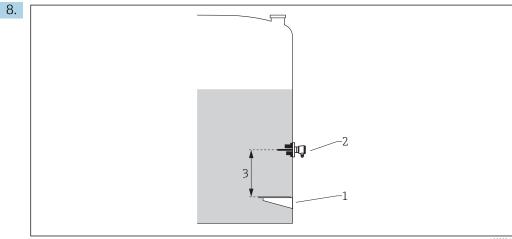

- 1 Input value in mA
- 2 Process value

The **Analog I/O** submenu contains additional parameters for a more detailed configuration of the Analog Input. For a description refer to : $\rightarrow \triangleq 206$

9.5.4 Configuration of a connected RTD

- 1. Make sure the RTD is connected as defined by the terminal assignment $\rightarrow \triangleq 53$.
- 2. Navigate to the submenu of the respective Analog I/O module: Setup → Advanced setup → Input/output → Analog IP X4-8.

57 RTD connection types

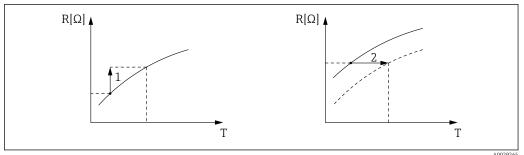

A 2 wire RTD connection

B 3 wire RTD connection

C 4 wire RTD connection

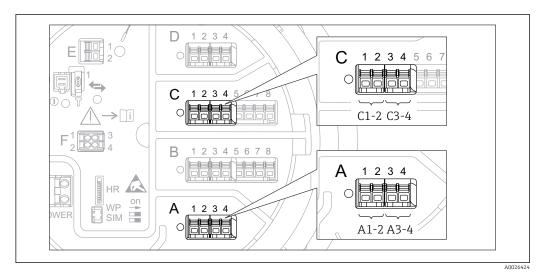
Go to the **RTD connection type** parameter ($\Rightarrow \triangleq 201$) and specify the type of connection of the RTD (2-, 3- or 4-wire).

- 5. Go to the **Input value** parameter ($\Rightarrow \triangleq 203$) and check whether the indicated temperature matches the actual temperature.
- 6. Go to the **Minimum probe temperature** parameter (→ \(\Delta\) 203) and specify the minimum approved temperature of the connected RTD.
- 7. Go to the **Maximum probe temperature** parameter (→ 🗎 203) and specify the maximum approved temperature of the connected RTD.


- 1 Datum plate
- 2 RTD
- Probe position (→ 🖺 204)

Go to the **Probe position** parameter and enter the mounting position of the RTD (measured from the datum plate).

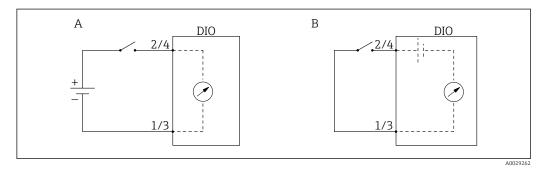
This parameter, in conjunction with the measured level, determines whether the measured temperature refers to the product or to the gas phase.


Offset for resistance and/or temperature

- An offset for the resistance or the temperature can be defined in the following submenu: Expert \rightarrow Input/output \rightarrow Analog IP X4-8.
 - Ohms offset is added to the measured resistance before the calculation of the temperature.
 - **Temperature offset after conversion** is added to the measured temperature.

- Temperature offset after conversion

9.5.5 Configuration of the digital inputs


■ 58 Possible locations of the Digital I/O modules (examples); the order code defines the number and location of digial input modules →

□ 44.

There is a **Digital Xx-x** submenu for each digital I/O module of the device. "X" designates the slot in the terminal compartment, "x-x" the terminals within this slot. The most important parameters of this submenu are **Operating mode** and **Contact type**.

The "Operating mode" parameter

Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Digital $Xx-x \rightarrow$ Operating mode

A "Operating mode" = "Input passive" B "Operating mode" = "Input active"

Meaning of the options

■ Input passive

The DIO module measures the voltage provided by an external source. Depending on the status of the external switch, this voltage is 0 at the input (switch open) or exceeds a certain limit voltage (switch closed). These two states represent the digital signal.

Input active

The DIO module provides a voltage and uses it to detect whether the external switch is open or closed.

The "Contact type" parameter

Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Digital Xx-x \rightarrow Contact type

> This parameter determines how the state of the external switch is mapped to the internal states of the DIO module:

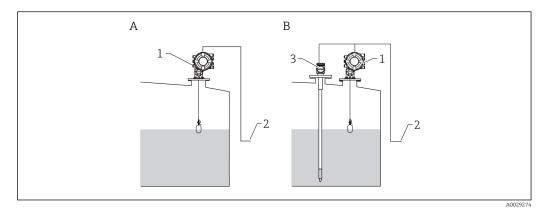
State of the external switch	Internal state of the DIO module		
	Contact type = Normally open	Contact type = Normally closed	
Open	Inactive	Active	
Closed	Active	Inactive	
Behavior in special situaions:			
During start-up	Unknown	Unknown	
Fault in measurement	Error	Error	

- The internal state of the Digital Input can be transferred to a Digital Output or can be used to control the measurement.
 - The **Digital Xx-x** submenu contains additional parameters for a more detailed configuration of the Digital Input. For a description refer to $\Rightarrow \triangleq 216$.

Proservo NMS80 Commissioning

9.5.6 Linking input values to tank variables

Measured values must be linked to tank variables before they can be used in the Tank Gauging application. This is done by defining the source of each tank variable in the following parameters:


Tank variable	Parameter defining the source of this variable
Product level	 Setup → Level source Setup → Advanced setup → Application → Tank configuration → Level → Level source
Bottom water level	
Average or spot temperature of the product	 Setup → Liquid temp source Setup → Advanced setup → Application → Tank configuration → Temperature → Liquid temp source
Temperature of the air surrounding the tank	Setup → Advanced setup → Application → Tank configuration → Temperature → Air temperature source
Temperature of the vapor above the product	$\mbox{Setup} \rightarrow \mbox{Advanced setup} \rightarrow \mbox{Tank configuration} \rightarrow \mbox{Temperature} \rightarrow \mbox{Vapor} \\ \mbox{temp source}$
Density of the product	
Bottom pressure (P1)	
Top pressure (P3)	Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Pressure \rightarrow P3 (top) source

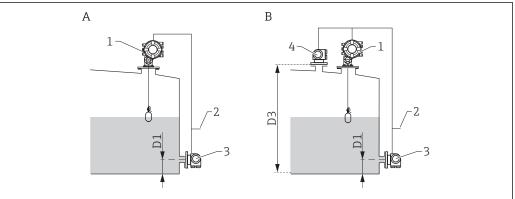
Depending on the application not all these parameters will be relevant in a given situation.

Commissioning Proservo NMS80

9.5.7 Tank calculation: Direct level measurement

If no tank calculation is configured, level and temperature are measured directly.

- A Direct level measurement (without temperature)
- B Direct level and temperature measurement
- 1 NMS8x
- 2 To inventory management system
- *3 Temperature transmitter*
- 1. Navigate to: "Setup → Level source" and specify from which device the level is obtained.
- 2. If a temperature transmitter is connected:

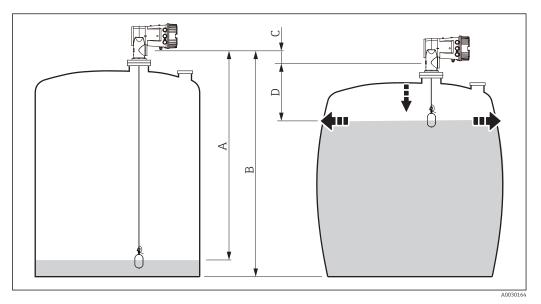

 Navigate to: "Setup → Liquid temp source" and specify from which device the temperature is obtained.

Proservo NMS80 Commissioning

9.5.8 Tank calculation: Hybrid tank measurement system (HTMS)

HTMS uses level and pressure measurements to calculate the density of the medium.

In non-atmospheric (i.e. pressurized) tanks it is recommended to use the **HTMS**P1+P3 mode. Two pressure sensors are required in this case. In atmospheric (i.e. unpressurized) tanks the **HTMS** P1 with only one pressure sensor is sufficient.


A0020227

- A The "HTMS P1" measurement mode
- B The "HTMS P1+P3" measurement mode
- D1 P1 position
- D3 P3 position
- 1 NMS8x
- 2 To inventory management system
- 3 Pressure sensor (bottom)
- 4 Pressure sensor (top)
- 1. Navigate to Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Level
- 2. Go to **Level source** ($\rightarrow \triangleq 182$) and specify from which device the level is obtained.
- 3. Navigate to Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Pressure
- 4. Go to **P1 (bottom) source (\rightarrow \triangleq 254)** and specify from which device the bottom pressure (P1) is obtained.
- 5. If a top pressure transmitter (P3) is connected:
 Go to P3 (top) source (→ 🖺 256) and specify from which device the bottom pressure (P1) is obtained.
- 6. Navigate to: Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank calculation \rightarrow HTMS
- 7. Go to **HTMS mode** ($\rightarrow \triangle 272$) and specify the HTMS mode.
- 8. Navigate to Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Density
- 9. Go to **Observed density source** (→ 🖺 **252**) and select **HTMS**.

Commissioning Proservo NMS80

9.5.9 Tank calculation: Hydrostatic Tank Deformation (HyTD)

Hydrostatic Tank Deformation can be used to compensate the vertical movement of the Gauge Reference Height (GRH) due to bulging of the tank shell caused by the hydrostatic pressure exerted by the liquid stored in the tank. The compensation is based on a linear approximation obtained from manual hand dips at several levels divided over the full range of the tank.

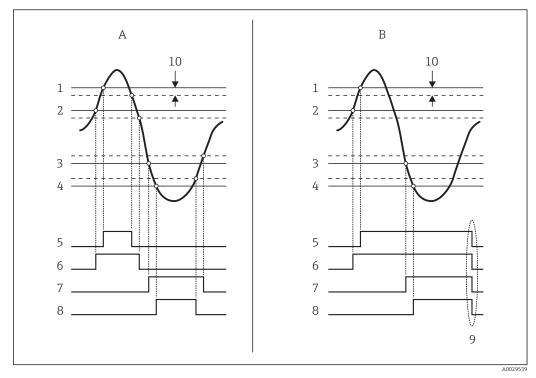
■ 59 Correction of the hydrostatic tank deformation (HyTD)

- A "Distance" (tank nearly empty)
- B Gauge Reference Height (GRH)
- C HyTD correction value
- D "Distance" (tank filled)

The Correction of the Hydrostatic Tank Deformation is configured in the **HyTD** submenu (\rightarrow) 261)

Proservo NMS80 Commissioning

9.5.10 Tank calculation: Thermal tank shell correction (CTSh)


CTSh (correction of the thermal tank shell expansion) compensates for effects on the Gauge Reference Height (GRH) due to temperature effects on the tank shell or stilling well. The temperature effects are separated into two parts, respectively effecting the 'dry' and 'wetted' part of the tank shell or stilling well. The calculation is based on thermal expansion coefficients of steel and insulation factors for both the 'dry' and 'wet' shell. The assessed temperatures are based on manual or measured values and the temperature of the shell when the tank was calibrated (for details refer to API MPMS Chapter 12.1).

- This correction is recommended for the following situations:
 - if the operating temperature deviates considerably from the temperature during calibration ($\Delta T > 10 \,^{\circ}\text{C} \, (18 \,^{\circ}\text{F})$)
 - for extremely high tanks
 - for refrigerated, cryogenic or heated applications
- As the use of this correction will influence the innage level reading, it is recommended to review the manual hand dip and level verification procedures prior to enabling this correction method.

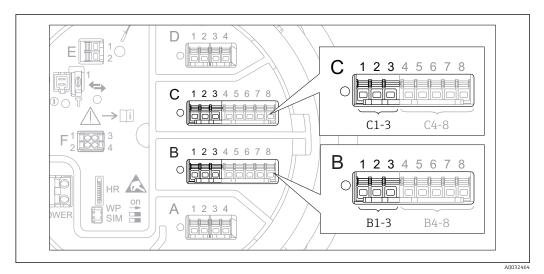
Commissioning Proservo NMS80

9.5.11 Configuration of the alarms (limit evaluation)

A limit evaluation can be configured for up to 4 tank variables. The limit evaluation issues an alarm if the value exceeds an upper limit or falls below a lower limit, respectively. The limit values can be defined by the user.

■ 60 Principle of the limit evaluation

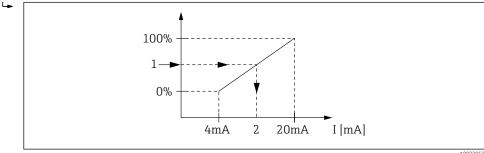
- A Alarm mode = On
- *B* Alarm mode = Latching
- 1 HH alarm value
- 2 H alarm value
- 3 L alarm value
- 4 LL alarm value
- 5 HH alarm
- 6 Halarm
- 7 Lalarm
- 8 LL alarm
- 9 "Clear alarm" = "Yes" or power off-on
- 10 Hysteresis


The limit evaluation is configured in the **Alarm 1 to 4** submenus.

Navigation path: Setup \rightarrow Advanced setup \rightarrow Alarm 1 to 4

For **Alarm mode** = **Latching** all alarms remain active until the user selects **Clear** alarm = **Yes** or the power is switched off and on.

Proservo NMS80 Commissioning


9.5.12 Configuration of the 4-20mA output

Possible locations of the Analog I/O modules, which can be used as a 4-20mA output. The order code of

Each Analog I/O module of the device can be configured as a 4...20mA analog output. To do so, proceed as follows:

- 1. Navigate to: Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O X1-3.
- 2. Go to the **Operating mode** parameter and select **4..20mA output** or **HART slave** +4..20mA output 3).
- 3. Go to the **Analog input source** parameter and select the tank variable which is to be transmitted via the 4...20mA output.
- 4. Go to the **0** % value parameter and enter the value of the selected tank variable which will be mapped to 4 mA.
- 5. Go to the **100 % value** parameter and enter the value of the selected tank variable which will be mapped to 20 mA.

Scaling of the tank variable to the output current

- Tank variable
- Output current

The **Analog I/O** submenu contains more parameters which can be used for a more

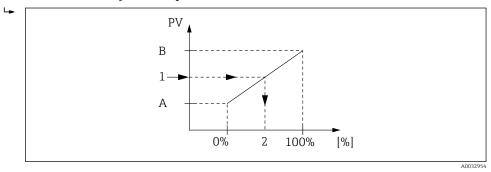
³⁾ "HART slave +4..20mA output " means that the Analog I/O module serves as a HART slave which cyclically sends up to four HART variables to a HART master. For the configuration of the HART output: \rightarrow $\stackrel{\triangle}{=}$ 116

Commissioning Proservo NMS80

9.5.13 Configuration of the HART slave + 4-20mA output

If **Operating mode** = **HART slave +4..20mA output** has been selected for an Analog I/O module, it serves as a HART slave which sends up to four HART variables to a HART master.

Standard case: PV = 4-20mA signal

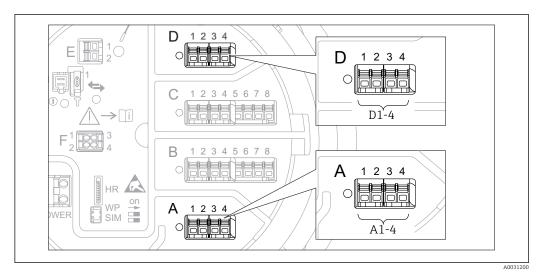

By default, the Primary Variable (PV) is identical to the tank variable transmitted by the 4-20mA output. To define the other HART variables and to configure the HART output in more detail, proceed as follows:

- Navigate to: Setup → Advanced setup → Communication → HART output
 Configuration
- 2. Go to the **System polling address** parameter and set the HART slave address of the device.
- 3. Use the following parameters to assign tank variables to the second to fourth HART variable: **Assign SV**, **Assign TV**, **Assign QV**.
 - └ The four HART variables are transmitted to a connected HART Master.

Special case: PV ≠ 4-20mA signal

In exceptional cases it might be required that the Primary Variable (PV) transmits a different tank variable than the 4-20mA output. This is configured as follows.

- Navigate to: Setup → Advanced setup → Communication → HART output
 Configuration
- 2. Go to the **PV source** parameter and select **Custom**.
 - The following additional parameters appear in the submenu: **Assign PV**, **0 %** value, **100 %** value and **PV mA selector**.
- 3. Go to the **Assign PV** parameter and select the tank variable to be transmitted as the Primary Variable (PV).
- 4. Use the **0 % value** and **100 % value** parameters to define a range for the PV. The **Percent of range** parameter indicates the percentage for the actual value of the PV. It is included in the cyclical output to the HART master.



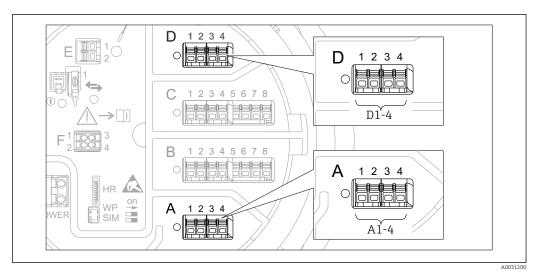
 \blacksquare 63 Scaling of the tank variable to the percentage

- A 0 % value
- B 100 % value
- 1 Primary variable (PV)
- 2 Percent of range
- 5. Use the **PV mA selector** parameter to define whether the output current of an Analog I/O module is to be included in the cyclical HART output.
- The **PV mA selector** parameter does not influence the output current at the terminals of the Analog I/O module. It only defines whether the value of this current is part of the HART output or not.

Proservo NMS80 Commissioning

9.5.14 Configuration of the Modbus output

 \blacksquare 64 Possible locations of the Modbus modules (examples); depending on the device version these modules may also be in slot B or C \rightarrow \blacksquare 44.

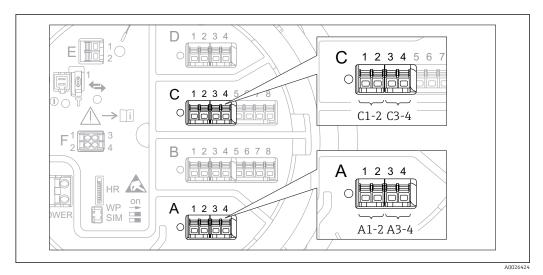

The Proservo NMS8x acts as a Modbus slave. Measured or calculated tank values are stored in registers which can be requested by a Modbus master.

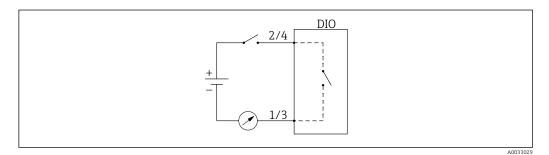
The following submenu is used to configure the communication between the device and the Modbus master:

Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow Modbus X1-4 \rightarrow Configuration (\rightarrow $\stackrel{\triangle}{=}$ 226)

Commissioning Proservo NMS80

9.5.15 Configuration of the V1 output




 \blacksquare 65 Possible locations of the V1 modules (examples); depending on the device version these modules may also be in slot B or C \Rightarrow \blacksquare 44.

- Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow V1 X1-4 \rightarrow Configuration (\rightarrow 🗎 229)
- Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow V1 X1-4 \rightarrow V1 input selector (\rightarrow 🗎 232)

Proservo NMS80 Commissioning

9.5.16 Configuration of the digital outputs

 \blacksquare 67 Usage of the Digital I/O module as a digital output

There is a **Digital Xx-x** submenu for each digital I/O module of the device. "X" designates the slot in the terminal compartment, "x-x" the terminals within this slot. The most important parameters of this submenu are **Operating mode, Digital input source** and **Contact type**.

A digital output can be used to

- ullet output the state of an alarm (if an alarm has been configured $\rightarrow \ \mbox{\ } \mbox{\ }$

To configure a digital output, proceed as follows:

- 1. Navigate to Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Digital Xx-x, where Xx-x designates the digital I/O module to be configured.
- 2. Go to the **Operating mode** parameter and select the **Output passive** option.
- 3. Go to the **Digital input source** parameter and select the alarm or digital input to be transmitted.
- 4. Go to the **Contact type** parameter and select how the internal state of the alarm or digital input is to be mapped to the digital output (see table below).

Commissioning Proservo NMS80

State of the alarm	Switching state of the digital output			
 Internal state of the digital input 	Contact type = Normally open	Contact type = Normally closed		
Inactive	Open	Closed		
Active	Closed	Open		

- For SIL applications, **Contact type** must always be **Normally open**.
- In case of a power supply failure, the switching state is always "open", irrespectiv of the selected option.
- The Digital Xx-x submenu contains additional parameters for a more detailed configuration of the Digital Input. For a description refer to →
 216.

Proservo NMS80 Commissioning

9.6 Advanced settings

For a more detailed configuration of the signal inputs, the tank calculations and the signal outputs refer to the **Advanced setup** submenu $(\rightarrow \implies 192)$.

9.7 Simulation

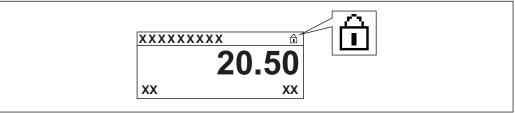
To check the correct configuration of the device and of the control system, it is possible to simulate different situations (measured values, diagnostic messages etc.). See the **Simulation** submenu ($\Rightarrow \implies 317$) for details.

9.8 Protecting settings from unauthorized access

There are two possibilities to protect the settings from unauthorized access:

- By an access code (→ 70)
 This locks the access via the display and operating module.
- By the protection switch (→ ≦ 71)
 This locks the access to W&M-related parameters by any user interface (display and operating module, FieldCare, other configuration tools).

Operation Proservo NMS80


10 Operation

10.1 Reading off the device locking status

Depending on the locking state of the device some operations may be locked. The current locking status is indicated at: Setup \rightarrow Advanced setup \rightarrow Locking status. The following table summarizes the different locking statuses:

Locking status	Meaning	Unlocking procedure
Hardware locked	The device is locked by the write-protection switch in the terminal compartment.	→ 🖺 71
SIL locked	The device is in SIL-locked mode.	See the SIL Safety manual
CT active - all parameters	The custody transfer mode is active.	→ 🖺 71
WHG locked (in preparation)	The device is in WHG-locked mode.	in preparation
Temporarily locked	Write access to the parameters is temporarily lock due to device-internal processing (e.g. data upload/download, reset). Once the internal processing has been completed, the parameters can be changed again.	Wait for completion of the device-internal processing.

A locking is indicated by the write protection symbol in the header of the display:

A001587

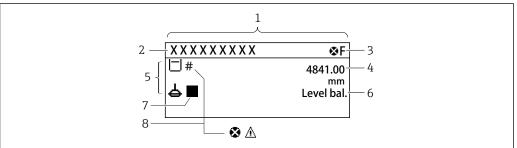
10.2 Reading off measured values

Tank values can be read off in the following submenus:

- Operation \rightarrow Level
- Operation → Temperature
- Operation → Density
- Operation → Pressure

Proservo NMS80 Operation

10.3 Gauge commands


10.3.1 Overview of available device functions

Gauge commands are mainly divided into two categories.

- Continuous gauge command
- One-time gauge command (non-continuous)

One-time gauge commands have a defined end state. After a one-time gauge command is completed, another gauge command is executed which is defined by the **Post gauge command** parameter. If **Post gauge command** is set to **None**, the operation will stop.

The gauge command can be chosen by navigating to Operation \rightarrow Gauge command. The status of the gauge command execution is shown in the **Gauge status** parameter. The gauge status is displayed on the home screen by default.

A002870

 \blacksquare 68 Typical appearance of the standard view (measured value display)

- 1 Display module
- 2 Device tag
- 3 Status area
- 4 Display area for measured values
- 5 Display area for measured value and status symbols
- 6 Gauge status indication
- 7 Gauge status symbol
- 8 Measured value status symbol

For details of status symbols $\rightarrow \triangleq 60$

When a one-time gauge command is executed, additional information is shown in the **One-time command status** parameter in the operation menu.

Operation Proservo NMS80

10.3.2 Descriptions of gauge commands

The following table shows the available gauge commands and functions of NMS8x.

The numbers in the figures show the sequence of displacer movement.

Gauge command	Descriptions		Post gauge command
Stop	Displacer stops.	*	Not available
Level	The displacer searches for the liquid level surface and balances there.		Not available
Up	The displacer moves up to the reference position.	R Reference position	Not available
Bottom level	The displacer searches for the tank bottom. After determining the bottom value, the post gauge command is executed.		Customer setting value
Upper I/F level	The displacer searches for the upper interface level and balances there.		Not available
Lower I/F level	The displacer searches for the lower interface level and balances there.		Not available
Upper density	NMS8x performs a spot density measurement in the upper phase of the tank. After completing the measurement, the post gauge command is executed.	a Immersion depth	Customer setting value

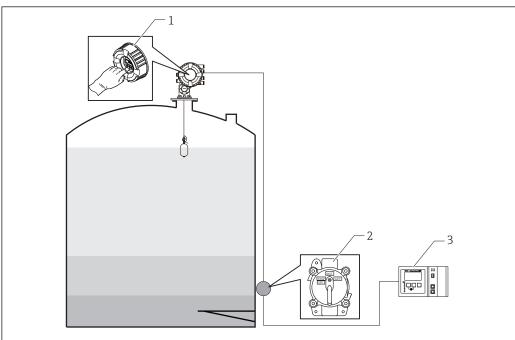
Proservo NMS80 Operation

Gauge command	Descriptions		Post gauge command
Middle density	NMS8x performs a spot density measurement in the middle phase of the tank. After completing the measurement, the post gauge command is executed.	a Immersion depth	Customer setting value
Lower density	NMS8x performs a spot density measurement in the lower phase of the tank. After completing measurement, the post gauge command is executed.	a Immersion depth	Customer setting value
Repeatability	The displacer is taken out of the liquid. After that, the displacer returns to the level measurement. This can be used for a function check. This gauge command should only be executed if the current gauge command is level.		Level
Water dip	The displacer searches for the upper interface level. After balancing on the liquid, the post gauge command is executed.		Customer setting value
Release overtension	When the displacer hits any obstacle in the tank and gets stuck (Error message: Overtension) this command will release the tension on the wire by moving down a short distance. During an overtension error, no other gauge command will be executed.		Stop
Tank profile	Density profile measurement of the tank (tank bottom to level)		Customer setting value
Interface profile	Density profile measurement of the upper interface (upper I/F level to level)		Customer setting value

Operation Proservo NMS80

Gauge command	Descriptions	Post gauge command	
Manual profile	Density profile measurement from a manually set position to level		Customer setting value
Level standby	The displacer moves to a set position and stays there until the tank level reaches this position. After that, gauge command is changed back to level. This function can be used when supplying or discharging liquid.		Level

Proservo NMS80 Operation


10.3.3 Sources for gauge commands

Gauge commands can be sent via various sources.

- Displays or CDI (e.g. FieldCare)
- Digital input (e.g. control switch)
- Fieldbus (Modbus, V1, HART)

The last received gauge command via any sources will be executed as usual.

During calibration, gauge commands are not accepted from any sources.

A002953

- 1 Display operation
- 2 Digital input (e.g. control switch)
- 3 Tankvision

Gauge command priorities

The priority of the gauge command for NMS8x is very simple. The last received gauge command via any sources will be executed to take of the former gauge command. However the priority varies depending on the devices. When replacing the device with the NMS8x, check the priorities shown below.

NOTICE

Undesired gauge command will be executed.

If the setting is not changed, an undesired gauge command will be executed (e.g. Level command via Fieldbus would overwrite Stop command for maintenance.).

► If the system has been automatically or semi-automatically programmed for operation, maintenance or other purposes, the setting should be changed corresponding to use.

Proservo NMS8x

By display		From digital input		From Fieldbus	
Command	Priority	Command	Priority	Command	Priority
Level	1	Level	1	Level	1
Interface	1	Interface	1	Interface	1
Tank bottom	1	Tank bottom	1	Tank bottom	1

Operation Proservo NMS80

By display		From digital input		From Fieldbus		
Spot density	1	Spot density	1	Spot density	1	
Profile density	1	Profile density	1	Profile density	1	
Up	1	Up	1	Up	1	
Stop	1	Stop	1	Stop	1	

Proservo NMS5/NMS7

By display		From NRF560		From digital input		From Fieldbus	
Command	Priority	Command	Priority	Command	Priority	Command	Priority
Level	4	Level	4	Level	4	Level	4
Interface	2	Interface	3	Interface	1	Interface	4
Tank bottom	2	Tank bottom	3	N/A	N/A	Tank bottom	4
Spot density	2	Spot density	3	N/A	N/A	Spot density	4
Profile density	2	Profile density	3	N/A	N/A	Profile density	4
Up	2	Up	3	Up	1	Up	4
Stop	2	Stop	3	Stop	1	Stop	4

Servo level gauge TGM5

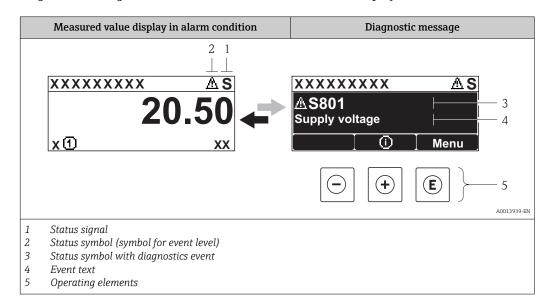
By display From NRF560		From DRM9700		From digital input		From Fieldbus			
Command	Priority	Command	Priority	Command	Priority	Command	Priority	Command	Priority
Level	4	Level	4	Level	4	Level	4	Level	4
Interface	2	Interface	3	N/A	N/A	N/A	N/A	Interface	4
Tank bottom	2	Tank bottom	3	N/A	N/A	N/A	N/A	Tank bottom	4
Spot density	2	Spot density	3	N/A	N/A	N/A	N/A	Spot density	4
Profile density	2	Profile density	3	N/A	N/A	N/A	N/A	Profile density	4
Up	2	Up	3	Up	1	Up	1	Up	4
Stop	2	Stop	3	N/A	N/A	Stop	1	Stop	4

Servo level gauge TGM4000

By display	isplay		From DRM9700		input	From Fieldbus	
Command	Priority	Command	Priority	Command	Priority	Command	Priority
Level	4	Level	4	Level	4	Level	4
Interface	2	Interface	1	N/A	N/A	Interface	4
Tank bottom	2	N/A	N/A	N/A	N/A	Tank bottom	4
Spot density	2	N/A	N/A	N/A	N/A	Spot density	4
Profile density	2	N/A	N/A	N/A	N/A	Profile density	4
Up	2	Up	1	Up	1	Up	4
Stop	2	Stop	N/A	Stop	1	Stop	4

11 Diagnostics and troubleshooting

11.1 General trouble shooting


11.1.1 General errors

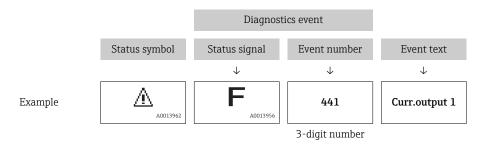
Error	Possible cause	Remedial action	
Device does not respond.	Supply voltage not connected.	Connect the correct voltage.	
	The cables do not contact the terminals properly.	Ensure electrical contact between the cable and the terminal.	
Values on the display invisible	The plug of the display cable is not connected correctly.	Connect the plug correctly.	
	Display is defective.	Replace display.	
	Display contrast too low.	Set Setup \rightarrow Advanced setup \rightarrow Display \rightarrow Contrast display to a value \geq 60 %.	
"Communication error" is	Electromagnetic interference	Check grounding of the device.	
indicated on the display when starting the device or connecting the display	Broken display cable or display plug.	Exchange display.	
CDI communication does not work.	Wrong setting of the COM port on the computer.	Check the setting of the COM port on the computer (e.g. FieldCare) and change it if necessary.	
Device measures incorrectly.	Parametrization error	Check and adjust parameterization.	

11.2 Diagnostic information on local display

11.2.1 Diagnostic message

Faults detected by the self-monitoring system of the measuring device are displayed as a diagnostic message in alternation with the measured value display.

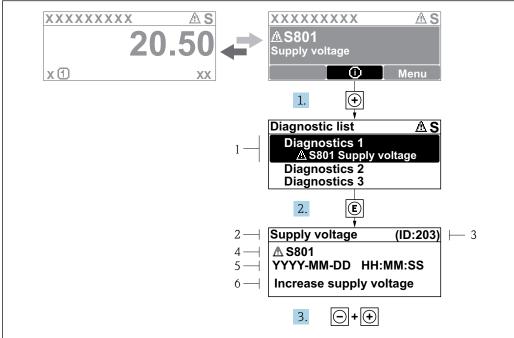
Status signals


A0013956	"Failure" A device error is present. The measured value is no longer valid.		
C	"Function check" The device is in service mode (e.g. during a simulation or a warning).		
S	 "Out of specification" The device is operated: Outside of its technical specifications (e.g. during startup or a cleaning) Outside of the configuration carried out by the user (e.g. level outside configured span) 		
A0013957	"Maintenance required" Maintenance is required. The measured value is still valid.		

Status symbol (symbol for event level)

A0013961	"Alarm" status The measurement is interrupted. The signal outputs take on the defined alarm condition. A diagnostic message is generated.
A0013962	"Warning" status The device continues to measure. A diagnostic message is generated.

Diagnostics event and event text


The fault can be identified using the diagnostics event. The event text helps you by providing information about the fault. In addition, the corresponding symbol is displayed before the diagnostics event.

Operating elements

Operating function	Operating functions in menu, submenu				
A0013970	Plus key Opens the message about the remedial measures.				
A0013952	Enter key Opens the operating menu.				

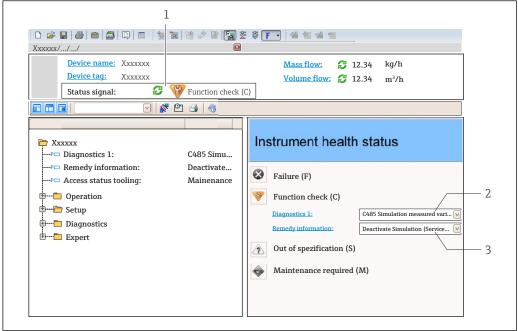
11.2.2 Calling up remedial measures

A0032957-EN

- 69 Message for remedial measures
- 1 Diagnostic information
- 2 Short text
- 3 Service ID
- 4 Diagnostic behavior with diagnostic code
- 5 Operation time of occurrence
- 6 Remedial measures

A diagnostic message appears in the standard view (measured value display).

- 1. Press ± (i) symbol).
 - **└** The **Diagnostic list** submenu opens.
- **2.** Select the desired diagnostic event with \pm or \Box and press \Box .
 - └ The message for the remedial measures for the selected diagnostic event opens.
- 3. Press \Box + \pm simultaneously.
 - ► The message for the remedial measures closes.


The user is in the **Diagnostics** menu at an entry for a diagnostics event, e.g. in the **Diagnostic list** submenu or in the **Previous diagnostics**.

- 1. Press E.
 - └─ The message for the remedial measures for the selected diagnostic event opens.
- 2. Press \Box + \pm simultaneously.
 - ► The message for the remedial measures closes.

132

11.3 Diagnostic information in FieldCare

Any faults detected by the measuring device are displayed on the home page of the operating tool once the connection has been established.

A0021799-FN

- 1 Status area with status signal
- 2 Diagnostic information
- 3 Remedial measures with Service ID
- Furthermore, diagnostic events that have occurred can be viewed in the **Diagnostic** list submenu.

11.3.1 Status signals

The status signals provide information on the state and reliability of the device by categorizing the cause of the diagnostic information (diagnostic event).

Symbol	Meaning
A0017271	Failure A device error has occurred. The measured value is no longer valid.
A0017278	Function check The device is in service mode (e.g. during a simulation or a warning).
A0017277	Out of specification The device is operated outside its technical specification limits (e.g. outside the process temperature range)
A0017276	Maintenance required Maintenance is required. The measured value is still valid.

The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107.

11.3.2 Calling up remedy information

Remedy information is provided for every diagnostic event to ensure that problems can be rectified quickly:

- On the home page
 Remedy information is displayed in a separate field below the diagnostics information.
- In the **Diagnostics** menu Remedy information can be called up in the working area of the user interface.

The user is in the **Diagnostics** menu.

- 1. Call up the desired parameter.
- 2. On the right in the working area, mouse over the parameter.
 - ► A tool tip with remedy information for the diagnostic event appears.

11.4 Overview of the diagnostic messages

Diagnostic number	Short text	Remedy instructions	Status signal [from the factory]	Diagnostic behavior [from the factory]
Diagnostic of	sensor			
102	Sensor incompatible error	Restart device Contact service	F	Alarm
150	Detector error	Restart device Check electrical connections of detector Replace detector unit	F	Alarm
151	Sensor electronic failure	Replace sensor electronic module	F	Alarm
Diagnostic of	electronic			
242	Software incompatible	Check software Flash or change main electronics module	F	Alarm
252	Modules incompatible	Check electronic modules Change I/O or main electronic module	F	Alarm
261	Electronic modules	Restart device Check electronic modules Change I/O Modul or main electronics	F	Alarm
262	Module connection	Check module connections Change electronic modules	F	Alarm
270	Main electronic failure	Replace main electronics	F	Alarm
271	Main electronic failure	Restart device Change main electronic module	F	Alarm
272	Main electronic failure	Restart device Contact service	F	Alarm
273	Main electronic failure	Emergency operation via display Change main electronics	F	Alarm
275	I/O module failure	Restart device Change I/O module	F	Alarm
276	I/O module faulty	Restart device Change I/O module	F	Alarm
282	Data storage	Restart device Contact service	F	Alarm
283	Memory content	Transfer data or reset device Contact service	F	Alarm
284	Detector SW update in progress	Firmware update active, please wait!	F	Alarm
311	Electronic failure	Maintenance required! 1. Do not perform reset 2. Contact service	M	Warning
333	System recovery required	HW change detected System configuration recovery required Go to menu on device and perform recovery	F	Alarm

Diagnostic number	Short text	Remedy instructions	Status signal [from the factory]	Diagnostic behavior [from the factory]
334	System configuration failure	HW changed, system configuration failure, Return to factory	F	Alarm
381	Displacer distance invalid	Calibrate sensor Restart device Replace sensor electronics	F	Alarm
382	Sensor communication	Check connection of sensor electronics Restart device Replace sensor electronics	F	Alarm
Diagnostic of o	configuration		•	
400	AIO simulation output	Deactivate simulation AIO output	С	Warning
401	DIO simulation output	Deactivate simulation DIO output	С	Warning
403	Calibration AIO	Restart device Change I/O module	F	Alarm
404	Calibration AIP	Restart device Change I/O module	F	Alarm
405	COMM timeout DIO 1 to 8	Check wiring Change I/O module	F	Alarm
406	IOM offline	Check wiring Change I/O module	F	Alarm
407	COMM timeout AIO 1 to 2	Check wiring Change I/O module	F	Alarm
408	Invalid range AIO 1 to 2	Check device configuration. Check wiring.	С	Warning
409	RTD temp out of range 1 to 2	Check electronic modules Change I/O or main electronic module	С	Warning
410	Data transfer	Check connection Retry data transfer	F	Alarm
411	Hart device 1 to 15 has malfunction	Check HART device Change HART device	F	Alarm
412	Processing download	Download active, please wait	С	Warning
413	NMT 1 to 15: element is open or short	Check NMT wiring connection Replace NMT	С	Warning
415	Hart device 1 to 15 offline	Check HART device Change HART device	С	Warning
434	Real time clock defective	Replace main electronics	С	Warning
436	Date/Time incorrect	Check date and time settings.	M	Warning
437	Configuration incompatible	Restart device Contact service	F	Alarm
438	Dataset	Check data set file Check device configuration Up- and download new configuration	M	Warning
441	AIO 1 to 2 current output alarm	Check process Check current output settings	F	Alarm

Diagnostic number	Short text	Remedy instructions	Status signal [from the factory]	Diagnostic behavior [from the factory]
442	AIO 1 to 2 current output warning	Check process Check current output settings	С	Warning
443	AIO 1 to 2 Input not HART compatible	AIO select compatible HART input.	С	Warning
452	HyTD correction value	Check device configuration.	С	Warning
452	CTSh	2. Check wiring.	С	Warning
452	HTG		С	Warning
452	HTMS		С	Warning
484	Failure mode simulation	Deactivate simulation	С	Alarm
495	Diagnostic event simulation	Deactivate simulation	С	Warning
500	AIO C1-3 source no longer valid	Change input source	С	Warning
501	Level source no longer valid	Change input source	С	Warning
502	GP1 source no longer valid	Change input source	С	Warning
503	GP2 source no longer valid	Change input source	С	Warning
504	GP3 source no longer valid	Change input source	С	Warning
505	GP4 source no longer valid	Change input source	С	Warning
506	Water level source no longer valid	Change input source	С	Warning
507	Liquid temp source no longer valid	Change input source	С	Warning
508	Vapor temperatur source no longer valid	Change input source	С	Warning
509	Air temperature source no longer valid	Change input source	С	Warning
510	P1 source no longer valid	Change input source	С	Warning
511	P2 source no longer valid	Change input source	С	Warning
512	P3 source no longer valid	Change input source	С	Warning
513	Upper density source no longer valid	Change input source	С	Warning
514	Middle density source no longer valid	Change input source	С	Warning
515	Lower density source no longer valid	Change input source	С	Warning
516	Gauge command source no longer valid	Change input source	С	Warning
517	Gauge status source no longer valid	Change input source	С	Warning
518	Average density source no longer valid	Change input source	С	Warning
519	Upper interface source no longer valid	Change input source	С	Warning
520	Lower interface source no longer valid	Change input source	С	Warning
521	Bottom level source no longer valid	Change input source	С	Warning

Diagnostic number	Short text	Remedy instructions	Status signal [from the factory]	Diagnostic behavior [from the factory]
522	Displacer position source not valid	Change input source	С	Warning
523	Distance source no longer valid	Change input source	С	Warning
524	Balance flag source no longer valid	Change input source	С	Warning
525	One time cmd source no longer valid	Change input source	С	Warning
526	Alarm 1 to 4 source no longer valid	Change input source	С	Warning
527	AIO B1-3 source no longer valid	Change input source	С	Warning
532	HART output: PV source not valid	Change input source	С	Warning
533	HART output: SV source not valid	Change input source	С	Warning
534	HART output: QV source not valid	Change input source	С	Warning
535	HART output: TV source not valid	Change input source	С	Warning
536	Display: source no longer valid	Change input source	С	Warning
537	Trend: source no longer valid	Change input source	С	Warning
538	HART output: PV mA source not valid	Change input source	С	Warning
539	Modbus A1-4 SP source invalid	Set valid SP input selector	С	Warning
540	Modbus B1-4 SP source invalid	Set valid SP input selector	С	Warning
541	Modbus C1-4 SP source invalid	Set valid SP input selector	С	Warning
542	Modbus D1-4 SP source invalid	Set valid SP input selector	С	Warning
543	V1 A1-4 SP source invalid	Set valid SP input selector	С	Warning
544	V1 B1-4 SP source invalid	Set valid SP input selector	С	Warning
545	V1 C1-4 SP source invalid	Set valid SP input selector	С	Warning
546	V1 D1-4 SP source invalid	Set valid SP input selector	С	Warning
547	Modbus A1-4 alarm source invalid	Set valid alarm input selector	С	Warning
548	Modbus B1-4 alarm source invalid	Set valid alarm input selector	С	Warning
549	Modbus C1-4 alarm source invalid	Set valid alarm input selector	С	Warning
550	Modbus D1-4 alarm source invalid	Set valid alarm input selector	С	Warning
551	V1 A1-4 alarm source invalid	Set valid alarm input selector	С	Warning
552	V1 B1-4 alarm source invalid	Set valid alarm input selector	С	Warning
553	V1 C1-4 alarm source invalid	Set valid alarm input selector	С	Warning

Diagnostic number	Short text	Remedy instructions	Status signal [from the factory]	Diagnostic behavior [from the factory]
554	V1 D1-4 alarm source invalid	Set valid alarm input selector	С	Warning
556	Modbus A1-4 analog source invalid	Set valid analog input selector	С	Warning
557	Modbus B1-4 analog source invalid	Set valid analog input selector	С	Warning
558	Modbus C1-4 analog source invalid	Set valid analog input selector	С	Warning
559	Modbus D1-4 analog source invalid	Set valid analog input selector	С	Warning
560	Calibration mandatory	Carry out weight calibration Carry out reference calibration Carry out drum calibration	С	Alarm
564	DIO B1-2 source no longer valid	Change input source	С	Warning
565	DIO B3-4 Source not valid	Change input source	С	Warning
566	DIO C1-2 source no longer valid	Change input source	С	Warning
567	DIO C3-4 source no longer valid	Change input source	С	Warning
568	DIO D1-2 source no longer valid	Change input source	С	Warning
569	DIO D3-4 source no longer valid	Change input source	С	Warning
570	V1 A1-4 analog source invalid	Set valid analog input selector	С	Warning
571	V1 B1-4 analog source invalid	Set valid analog input selector	С	Warning
572	V1 C1-4 analog source invalid	Set valid analog input selector	С	Warning
573	V1 D1-4 analog source invalid	Set valid analog input selector	С	Warning
574	Modbus A1-4 user value source invalid	Set valid user value input selector	С	Warning
575	Modbus B1-4 user value source invalid	Set valid user value input selector	С	Warning
576	Modbus C1-4 user value source invalid	Set valid user value input selector	С	Warning
577	Modbus D1-4 user value source invalid	Set valid user value input selector	С	Warning
578	Modbus A1-4 discrete value src invalid	Set valid user discrete input selector	С	Warning
579	Modbus B1-4 disc value source invalid	Set valid user discrete input selector	С	Warning
580	Modbus C1-4 disc value source invalid	Set valid user discrete input selector	С	Warning
581	Modbus D1-4 discrete value src invalid	Set valid user discrete input selector	С	Warning
582	V1 A1-4 user value source invalid	Set valid user value input selector	С	Warning
583	V1 B1-4 user value source invalid	Set valid user value input selector	С	Warning

Diagnostic number	Short text	Remedy instructions	Status signal [from the factory]	Diagnostic behavior [from the factory]
584	V1 C1-4 user value source invalid	Set valid user value input selector	С	Warning
585	Simulation distance	Deactivate simulation	С	Warning
585	V1 D1-4 user value source invalid	Set valid user value input selector	С	Warning
586	Record map	Recording of mapping please wait	С	Warning
586	V1 A1-4 discrete value source invalid	Set valid user discrete input selector	С	Warning
587	V1 B1-4 discrete value source invalid	Set valid user discrete input selector	С	Warning
588	V1 C1-4 discrete value source invalid	Set valid user discrete input selector	С	Warning
589	V1 D1-4 discrete value source invalid	Set valid user discrete input selector	С	Warning
590	Modbus A1-4 percent source invalid	Set valid percentage input selector	С	Warning
591	Modbus B1-4 percent source invalid	Set valid percentage input selector	С	Warning
592	Modbus C1-4 percent source invalid	Set valid percentage input selector	С	Warning
593	Modbus D1-4 percent source invalid	Set valid percentage input selector	С	Warning
594	V1 A1-4 percent source invalid	Set valid percentage input selector	С	Warning
595	V1 B1-4 percent source invalid	Set valid percentage input selector	С	Warning
596	V1 C1-4 percent source invalid	Set valid percentage input selector	С	Warning
597	V1 D1-4 percent source invalid	Set valid percentage input selector	С	Warning
598	DIO A1-2 source no longer valid	Change input source	С	Warning
599	DIO A3-4 source no longer valid	Change input source	С	Warning
Diagnostic of p	process			'
801	Energy too low	Increase supply voltage	S	Warning
803	Current loop	Check device configuration.	F	Alarm
803	Current loop 1 to 2	2. Check wiring.	M	Warning
803	Current loop		С	Warning
825	System temperature	Check ambient temperature	S	Warning
825	System temperature	2. Check process temperature	F	Alarm
826	Sensor temperature	Check ambient temperature	S	Warning
826	Sensor temperature	2. Check process temperature	F	Alarm
844	Process value out of specification	Check process value Check application	S	Warning 1)
844	Process value out of specification	3. Check sensor	S	Warning

Diagnostic number	Short text	Remedy instructions	Status signal [from the factory]	Diagnostic behavior [from the factory]
903	Current loop 1 to 2	Check device configuration. Check wiring.	F	Alarm
904	Digital output 1 to 8	Check device configuration. Check wiring.	F	Alarm
941	Echo lost	Check process value Check application Check sensor	S	Warning
942	In safety distance	Check level Check safety distance Reset self holding	S	Warning
943	In blocking distance	Reduced accuracy Check level	S	Warning
950	Advanced diagnostics	Maintain your diagnostic event	M	Warning
961	Alarm 1 to 4 HighHigh	Check level Check configuration settings	С	Warning
962	Alarm 1 to 4 High	Check level Check configuration settings	С	Warning
963	Alarm 1 to 4 Low	Check level Check configuration settings	С	Warning
964	Alarm 1 to 4 LowLow	Check level Check configuration settings	С	Warning
965	Alarm 1 to 4 HighHigh	Check level Check configuration settings	F	Alarm
966	Alarm 1 to 4 High	Check level Check configuration settings	F	Alarm
967	Alarm 1 to 4 Low	Check level Check configuration settings		Alarm
968	Alarm 1 to 4 LowLow	Check level Check configuration settings	F	Alarm
970	Overtension	Check displacer and process conditions Release overtension	С	Alarm
971	Undertension	Check displacer and process.	С	Alarm

¹⁾ Diagnostic behavior can be changed.

11.5 Diagnostic list

In the Diagnostic list submenu, up to 5 currently pending diagnostic messages can be displayed. If more than 5 messages are pending, the messages with the highest priority are shown on the display.

Navigation path

 $Diagnostics \rightarrow Diagnostic list$

Calling up and closing the remedial measures

- 1. Press E.
 - └─ The message for the remedial measures for the selected diagnostic event opens.
- 2. Press \Box + \pm simultaneously.
 - **└** The message about the remedial measures closes.

11.6 Reset measuring device

To reset the device to a defined state use the **Device reset** parameter ($\rightarrow \triangleq 309$).

11.7 Device information

Information on the device (order code, hardware and software version of the individual modules etc.) can be found in the **Device information** submenu ($\Rightarrow \implies 314$).

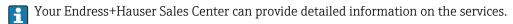
11.8 Firmware history

Date	Software	Modifications	Documentation (NMS80)				Documentation (NMS80)	
	version		Operating Instructions	Description of Parameters	Technical Information			
04.2016	01.00.zz	Original software	BA01456G/00/EN/01.16	GP01074G/00/EN/01.16	TI01248G/00/EN/01.16			
12.2016	01.02.zz	Bugfixes and improvements	BA01456G/00/EN/02.17	GP01074G/00/EN/01.17	TI01248G/00/EN/02.17			

Maintenance Proservo NMS80

12 Maintenance

12.1 Maintenance tasks


No special maintenance work is required.

12.1.1 Exterior cleaning

When cleaning the exterior of measuring devices, always use cleaning agents that do not attack the surface of the housing or the seals.

12.2 Endress+Hauser services

Endress+Hauser offers a wide variety of services for maintenance such as recalibration, maintenance service or device tests.

Proservo NMS80 Repair

13 Repair

13.1 General information on repairs

13.1.1 Repair concept

The Endress+Hauser repair concept assumes that the devices have a modular design and that repairs can be done by the Endress+Hauser service or specially trained customers.

Spare parts are contained in suitable kits. They contain the related replacement instructions.

For more information on service and spare parts, contact the Service Department at Endress+Hauser.

13.1.2 Repairs to Ex-approved devices

When carrying out repairs to Ex-approved devices, please note the following:

- Repairs to Ex-approved devices may only be carried out by trained personnel or by the Endress+Hauser Service.
- Comply with the prevailing standards, national Ex-area regulations, safety instructions (XA) and certificates.
- Only use original spare parts from Endress+Hauser.
- When ordering a spare part, please note the device designation on the nameplate. Only replace parts with identical parts.
- Carry out repairs according to the instructions. On completion of repairs, carry out the specified routine test on the device.
- Only Endress+Hauser Service may convert a certified device into a different certified variant.
- Document all repair work and conversions.

13.1.3 Replacement of a device or electronic module

After a complete device or the electronic mainboard has been replaced, the parameters can be downloaded into the instrument again via FieldCare.

Condition: The configuration of the old device has been saved to the computer via FieldCare.

If an electronic module of the sensor or other parts of the sensor have been replaced, the servo calibration must be repeated. Please refer to $\rightarrow \triangleq 81$.

The "Save/Restore" function

After a device configuration has been saved to a computer and restored to the device using the **Save/Restore** function of FieldCare, the device must be restarted by the following setting:

Setup \rightarrow Advanced setup \rightarrow Administration \rightarrow Device reset = Restart device. This ensures correct operation of the device after the restore.

13.2 Spare parts

Some interchangeable measuring device components are listed on an overview sign in the connection compartment cover.

Repair Proservo NMS80

The spare part overview sign contains the following information:

 A list of the most important spare parts for the measuring device, including their ordering information.

■ The URL for the *W@M Device Viewer* (www.endress.com/deviceviewer):
All the spare parts for the measuring device, along with the order code, are listed here and can be ordered. If available, users can also download the associated Installation Instructions.

13.3 Endress+Hauser services

Endress+Hauser offers a wide range of services.

Your Endress+Hauser Sales Center can provide detailed information on the services.

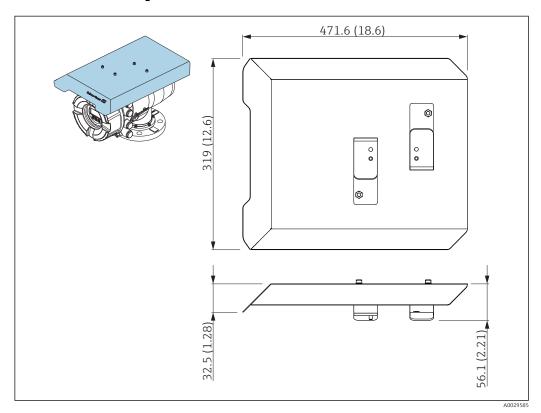
13.4 Return

The measuring device must be returned if it is need of repair or a factory calibration, or if the wrong measuring device has been delivered or ordered. Legal specifications require Endress+Hauser, as an ISO-certified company, to follow certain procedures when handling products that are in contact with the medium.

To ensure safe, swift and professional device returns, please refer to the procedure and conditions for returning devices provided on the Endress+Hauser website at http://www.endress.com/support/return-material

13.5 Disposal

Observe the following notes during disposal:


- Observe valid federal/national regulations.
- Ensure proper separation and reuse of the device components.

Proservo NMS80 Accessories

Accessories 14

Device-specific accessories 14.1

14.1.1 Weather protection cover

Weather protection cover; dimensions: mm (in)

Materials

Part	Material
Protection cover and mounting brackets	316L (1.4404)
Screws and washers	A4

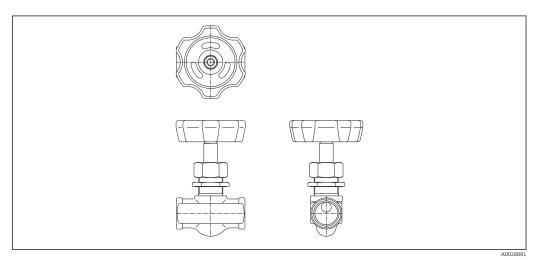
- The weather protection cover can be ordered together with the device: Ordering feature 620 "Accessory Enclosed", option PA "Weather Protection Cover")
 - It can also be ordered as an accessory: Order code: 71305035 (for NMS8x)

Accessories Proservo NMS80

14.1.2 Calibration chamber

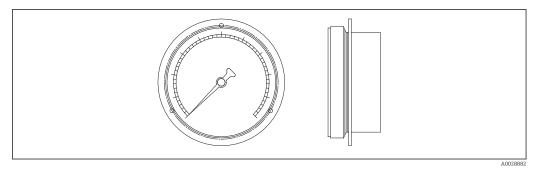
A calibration chamber is recommended for use with tank level gauges in order to allow maintenance (removing the 70 mm (2.76 in) displacer or larger), while the tank is in service. Contact your Endress+Hauser Sales Center if necessary.

14.1.3 Ball valve

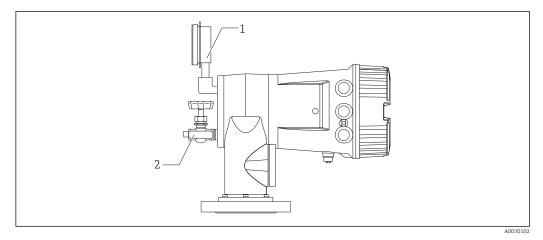

Ball valves are recommended for use with tank level gauges in order to allow maintenance such as removing displacers while tank is in service. Contact your Endress+Hauser Sales Center if necessary.

14.1.4 Control switch

A control switch is used for field mounted tank gauges. This provides additional gauge operation contact switching in order to control the gauge's operation, such as hoisting up the displacer. Contact your Endress+Hauser Sales Center if necessary.


14.1.5 Relief valve and pressure gauge

A relief valve is used to release pressure inside the housing of NMS8x before maintenance.


■ 71 Relief valve

A pressure gauge is used to check process pressure inside the housing.

■ 72 Pressure gauge

Proservo NMS80 Accessories


■ 73 Mounting position of relief valve and pressure gauge

- Pressure gauge
- 2 Relief valve

14.1.6 Cleaning nozzle and gas purging nozzle

A cleaning nozzle used for washing inside housing is especially recommended for F&B or alcohol applications.

A gas purging nozzle used for purging gas inside the housing is especially recommended for a nitrogen blanket for petrochemical or chemical applications.

■ 74 Holes for cleaning nozzle and gas purging nozzle

- 1 Cleaning nozzle
- 2 Gas purging nozzle

Accessories Proservo NMS80

14.2 Communication-specific accessories

Accessory	Description
WirelessHART Adapter SWA70	Connects field devices to a WirelessHART network. The WirelessHART adapter can be mounted directly at a HART device and is easly integrated into an existing HART network. It ensures safe data transmission and can be operated in parallel with other wireless networks. For details refer to Operating Instructions BA00061S

14.3 Service-specific accessories

Accessory	Description
Commubox FXA195 HART	For intrinsically safe HART communication with FieldCare via the USB interface. For details refer to Technical Information TI00404F

Description
onnects Endress+Hauser field devices with CDI interface (= Endress+Hauser ommon Data Interface) to the USB interface of a computer. For details refer to Technical Information TI00405C
0

Accessory	Description
FieldCare	Endress+Hauser's FDT-based Plant Asset Management tool. Helps to configure and maintain all field devices of your plant. By supplying status information it also supports the diagnosis of the devices. For details refer to Operating Instructions BA00027S and BA00059S.

14.4 System components

Accessory	Description
RIA15	Compact process display unit with very low voltage drop for universal use to display 4 to 20 mA/HART signals For details refer to Technical Information TI01043K.
Tankvision Tank Scanner NXA820 Data Concentrator NXA821 Host Link NXA822	Inventory Management System with completely integrated software for operation via standard web browser For details refer to Technical Information TI00419G.

15 Operating menu

• 🗐 : Navigation path for operating module at the device

■ 🖫 : Navigation path for operating tool (e.g. FieldCare)

• 🗈 : Parameter can be locked via software locking

15.1 Overview of the operating menu

■ This section lists the parameters of the following menus:

- Operation (\rightarrow $\stackrel{\triangle}{=}$ 162)
- Setup (→ 🗎 178)
- Diagnostics (\rightarrow \triangleq 310)
- For the **Expert** menu refer to the "Description of Device Parameters" (GP) of the respective device.
- Depending on the device version and parametrization some parameters will not be available in a given situation. For details refer to the "Prerequisite" category in the description of the respective parameter.
- The representation essentially corresponds to the menu in an operating tool (e.g. FieldCare). On the local display there may be minor differences in the menu structure. Details are mentioned in the description of the respective submenu.

Navigation Operating tool

		→ 🖺 162
Gauge comman	nd	→ 🖺 162
Distance		→ 🖺 163
Net weight		→ 🖺 163
Gauge status		→ 🗎 164
Balance flag		→ 🗎 164
Standby level		→ 🗎 164
One-time comm	mand status	→ 🗎 164
► Level		→ 🗎 165
	Tank level	→ 🗎 165
	Tank Level %	→ 🖺 165
	Tank ullage	→ 🖺 165
	Tank ullage %	→ 🖺 165
	Upper interface level	→ 🖺 166
	Upper interface level timestamp	→ 🖺 166
	Distance Net weight Gauge status Balance flag Standby level One-time comm	Net weight Gauge status Balance flag Standby level One-time command status ▶ Level Tank level Tank Level % Tank ullage Tank ullage % Upper interface level

			1	
	Lower interface leve	el		→ 🖺 166
	Lower interface leve	el timestamp		→ 🖺 166
	Bottom level			→ 🖺 167
	Bottom level timest	amp		→ 🖺 167
	Water level			→ 🖺 167
	Measured level			→ 🖺 167
	Distance			→ 🖺 163
	Displacer position			→ 🖺 168
	Displacer position			/ = 100
► Temperature				→ 🖺 168
	Air temperature			→ 🖺 168
	Liquid temperature			→ 🖺 168
	Vapor temperature			→ 🖺 169
	► NMT element va	alues		→ 🖺 169
		► Element temper	ature	→ 🖺 169
			Element temperature 1 to 24	→ 🖺 169
		► Element position	1	→ 🖺 170
			Element position 1 to 24	→ 🗎 170
		_	1	
► Density				→ 🖺 170
	Observed density			→ 🖺 170
	Vapor density			→ 🖺 170
	Air density			→ 🖺 171
	Measured upper de	nsity		→ 🖺 171
	Upper density times	stamp		→ 🖺 171
	Measured middle d	ensity		→ 🖺 171
	Middle Density Tim	nestamp		→ 🖺 172

	Measured lower density	→ 🖺 172
	Lower density timestamp	→ 🖺 172
	Profile point	→ 🖺 172
	Profile average density	→ 🗎 173
	Profile density timestamp	→ 🖺 173
	▶ Profile density	→ 🖺 174
	Profile density 0 to 49	→ 🖺 174
	Profile density position 0 to 49	→ 🖺 174
	Frome density position 0 to 49	/ 目 1/4
▶ Pres	ssure	→ 🖺 174
	P1 (bottom)	→ 🖺 174
	P3 (top)	→ 🖺 175
► GP v	values	→ 🗎 176
	GP 1 to 4 name	→ 🗎 176
	GP Value 1	→ 🖺 176
	GP Value 2	→ 🖺 176
	GP Value 3	→ 🖺 176
	GP Value 4	→ 🖺 177
⊁ Setup		→ 🖺 178
Device	e tag	→ 🖺 178
Units p	preset	→ 🖺 178
Upper	density	→ 🖺 179
Middle	e density	→ 🖺 179
Lower	density	→ 🖺 179
Gauge	command	→ 🖺 162
Process	ss condition	→ 🖺 180

Empty		→ 🖺 180
Tank reference heigh	t	→ 🖺 181
Tank level		→ 🖺 165
Set level		→ 🖺 181
Level source		→ 🖺 182
High stop level		→ 🖺 182
Low stop level		→ 🖺 183
Distance		→ 🖺 163
Liquid temp source		→ 🖺 183
► Calibration		→ 🖺 184
	➤ Move displacer	→ 🖺 184
	Move distance	→ 🖺 184
	Distance	→ 🖺 163
	Move displacer	→ 🖺 184
	Motor status	→ 🖺 185
	Move displacer	→ 🖺 185
	➤ Sensor calibration	→ 🖺 186
	Sensor calibration	→ 🖺 186
	Offset weight	→ 🖺 186
	Span weight	→ 🖺 186
	Zero calibration	→ 🖺 187
	Calibration status	→ 🖺 187
	Offset calibration	→ 🖺 187
		→ 🗎 187

► Reference calib	ration	→ 🖺 188
	Reference calibration	→ 🖺 188
	Reference position	→ 🖺 188
	Progress	→ 🖺 188
	Calibration status	→ 🖺 187
▶ Drum calibration	on	→ 🖺 190
	Drum calibration	→ 🖺 190
	Set high weight	→ 🖺 190
	Make drum table	→ 🖺 190
	Drum table point	→ 🖺 190
	Calibration status	→ 🖺 187
	Make low table	→ 🖺 191
	Set low weight	→ 🖺 191
► Advanced setup		→ 🗎 192
Locking status		→ 🖺 192
Access status tooli	ng	→ 🖺 192
Enter access code		→ 🖺 192
► Input/output		→ 🖺 193
	► HART devices	→ 🖺 193
	Number of devices	→ 🖺 193
	► HART Device(s)	→ 🖺 194
	► Forget device	→ 🖺 199
	► Analog IP	→ 🖺 200
	Operating mode	→ 🖺 200
	RTD type	→ 🖺 200

	RTD connection type	→ 🖺 201
	Process value	→ 🖺 201
	Process variable	→ 🖺 202
	0 % value	→ 🖺 202
	100 % value	→ 🖺 202
	Input value	→ 🖺 203
	Minimum probe temperature	→ 🖺 203
	Maximum probe temperature	→ 🖺 203
	Probe position	→ 🖺 204
	Damping factor	→ 🖺 204
	Gauge current	→ 🖺 205
► Analog I/O		→ 🖺 206
	Operating mode	→ 🖺 206
	Current span	→ 🖺 207
	Fixed current	→ 🖺 208
	Analog input source	→ 🖺 208
	Failure mode	→ 🖺 209
	Error value	→ 🖺 210
	Input value	→ 🖺 210
	0 % value	→ 🖺 210
	100 % value	→ 🗎 211
	Input value %	→ 🖺 211
	Output values	→ 🖺 211
	Process variable	→ 🖺 212
	Analog input 0% value	→ 🖺 212
	Input value % Output values Process variable	 → 🖺 211 → 🖺 211 → 🖺 212

Analog input 100% value	→ 🗎 212
Error event type	→ 🖺 213
Process value	→ 🖺 213
Input value in mA	→ 🖺 213
Input value percent	→ 🖺 214
Damping factor	→ 🖺 214
Used for SIL/WHG	→ 🖺 214
Expected SIL/WHG chain	→ 🖺 215
▶ Digital Xx-x	→ 🖺 216
Operating mode	→ 🖺 216
Digital input source	→ 🖺 217
Input value	→ 🖺 218
Contact type	→ 🖺 218
Output simulation	→ 🖺 218
Output values	→ 🖺 219
Readback value	→ 🖺 219
Used for SIL/WHG	→ 🖺 220
▶ Digital input mapping	→ 🖺 221
Digital input source 1	→ 🖺 221
Digital input source 2	→ 🖺 221
Gauge command 0	→ 🖺 222
Gauge command 1	→ 🖺 222
Gauge command 2	→ 🖺 223
Gauge command 3	→ 🖺 223

]	· @
► Communication			→ 🖺 225
	► Communication	interface 1 to 2	
		Communication interface protocol	→ 🖺 225
		► Configuration	→ 🖺 226
		► Configuration	→ 🖺 229
		▶ V1 input selector	→ 🖺 232
	► HART output		→ 🖺 234
		► Configuration	→ 🖺 234
		▶ Information	→ 🖺 242
► Application			→ 🖺 244
	► Tank configurati	ion	→ 🖺 244
		▶ Level	→ 🖺 244
		▶ Temperature	→ 🖺 248
		▶ Density	→ 🖺 252
		▶ Pressure	→ 🖺 254
	► Tank calculation		→ 🖺 259
		▶ HyTD	→ 🖺 261
		► CTSh	→ 🖺 267
		► HTMS	→ 🖺 272
	► Alarm		
		▶ Alarm 1 to 4	→ 🖺 276
► Safety settings			→ 🖺 284
	Output out of range		→ 🖺 284
	High stop level		→ 🖺 182
	Low stop level		→ 🖺 183

	Slow hoist zone	→ 🖺 285
	Overtension weight	→ 🖺 285
	Undertension weight	→ 🖺 285
► Sensor config		→ 🖺 287
	Post gauge command	→ 🗎 287
	▶ Displacer	→ 🗎 288
	Displacei	
	Displacer type	→ 🖺 288
	Displacer diameter	→ 🖺 288
	Displacer weight	→ 🖺 288
	Displacer volume	→ 🖺 289
	Displacer balance volume	→ 🖺 289
	Displacer height	→ 🖺 289
	Immersion depth	→ 🖺 290
	▶ Wiredrum	→ 🖺 291
	Drum circumference	→ 🖺 291
	Wire weight	→ 🗎 291
	► Spot density	→ 🖺 292
	Upper density offset	→ 🖺 292
	Middle density offset	→ 🖺 292
	Lower density offset	→ 🖺 292
	Submersion depth	→ 🖺 293
	► Profile density	→ 🖺 294
	Density measurement mode	→ 🖺 294
	Manual profile level	→ 🖺 294
	Profile density offset distance	→ 🗎 294
	1 forme density offset distance	/ ⊟ 47 4

		Profile density interval	→ 🖺 295
		Profile density offset	→ 🖺 295
► Display			→ 🖺 296
	Language		→ 🖺 296
	Format display		→ 🖺 296
	Value 1 to 4 display	· ·	→ 🗎 297
	Decimal places 1 to	4	→ 🗎 298
	Separator		→ 🗎 298
	Number format		→ 🖺 299
	Header		→ 🖺 299
	Header text		→ 🖺 299
	Display interval		→ 🖺 300
	Display damping		→ 🖺 300
	Backlight		→ 🖺 300
	Contrast display		→ 🖺 301
► System units			→ 🖺 302
	Units preset		→ 🖺 178
	Distance unit		→ 🖺 302
	Pressure unit		→ 🖺 303
	Temperature unit		→ 🖺 303
	Density unit		→ 🖺 303
► Date / time			→ 🖺 305
	Date/time		→ 🖺 305
	Set date		→ 🖺 305
	Year		→ 🖺 305

			Month	→ 🖺 306
			Day	→ 🖺 306
			Hour	→ 🖺 306
			Minute	→ 🖺 307
		► SIL confirmatio	on .	→ 🖺 308
		➤ Deactivate SIL/	WHG	→ 🖺 308
		► Administration	1	→ 🖺 309
			Define access code	→ 🖺 309
			Device reset	→ 🖺 309
্থ Diagnostics				→ 🖺 310
	Actual diagnostics			→ 🖺 310
	Timestamp			→ 🖺 310
	Previous diagnostic	CS .		→ 🖺 310
	Timestamp			→ 🖺 311
	Operating time from	m restart		→ 🖺 311
	Operating time			→ 🖺 311
	Date/time			→ 🖺 305
	► Diagnostic list			→ 🖺 313
		Diagnostics 1 to 5		→ 🖺 313
		Timestamp 1 to 5		→ 🖺 313
	► Device informat	tion		→ 🖺 314
		Device tag		→ 🖺 314
		Serial number		→ 🖺 314
		Firmware version		→ 🖺 314
		Firmware CRC		→ 🖺 314
_				

	Weight and measures configuration CRC	→ 🖺 315
	Device name	→ 🖺 315
	Order code	→ 🖺 315
	Extended order code 1 to 3	→ 🖺 315
► Simulation		→ 🖺 317
	Device alarm simulation	→ 🖺 317
	Diagnostic event simulation	→ 🖺 317
	Simulation distance on	→ 🖺 317
	Simulation distance	→ 🖺 318
	Current output 1 simulation	→ 🖺 318
	Simulation value	→ 🖺 318
▶ Device check		→ 🖺 320
	Result drum check	→ 🖺 320
	► Commissioning check	→ 🖺 321
	Commissioning check	→ 🖺 321
	Result drum check	→ 🖺 320
	Step X / 11	→ 🖺 321

15.2 "Operation" menu

The **Operation** menu ($\rightarrow \implies 162$) shows the most important measured values and allows to issue a gauge command.

Gauge command			
Navigation	□ Op	eration → Gauge command	
Description	Gauge op	eration command to choose the measurement mode of the device.	

Selection

- Stop
- Level
- Up
- Bottom level
- Upper I/F level
- Lower I/F level
- Upper density
- Middle density
- Lower density
- Repeatability
- Water dip
- Release overtension
- Tank profile
- Interface profile
- Manual profile
- Level standby

Factory setting

Stop

Additional information

Read access	Operator
Write access	Maintenance

Distance

Navigation

 \square Operation \rightarrow Distance

Description

Shows measured distance from reference position.

Additional information

Read access	Operator
Write access	-

Net weight

Navigation

Description

Shows the corrected weight data from the detector, as compensated by the drum table, This weight is used for measurement.

Additional information

Read access	Operator
Write access	-

Gauge status

Navigation \blacksquare Operation \Rightarrow Gauge status

Description Indicates the current status of the device gauge command.

Additional information

Read access	Operator
Write access	-

Balance flag

Navigation \blacksquare Operation \rightarrow Balance flag

Description Indicates the validity of the Measurement. If balanced, corresponding Value (Liquid Level,

Upper Interface, Lower Interface, Tank Bottom) is updated.

Additional information

Read access	Operator
Write access	-

Standby level

Navigation $\blacksquare \Box$ Operation \rightarrow Standby level

Description Defines the position in the tank where the displacer waits for the liquid level to rise during

standby level gauge command.

User entry -999 999.9 to 999 999.9 mm

Factory setting 0 mm

Additional information

Read access	Operator
Write access	Maintenance

One-time command status

Description Indicates the status of the last executed one-time gauge command.

Additional information

Read access	Operator
Write access	-

15.2.1 "Level" submenu

Navigation \square Operation \rightarrow Level

Tank level

Navigation $\blacksquare \Box$ Operation \rightarrow Level \rightarrow Tank level

Description Shows the distance from the zero position (tank bottom or datum plate) to the product

surface.

Additional information

Read access	Operator
Write access	-

Tank Level %

Description Shows the level as a percentage of the full measuring range.

Additional information

Read access	Operator
Write access	-

Tank ullage

Description Shows the remaining empty space in the tank.

Additional information

Read access	Operator
Write access	-

Tank ullage %

Description Shows the remaining empty space in percentage related to parameter tank reference

height.

Additional information

Read access	Operator
Write access	-

Upper interface level

Navigation

Description

Shows measured interface level from zero position (tank bottom or datum plate). Value is updated when device generates a valid Interface measurement.

Additional information

Read access	Maintenance
Write access	-

Upper interface level timestamp

Navigation

Description

Shows timestamp for the last measured upper interface level.

Additional information

Read access	Operator
Write access	-

Lower interface level

Navigation

 \bigcirc Operation \rightarrow Level \rightarrow Lower interface level

Description

Shows measured interface level from zero position (tank bottom or datum plate). Value is updated when device generates a valid interface measurement.

Additional information

Read access	Maintenance
Write access	-

Lower interface level timestamp

Navigation

Description

Shows timestamp of the last measured lower interface level.

Additional information

Read access	Operator
Write access	-

Bottom level

Navigation $\blacksquare \Box$ Operation \rightarrow Level \rightarrow Bottom level

Description Shows the bottom level.

Additional information

Read access	Operator
Write access	-

Bottom level timestamp

Description Shows the timestamp for measured bottom level.

Additional information

Read access	Operator
Write access	-

Water level

Description Shows the bottom water level.

Additional information

Read access	Operator
Write access	-

Measured level

Description Shows the measured level without any correction from the tank calculations.

Additional information

Read access	Operator
Write access	-

Distance

Navigation \Box Operation \rightarrow Level \rightarrow Distance

Description Shows measured distance from reference position.

Additional information

Read access	Operator
Write access	-

Displacer position

Description Shows the displacer position.

Additional information

Read access	Operator
Write access	-

15.2.2 "Temperature" submenu

Air temperature

Description Shows the air temperature.

Additional information

Read access	Operator
Write access	-

Liquid temperature

Description Shows the average or spot temperature of the measured liquid.

Additional information

Read access	Operator
Write access	-

Vapor temperature

Navigation

Description

Shows the measured vapor temperature.

Additional information

Read access	Operator
Write access	-

"NMT element values" submenu

This submenu is only visible if a Prothermo NMT is connected.

Navigation \square Operation \rightarrow Temperature \rightarrow NMT element values

"Element temperature" submenu

Element temperature 1 to 24

Navigation

Description

Shows the temperature of an element in the NMT.

Additional information

Read access	Operator
Write access	-

"Element position" submenu

Navigation \square Operation \rightarrow Temperature \rightarrow NMT element values \rightarrow Element

position

Element position 1 to 24

position 1 to 24

Description Shows the position of the selected element in the NMT.

Additional information

Read access	Operator
Write access	-

15.2.3 "Density" submenu

Navigation $\blacksquare \Box$ Operation \rightarrow Density

Observed density

Navigation \blacksquare Operation \rightarrow Density \rightarrow Observed density

Description Calculated density of the product.

Additional information

Read access	Operator
Write access	-

Vapor density

Navigation \blacksquare Operation \rightarrow Density \rightarrow Vapor density

Description Defines the density of the gas phase in the tank.

User entry $0.0 \text{ to } 500.0 \text{ kg/m}^3$

Factory setting 1.2 kg/m^3

Additional information

Read access	Operator
Write access	Maintenance

Air density

Description Defines the density of the air surrounding the tank.

User entry $0.0 \text{ to } 500.0 \text{ kg/m}^3$

Factory setting 1.2 kg/m³

Additional information

Read access	Operator
Write access	Maintenance

Measured upper density

Navigation \blacksquare Operation \rightarrow Density \rightarrow Measured upper density

Description Shows the density of the upper phase.

Additional information

Read access	Operator
Write access	-

Upper density timestamp

Description Shows timestamp of the last measured upper density.

Additional information

Read access	Operator
Write access	-

Measured middle density

Description Density of the middle phase.

Additional information

Read access	Operator
Write access	-

Middle Density Timestamp

Description Shows the timestamp of the last measured middle density.

Additional information

Read access	Operator
Write access	-

Measured lower density

Description Density of the lower phase.

Additional information

Read access	Maintenance
Write access	-

Lower density timestamp

Description Shows timestamp of last measured lower density.

Additional information

Read access	Operator
Write access	-

Profile point

Navigation $\blacksquare \Box$ Operation \rightarrow Density \rightarrow Profile point

Description Shows actual number of Density Points measured so far in current operation, and the total

Number of Points after Density Profile Operation is complete.

Additional information

Read access	Operator
Write access	-

172

Profile average density

Description Shows the average density calculated after a profile density measurement is complete.

Additional information

Read access	Operator
Write access	-

Profile density timestamp

Description Shows the timestamp when the last average density profile was finished.

Additional information

Read access	Operator
Write access	-

Navigation \square Operation \rightarrow Density \rightarrow Profile density

Profile density 0 to 49

Navigation \square Operation \rightarrow Density \rightarrow Profile density \rightarrow Profile density 0 to 49

Description Shows the density measurement at the corresponding profile density position.

Additional information

Read access	Operator
Write access	-

Profile density position 0 to 49

Navigation \square Operation \rightarrow Density \rightarrow Profile density position 0 to 49

Description Shows the position where the corresponding density was measured.

Additional information

Read access	Operator
Write access	-

15.2.4 "Pressure" submenu

Navigation $\blacksquare \blacksquare$ Operation \rightarrow Pressure

P1 (bottom)

Description Shows the pressure at the tank bottom.

Additional information

Read access	Operator
Write access	-

P3 (top)

Description Shows the pressure (P3) at the top transmitter.

Additional information

Read access	Operator
Write access	-

15.2.5 "GP values" submenu

Navigation $\blacksquare \square$ Operation \rightarrow GP values

GP 1 to 4 name

Description Defines the label associated with the respective GP value.

Factory setting GP Value 1

Additional information

Read access	Operator
Write access	Maintenance

GP Value 1

Description Displays the value that will be used as general purpose value.

Additional information

Read access	Operator
Write access	-

GP Value 2

Description Displays the value that will be used as general purpose value.

Additional information

Read access	Operator
Write access	-

GP Value 3

Description Displays the value that will be used as general purpose value.

Additional information

Read access	Operator
Write access	-

GP Value 4

Description Displays the value that will be used as general purpose value.

Additional information

Read access	Operator
Write access	-

15.3 "Setup" menu

Device tag

Navigation $\blacksquare \Box$ Setup \rightarrow Device tag

Description Enter a unique name for the measuring point to identify the device quickly within the

plant.

Factory setting NMS8x

Additional information

Read access	Operator
Write access	Maintenance

Units preset

Navigation \blacksquare Setup \rightarrow Units preset

Description Defines a set of units for length, pressure and temperature.

Selection ■ mm, bar, °C

■ m, bar, °C

■ mm, PSI, °C

■ ft, PSI, °F

■ ft-in-16, PSI, °F

■ ft-in-8, PSI, °F

Customer value

Factory setting

mm, bar, °C

Additional information

Read access	Operator
Write access	Maintenance

If the **Customer value** option is selected, the units are defined in the following parameters:

- Distance unit (\rightarrow 🖺 302)
- Pressure unit (\rightarrow 🖺 303)
- Temperature unit (\rightarrow 🖺 303)
- Density unit (\rightarrow 🖺 303)

In any other case these are read-only parameters used to indicate the respective unit.

178

Upper density 🗈

Description Sets the density of the upper phase of the liquid.

User entry $300 \text{ to } 2000 \text{ kg/m}^3$

Factory setting 800 kg/m³

Additional information

Read access	Operator
Write access	Maintenance

Middle density

Navigation $\blacksquare \square$ Setup \rightarrow Middle density

Description Sets Density of Middle Phase in the Tank if three Phases are available. Otherwise used for

the Lower Phase in the Tank if two Phases are available.

User entry $300 \text{ to } 2000 \text{ kg/m}^3$

Factory setting 1000 kg/m^3

Additional information

Read access	Operator
Write access	Maintenance

Lower density

Navigation $\blacksquare \Box$ Setup \rightarrow Lower density

Description Sets the density of the lower Phase in the tank if three phases are available.

User entry $300 \text{ to } 2000 \text{ kg/m}^3$

Factory setting 1200 kg/m^3

Additional information

Read access	Operator
Write access	Maintenance

Gauge command

Description Gauge operation command to choose the measurement mode of the device.

Selection ■ Stop

- Level
 - Up
 - Bottom level
- Upper I/F level
- Lower I/F level
- Upper density
- Middle density
- Lower density
- Repeatability
- Water dip
- Release overtension
- Tank profile
- Interface profile
- Manual profile
- Level standby

Factory setting Stop

Additional information

Read access	Operator
Write access	Maintenance

Process condition

Navigation \blacksquare Setup \rightarrow Process condition

Description Select tank liquid condition.

Selection ■ Universal

Calm surface

■ Turbulent surface

Factory setting Dependent on the device version

Additional information

Read access	Operator
Write access	Maintenance

Empty

Description Distance from reference point to zero position (tank bottom or datum plate).

User entry 0 to 100 000 mm

Factory setting Dependent on the device version

Additional information

Read access	Operator
Write access	Maintenance

i

The reference point is the reference line of the calibration window.

Tank reference height

Navigation \blacksquare Setup \rightarrow Tank reference height

Description Defines the distance from the dipping reference point to the zero position (tank bottom or

datum plate).

User entry 0 to 100 000 mm

Factory setting Dependent on the device version

Additional information

Read access	Operator
Write access	Maintenance

Tank level

Navigation $\blacksquare \Box$ Setup \rightarrow Tank level

Description Shows the distance from the zero position (tank bottom or datum plate) to the product

surface.

Additional information

Read access	Operator
Write access	-

Set level

Navigation \square Setup \rightarrow Set level

Description If the level measured by the device does not match the actual level obtained by a manual

dip, enter the correct level into this parameter.

User entry 0 to 100 000 mm

Factory setting 0 mm

Additional information

Read access	Operator
Write access	Maintenance

The device adjusts the **Empty** parameter ($\rightarrow \implies 180$) according to the entered value, such that the measured level will match the actual level.

Level source

Navigation $\blacksquare \Box$ Setup \rightarrow Level source

Description Defines the source of the level value.

Selection ■ No input value

■ HART device 1 ... 15 level

Level SR *Level *

Displacer position *
AIO B1-3 value
AIO C1-3 value
AIP B4-8 value

■ AIP C4-8 value

Factory setting

Dependent on the device version

Additional information

Read access	Operator
Write access	Maintenance

Navigation $\blacksquare \square$ Setup \rightarrow High stop level

Description Position of the displacer high stop as measured from defined zero position (tank bottom or

datum plate).

User entry -999 999.9 to 999 999.9 mm

Factory setting Dependent on the device version

Additional information

Read access	Operator
Write access	Maintenance

^{*} Visibility depends on order options or device settings

Low stop level

Navigation \blacksquare Setup \rightarrow Low stop level

Description Position of the displacer low stop as measured from defined zero position (tank bottom or

datum plate).

User entry -999 999.9 to 999 999.9 mm

Factory setting 0 mm

Additional information

Read access	Operator
Write access	Maintenance

Distance

Description Shows measured distance from reference position.

Additional information

Read access	Operator
Write access	-

Liquid temp source

Description Defines source from which the liquid temperature is obtained.

Selection • Manual value

ullet HART device 1 ... 15 temperature

AIO B1-3 valueAIO C1-3 valueAIP B4-8 valueAIP C4-8 value

Factory setting Manual value

Additional information

Read access	Operator
Write access	Maintenance

15.3.1 "Calibration" submenu

Read access Maintenance

Navigation $\blacksquare \square$ Setup \rightarrow Calibration

"Move displacer" wizard

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Calibration \rightarrow Move displacer

Move distance

Navigation $\blacksquare \Box$ Setup \rightarrow Calibration \rightarrow Move displacer \rightarrow Move distance

Description Up or down movement of displacer in mm.

User entry 0 to 999 999.9 mm

Factory setting 0 mm

Additional information

Read access	Operator
Write access	Maintenance

Distance

Navigation Setup \rightarrow Calibration \rightarrow Move displacer \rightarrow Distance

Description Shows measured distance from reference position.

Additional information

Read access	Operator
Write access	-

Move displacer

Navigation \blacksquare Setup \rightarrow Calibration \rightarrow Move displacer \rightarrow Move displacer

Selection ■ Stop

Move downMove up

Move up

Factory setting Stop

Additional information

Read access	Operator
Write access	Maintenance

Motor status

Navigation Setup \rightarrow Calibration \rightarrow Move displacer \rightarrow Motor status

Description Shows the current moving Direction of the Motor.

Additional information

Read access	Operator
Write access	-

Move displacer

Navigation $\blacksquare \Box$ Setup \rightarrow Calibration \rightarrow Move displacer \rightarrow Move displacer

Selection ■ No

Yes

Factory setting No

Additional information

Read access	Operator
Write access	Maintenance

"Sensor calibration" wizard

Navigation $\blacksquare \Box$ Setup \rightarrow Calibration \rightarrow Sensor calibration

Sensor calibration

Navigation Setup \rightarrow Calibration \rightarrow Sensor calibration

Description This sequence calibrates the sensor of the servo.

Additional information

Read access	Operator
Write access	Maintenance

Offset weight

Navigation Setup \rightarrow Calibration \rightarrow Sensor calibration \rightarrow Offset weight

Description Sets the weight that is used for the lower point sensor calibration. Changing the value will

delete the calibration data.

User entry 0 to 150 g

Factory setting Dependent on the device version

Additional information

Read access	Operator
Write access	Maintenance

For density measurement application, it is recommended to apply 50 g.

Span weight 🗈

Navigation Setup \rightarrow Calibration \rightarrow Sensor calibration \rightarrow Span weight

Description Sets the weight that is used for the middle point sensor calibration. Changing the value

will delete the calibration data.

User entry 10 to 999.9 g

Factory setting Dependent on the device version

Additional information Read access Operator
Write access Maintenance

Zero calibration $\mathsf{Setup} \to \mathsf{Calibration} \to \mathsf{Sensor} \ \mathsf{calibration} \to \mathsf{Zero} \ \mathsf{calibration}$ Navigation Description In this step the sensor calibration zero weight will be done. Additional information Read access Operator Write access Maintenance **Calibration status Navigation** Setup \rightarrow Calibration \rightarrow Sensor calibration \rightarrow Calibration status Description Gives feedback on the latest status of the calibration process. Additional information Read access Operator Write access Offset calibration Navigation Description In this step the sensor calibration with offset weight will be done. Additional information Read access Operator Write access Maintenance Span calibration

Endress+Hauser	107
FNATACC+Hallcar	187

Setup \rightarrow Calibration \rightarrow Sensor calibration \rightarrow Span calibration

Operator

Maintenance

In this step the sensor calibration with span weight will be done.

Navigation

Description

Additional information

Read access

Write access

"Reference calibration" wizard

Reference calibration			
Navigation	\blacksquare Setup \rightarrow Calibration \rightarrow Reference calibration \rightarrow Reference calibration		
Description	This sequence will move the displacer to the mechanical stop and set the reference position.		
Additional information	Read access		Operator
	Write access		Maintenance
Reference position			<u>@</u>
Navigation			
Description	Defines in mm, during reference calibration, the distance between mechanical stop inside the drum housing and the middle of the wire ring.		
User entry	0 to 9 999.9 mm		
Factory setting	Dependent on the device version		
Additional information	Read access		Operator
	Write access		Maintenance
Progress			<u> </u>
Navigation		ion → Refe	erence calibration → Progress
Description	Gives feedback on the l	Gives feedback on the latest status of the reference calibration process.	
Additional information	Read access		Operator
	Write access		Maintenance

Calibration status

Navigation Setup \rightarrow Calibration \rightarrow Reference calibration \rightarrow Calibration status

Description Gives feedback on the latest status of the calibration process.

Additional information

Read access	Operator
Write access	-

"Drum calibration" wizard

Navigation \blacksquare Setup \rightarrow Calibration \rightarrow Drum calibration

Drum calibration

Navigation Setup \rightarrow Calibration \rightarrow Drum calibration \rightarrow Drum calibration

Description This sequence will perform a drum calibration.

Additional information

Read access	Operator
Write access	Maintenance

Set high weight

Navigation \blacksquare Setup \rightarrow Calibration \rightarrow Drum calibration \rightarrow Set high weight

Description High weight that is used for a drum calibration (normally it is the displacer weight).

User entry 10 to 999.9 g

Factory setting Dependent on the device version

Additional information

Read access	Operator
Write access	Maintenance

Make drum table

Navigation \blacksquare Setup \rightarrow Calibration \rightarrow Drum calibration \rightarrow Make drum table

Description This will perform a drum calibration.

Read access	Operator
Write access	Maintenance

Drum table point

Additional information

Navigation \blacksquare Setup \rightarrow Calibration \rightarrow Drum calibration \rightarrow Drum table point

Description Shows the currently measured point of the drum calibration. Maximum number of

measured points is 50.

Additional information

Read access	Operator
Write access	-

Calibration status

Navigation \blacksquare Setup \rightarrow Calibration \rightarrow Drum calibration \rightarrow Calibration status

Description Gives feedback on the latest status of the calibration process.

Additional information

Read access	Operator
Write access	-

Make low table

Navigation \blacksquare Setup \rightarrow Calibration \rightarrow Drum calibration \rightarrow Make low table

Description For additional accuracy it is possible to perform a second drum calibration with low weight.

Choose 'Yes' or 'No' to start/stop calibration.

Selection • No

■ Yes

Factory setting No

Additional information

Read access	Operator
Write access	Maintenance

Set low weight

Navigation \blacksquare Setup \rightarrow Calibration \rightarrow Drum calibration \rightarrow Set low weight

Description Set weight for additional drum calibration sequence.

User entry 10 to 999.9 g

Factory setting Dependent on the device version

Additional information

Read access	Operator
Write access	Maintenance

15.3.2 "Advanced setup" submenu

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup

Locking status

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Locking status

Description Indicates the write protection with the highest priority that is currently active.

Additional information

Read access	Operator
Write access	-

Access status tooling

Navigation \square Setup \rightarrow Advanced setup \rightarrow Access status tooling

Description Shows the access authorization to the parameters via the operating tool.

Additional information

Read access	Operator
Write access	-

Enter access code

Navigation Setup \rightarrow Advanced setup \rightarrow Enter access code

Description Enter access code to disable write protection of parameters.

Additional information

Read access	Operator
Write access	Operator

"Input/output" submenu

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Input/output

"HART devices" submenu

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow HART devices

Number of devices

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow HART devices \rightarrow Number of devices

Description Shows the number of devices on the HART bus.

Additional information

Read access	Operator
Write access	-

"HART Device(s)" submenu

There is a **HART Device(s)** submenu for each HART slave device found on the HART loop.

Navigation

Setup → Advanced setup → Input/output → HART devices→ HART Device(s)

Device name

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow HART devices \rightarrow HART Device(s)

→ Device name

Description Shows the name of the transmitter.

Additional information

Read access	Operator
Write access	-

Polling address

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow HART devices \rightarrow HART Device(s)

→ Polling address

Description Shows the polling address of the transmitter.

Additional information

Read access	Operator
Write access	-

Device tag

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow HART devices \rightarrow HART Device(s)

→ Device tag

Description Shows the device tag of the transmitter.

Additional information

Read access	Operator
Write access	-

Operating mode

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow HART devices \rightarrow HART Device(s)

→ Operating mode

Prerequisite Not available if the HART device is a Prothermo NMT.

Description Selection of the operation mode PV only or PV,SV,TV,QV. Devines which values are polled

from the connected HART Device.

Selection ■ PV only

■ PV,SV,TV & QV

■ Level ⁴⁾

■ Measured level 4)

Factory setting PV,SV,TV & QV

Additional information

Read access	Operator
Write access	Maintenance

Communication status

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow HART devices \rightarrow HART Device(s)

 \rightarrow Communication status

Description Shows the operating status of the transmitter.

User interface ■ Operating normally

■ Device offline

Additional information

Read access	Operator
Write access	-

#blank# (HART PV - designation dependent on device)

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow HART devices \rightarrow HART Device(s)

 \rightarrow #blank#

Description Shows the first HART variable (PV).

Additional information

Read access	Operator
Write access	-

⁴⁾ only visible if the conneced device is a Micropilot

#blank# (HART SV - designation dependent on device)

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow HART devices \rightarrow HART Device(s)

 \rightarrow #blank#

Prerequisite For HART devices other than NMT: Operating mode (→ 🗎 195) = PV,SV,TV & QV

Description Shows the second HART variable (SV).

Additional information

Read access	Operator
Write access	-

#blank# (HART TV - designation dependent on device)

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow HART devices \rightarrow HART Device(s)

→ #blank#

Prerequisite For HART devices other than NMT: Operating mode (→ 🗎 195) = PV,SV,TV & QV

Description Shows the third HART variable (TV).

Additional information

Read access	Operator
Write access	-

#blank# (HART QV - designation dependent on device)

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow HART devices \rightarrow HART Device(s)

→ #blank#

Prerequisite For HART devices other than NMT: Operating mode (→ 🗎 195) = PV,SV,TV & QV

Description Shows the fourth HART variable (QV).

Additional information

Read access	Operator
Write access	-

Output pressure

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow HART devices \rightarrow HART Device(s)

→ Output pressure

Prerequisite Not available for Micropilot S FMR5xx and Prothermo 53x. (In these cases the measured

variables are allocated automatically).

Description Defines which HART variable is the pressure.

Selection ■ No value

Primary variable (PV)
 Secondary variable (SV)
 Tertiary variable (TV)
 Quaternary variable (QV)

Factory setting No value

Additional information

Read access	Operator
Write access	Maintenance

Output density

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow HART devices \rightarrow HART Device(s)

→ Output density

Prerequisite Not available for Micropilot S FMR5xx and Prothermo 53x. (In these cases the measured

variables are allocated automatically).

Description Defines which HART variable is the density.

Selection ■ No value

Primary variable (PV)
 Secondary variable (SV)
 Tertiary variable (TV)
 Quaternary variable (QV)

Factory setting No value

Additional information

Output temperature

Read access	Operator
Write access	Maintenance

→ Output temperature

Prerequisite Not available for Micropilot S FMR5xx and Prothermo 53x. (In these cases the measured

variables are allocated automatically).

Description Defines which HART variable is the temperature.

Selection ■ No value

Primary variable (PV)Secondary variable (SV)Tertiary variable (TV)

Quaternary variable (QV)

Factory setting

No value

Additional information

Read access	Operator
Write access	Maintenance

Output vapor temperature

Navigation

→ Output vapor temperature

Prerequisite Not available for Micropilot S FMR5xx and Prothermo 53x. (In these cases the measured

variables are allocated automatically).

Description Defines which HART variable is the vapor temperature.

Selection ■ No value

> Primary variable (PV) Secondary variable (SV) Tertiary variable (TV) Quaternary variable (QV)

No value **Factory setting**

Additional information

Read access	Operator
Write access	Maintenance

Output level

Navigation

→ Output level

Prerequisite Not available for Micropilot S FMR5xx and Prothermo 53x. (In these cases the measured

variables are allocated automatically).

Defines which HART variable is the level. Description

Selection ■ No value

> Primary variable (PV) Secondary variable (SV) ■ Tertiary variable (TV) Quaternary variable (QV)

No value **Factory setting**

Additional information

Read access	Operator
Write access	Maintenance

198

"Forget device" wizard

Read access Maintenance

This submenu is only visible if **Number of devices** ($\Rightarrow \triangleq 193$) ≥ 1 .

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow HART devices \rightarrow Forget device

Forget device

Description With this function an offline device can be deleted from the device list.

Selection ■ HART Device 1

HART Device 2

■ HART Device 3

■ HART Device 4

HART Device 5

■ HART Device 6

HART Device 7

HART Device 8

• HAKT Device C

HART Device 9HART Device 10

= IIADT Device 11

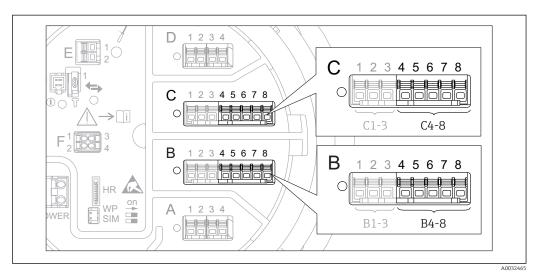
■ HART Device 11

HART Device 12HART Device 13

■ HART Device 14

IIANI Device 14

■ HART Device 15


■ None

Factory setting None

Additional information

Read access	Operator
Write access	Maintenance

"Analog IP" submenu

■ 75 Terminals for the "Analog IP" submenu ("B4-8" or "C4-8", respectively)

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog IP

 Operating mode
 Image: Setup → Advanced setup → Input/output → Analog IP → Operating mode

 Description
 Defines the operating mode of the analog input.

 Selection
 • Disabled

 • RTD temperature input
 • Gauge power supply

 Factory setting
 Disabled

 Additional information
 Read access
 Operator

lditional information	Read access	Operator
	Write access	Maintenance

RTD type

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog IP \rightarrow RTD type

Prerequisite Operating mode ($\rightarrow \triangleq 200$) = RTD temperature input

Description Defines the type of the connected RTD.

Selection ■ Cu50 (w=1.428, GOST)

■ Cu53 (w=1.426, GOST)

■ Cu90@0°C (w=1.4274, GOST)

■ Cu100@25°C (w=1.4274, GOST)

■ Cu100@0°C(w=1.4274, GOST)

■ Pt46 (w=1.391, GOST)

■ Pt50 (w=1.391, GOST)

■ Pt100(385) (a=0.00385, IEC751)

■ Pt100(389) (a=0.00389, Canadian)

■ Pt100(391) (a=0.003916, JIS1604)

■ Pt100 (w=1.391, GOST)

■ Pt500(385) (a=0.00385, IEC751)

■ Pt1000(385) (a=0.00385, IEC751)

■ Ni100(617) (a=0.00617, DIN43760)

■ Ni120(672) (a=0.00672, DIN43760)

■ Ni1000(617) (a=0.00617, DIN43760)

Factory setting

Pt100(385) (a=0.00385, IEC751)

Additional information

Read access	Operator
Write access	Maintenance

RTD connection type

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog IP \rightarrow RTD connection type

Prerequisite Operating mode (→ 🖺 200) = RTD temperature input

Description Defines the connection type of the RTD.

Selection • 4 wire RTD connection

2 wire RTD connection3 wire RTD connection

Factory setting 4 wire RTD connection

Additional information

Read access	Operator
Write access	Maintenance

Process value

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog IP \rightarrow Process value

Prerequisite Operating mode (→ 🖺 200) ≠ Disabled

Description Shows the measured value received via the analog input.

Additional information

Read access	Operator
Write access	-

Process variable

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog IP \rightarrow Process variable

Prerequisite Operating mode (→ 🖺 200) ≠ RTD temperature input

Description Determines type of measured value.

Selection • Level linearized

TemperaturePressureDensity

Factory setting Level linearized

Additional information

Read access	Operator
Write access	Maintenance

0 % value

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog IP \rightarrow 0 % value

Prerequisite Operating mode ($\rightarrow \stackrel{\triangle}{=} 200$) = 4..20mA input

Description Defines the value represented by a current of 4mA.

User entry Signed floating-point number

Factory setting 0 mm

Additional information

Read access	Operator
Write access	Maintenance

100 % value

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog IP \rightarrow 100 % value

Prerequisite Operating mode ($\rightarrow \stackrel{\triangle}{=} 200$) = 4..20mA input

Description Defines the value represented by a current of 20mA.

User entry Signed floating-point number

Factory setting 0 mm

Additional information

Read access	Operator
Write access	Maintenance

Input value

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog IP \rightarrow Input value

Prerequisite Operating mode (→ 🗎 200) ≠ Disabled

Description Shows the value received via the analog input.

Additional information

Read access	Operator
Write access	-

Minimum probe temperature

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog IP \rightarrow Minimum probe

temperature

Prerequisite Operating mode $(\rightarrow \triangleq 200)$ = RTD temperature input

Description Minimum approved temperature of the connected probe. If the temperature falls below

this value, the W&M status will be 'invalid'.

User entry −213 to 927 °C

Factory setting −100 °C

Additional information

Read access	Operator
Write access	Maintenance

Maximum probe temperature

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog IP \rightarrow Maximum probe

temperature

Prerequisite Operating mode (→ 🖺 200) = RTD temperature input

Description Maximum approved temperature of the connected probe. If the temperature rises above

this value, the W&M status will be 'invalid'.

User entry -213 to 927 °C

Factory setting 250 °C

Additional information

Read access	Operator
Write access	Maintenance

Probe position

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog IP \rightarrow Probe position

Prerequisite Operating mode (→ 🖺 200) = RTD temperature input

Description Position of the temperature probe, measured from zero position (tank bottom or datum

plate). \ This parameter, in conjunction with the measured level, determines whether the temperature probe is still covered by the product. If this is no longer the case, the status of

the temperature value will be 'invalid'.

User entry -5 000 to 30 000 mm

Factory setting 5 000 mm

Additional information

Read access	Operator
Write access	Maintenance

Damping factor

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog IP \rightarrow Damping factor

Prerequisite Operating mode (→ 🖺 200) ≠ Disabled

Description Defines the damping constant (in seconds).

User entry 0 to 999.9 s

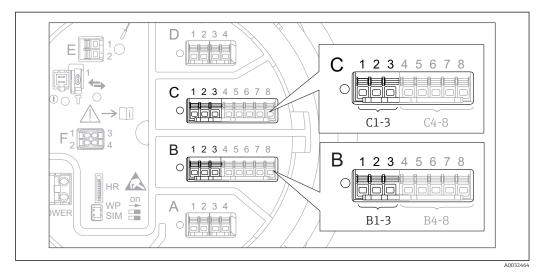
Factory setting 0 s

Additional information

Read access	Operator
Write access	Maintenance

Gauge current

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog IP \rightarrow Gauge current


Prerequisite Operating mode (→ 🖺 200) = Gauge power supply

Description Shows the current on the power supply line for the connected device.

Additional information

Read access	Operator
Write access	-

"Analog I/O" submenu

☑ 76 Terminals for the "Analog I/O" submenu ("B1-3" or "C1-3", respectively)

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O

Operating mode

Navigation

Description

Defines the operating mode of the analog I/O module.

Selection

- Disabled
- 4..20mA input
- HART master+4..20mA input
- HART master
- 4..20mA output
- HART slave +4..20mA output

Factory setting

Disabled

Additional information

Read access	Operator
Write access	Maintenance

Meaning of the options

Operating mode (→ 🖺 206)	Direction of signal	Type of signal
Disabled	-	-
420mA input	Input from 1 external device	Analog (420mA)
HART master+420mA input	Input from 1 external device	Analog (420mA)HART
HART master	Input from up to 6 external devices	HART

Operating mode (→ 🗎 206)	Direction of signal	Type of signal
420mA output	Output to higher-level unit	Analog (420mA)
HART slave +420mA output	Output to higher-level unit	Analog (420mA)HART

Depending on the terminals used, the Analog I/O module is used in the passive or active mode.

Mode	Terminals of the I/O module		
	1	2	3
Passive (power supply from external source)	-	+	not used
Active (power supplied by the device itself)	not used	-	+

In the active mode the following conditions must be met:

- Maximum current consumption of the connected HART devices: 24 mA (i.e. 4 mA per device if 6 devices are connected).
- Output voltage of the Ex-d module: 17.0 V@4 mA to 10.5 V@22 mA
- Output voltage of the Ex-ia module: 18.5 V@4 mA to 12.5 V@22 mA

Current span	

Navigation

Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow Current span

Prerequisite

Operating mode parameter (→ 🖺 206) ≠ **Disabled** option or **HART master** option

Description

Defines the current range for the measured value transmission.

Selection

- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- Fixed current

Factory setting

4...20 mA NAMUR

Additional information

Read access	Operator
Write access	Maintenance

Meaning of the options

Option	Current range for process variable	Lower alarm signal level	Upper alarm signal level
420 mA	4 to 20.5 mA	< 3.6 mA	> 21.95 mA
420 mA NAMUR	3.8 to 20.5 mA	< 3.6 mA	> 21.95 mA

Option	Current range for process variable	Lower alarm signal level	Upper alarm signal level
420 mA US	3.9 to 20.8 mA	< 3.6 mA	> 21.95 mA
Fixed current	Constant current, defined in the Fixed current parameter ($\Rightarrow \triangleq 208$).		

In the case of an error, the output current assumes the value defined in the **Failure** mode parameter ($\Rightarrow \triangleq 209$).

Fixed current

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow Fixed current

Prerequisite Current span ($\Rightarrow \triangleq 207$) = Fixed current

Description Defines the fixed output current.

User entry 4 to 22.5 mA

Factory setting 4 mA

Additional information

Read access	Operator
Write access	Maintenance

Analog input source

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow Analog input source

Prerequisite ■ Operating mode (→ 🖺 206) = 4..20mA output or HART slave +4..20mA output

Current span (→ \(\bigsip \) 207) ≠ Fixed current

Description Defines the process variable transmitted via the AIO.

None

Tank level

■ Tank level %

■ Tank ullage

■ Tank ullage %

Measured level

Distance

Displacer position

Water level

Upper interface level

■ Lower interface level

■ Bottom level

■ Tank reference height

■ Liquid temperature

Vapor temperature

Air temperature

Selection

- Observed density value
- Average profile density ⁵⁾
- Upper density
- Middle density
- Lower density
- P1 (bottom)
- P2 (middle)
- P3 (top)
- GP 1 ... 4 value
- AIO B1-3 value ⁵⁾
- AIO B1-3 value mA ⁵⁾
- AIO C1-3 value ⁵⁾
- AIO C1-3 value mA ⁵⁾
- AIP B4-8 value ⁵⁾
- AIP C4-8 value 5)
- Element temperature 1 ... 24 ⁵⁾
- HART device 1...15 PV ⁵⁾
- HART device 1 ... 15 PV mA ⁵⁾
- HART device 1 ... 15 PV % 5)
- HART device 1 ... 15 SV ⁵⁾
- HART device 1 ... 15 TV ⁵⁾
- HART device 1 ... 15 QV 5)

Factory setting

Tank level

Additional information

Read access	Operator
Write access	Maintenance

Failure mode

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow Failure mode

Prerequisite Operating mode (→ 🗎 206) = 4..20mA output or HART slave +4..20mA output

Description Defines the output behavior in case of an error.

Selection ■ Min.

Max.

Last valid valueActual valueDefined value

Factory setting Max.

Additional information

Read access	Operator
Write access	Maintenance

⁵⁾ Visibility depends on order options or device settings

Error value

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow Error value

Prerequisite Failure mode (→ 🖺 209) = Defined value

Description Defines the output value in case of an error.

User entry 3.4 to 22.6 mA

Factory setting 22 mA

Additional information

Read access	Operator
Write access	Maintenance

Input value

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow Input value

Prerequisite ■ Operating mode (→ 🗎 206) = 4..20mA output or HART slave +4..20mA output

■ Current span (→ \(\bigo \) 207) ≠ Fixed current

Description Shows the input value of the analog I/O module.

Additional information

Read access	Operator
Write access	-

0 % value

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow 0 % value

Prerequisite ■ Operating mode (→ 🗎 206) = 4..20mA output or HART slave +4..20mA output

■ Current span (→ 🗎 207) ≠ Fixed current

Description Value corresponding to an output current of 0% (4mA).

User entry Signed floating-point number

Factory setting 0 Unitless

Additional information

Read access	Operator
Write access	Maintenance

210

100 % value

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow 100 % value

Prerequisite ■ Operating mode (→ 🗎 206) = 4..20mA output or HART slave +4..20mA output

■ Current span (→ 🗎 207) ≠ Fixed current

Description Value corresponding to an output current of 100% (20mA).

User entry Signed floating-point number

Factory setting 0 Unitless

Additional information

Read access	Operator
Write access	Maintenance

Input value %

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow Input value %

Prerequisite ■ Operating mode (→ 🗎 206) = 4..20mA output or HART slave +4..20mA output

■ Current span (→ 🗎 207) ≠ Fixed current

Description Shows the output value as a percentage of the complete 4...20mA range.

Additional information

Read access	Operator
Write access	-

Output value

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow Output value

Prerequisite Operating mode (→ 🗎 206) = 4..20mA output or HART slave +4..20mA output

Description Shows the output value in mA.

Additional information

Read access	Operator
Write access	-

Process variable

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow Process variable

Prerequisite Operating mode (→ 🗎 206) = 4..20mA input or HART master+4..20mA input

Description Defines the type of measuring variable.

Selection • Level linearized

TemperaturePressure

PressureDensity

Factory setting Level linearized

Additional information

Read access	Operator
Write access	Maintenance

Analog input 0% value

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow Analog input 0% value

Prerequisite Operating mode (→ 🗎 206) = 4..20mA input or HART master+4..20mA input

Description Value corresponding to an input current of 0% (4mA).

User entry Signed floating-point number

Factory setting 0 mm

Additional information

Read access	Operator
Write access	Maintenance

Analog input 100% value

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow Analog input 100% value

Prerequisite Operating mode (→ 🗎 206) = 4..20mA input or HART master+4..20mA input

Description Value corresponding to an input current of 100% (20mA).

User entry Signed floating-point number

Factory setting 0 mm

Additional information

Read access	Operator
Write access	Maintenance

Error event type

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow Error event type

Prerequisite Operating mode (→ 🖺 206) ≠ Disabled or HART master

Description Defines the type of event message (alarm/warning) in case of an error or output out of

range in the analog I/O module.

Selection • None

WarningAlarm

Factory setting Warning

Additional information

Read access	Operator
Write access	Maintenance

Process value

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow Process value

Prerequisite Operating mode (→ 🖺 206) = 4..20mA input or HART master+4..20mA input

Description Shows the input value scaled to customer units.

Additional information

Read access	Operator
Write access	-

Input value in mA

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow Input value in mA

Prerequisite Operating mode (→ 🖺 206) = 4..20mA input or HART master+4..20mA input

Description Shows the input value in mA.

Additional information

Read access	Operator
Write access	-

Input value percent

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow Input value percent

Prerequisite Operating mode (→ 🗎 206) = 4..20mA input or HART master+4..20mA input

Description Shows the input value as a percentage of the complete 4...20mA current range.

Additional information

Read access	Operator
Write access	-

Damping factor

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow Damping factor

Prerequisite Operating mode (→ 🖺 206) ≠ Disabled or HART master

Description Defines the damping constant (in seconds).

User entry 0 to 999.9 s

Factory setting 0 s

Additional information

Read access	Operator
Write access	Maintenance

Used for SIL/WHG

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow Used for SIL/WHG

Prerequisite ■ Operating mode (→ 🗎 206) = 4..20mA output or HART slave +4..20mA output

■ The device has a SIL approval.

Description Determines whether the discrete I/O module is in SIL/WHG mode.

Selection • Enabled

Disabled

Factory setting Disabled

Additional information

Read access	Operator
Write access	Maintenance

Expected SIL/WHG chain

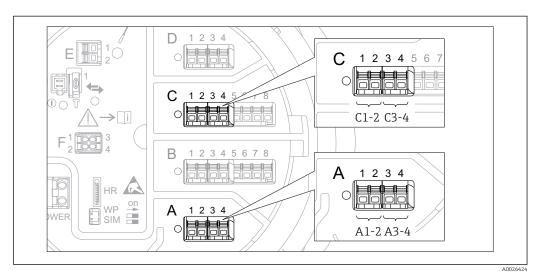
Navigation

 $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O \rightarrow Expected SIL/WHG chain

Prerequisite

- Operating mode (→ 🖺 206) = 4..20mA output or HART slave +4..20mA output
- The device has a SIL approval.

Additional information


Read access	Operator
Write access	-

"Digital Xx-x" submenu

■ In the operating menu, each digital input or output is designated by the respective slot of the terminal compartment and two terminals within this slot. A1-2, for example, denotes terminals 1 and 2 of slot A. The same is valid for slots B, C and D if they contain a Digital IO module.

■ In this document, Xx-x designates any of these submenus. The structure of all these submenus is the same.

■ 77 Designation of the digital inputs or outputs (examples)

Navigation

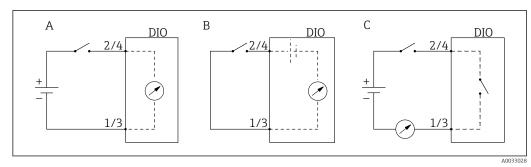
 Operating mode

 Navigation
 Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Digital Xx-x \rightarrow Operating mode

Defines the operating mode of the discrete I/O module.

Selection • Disabled

Description


Output passive

■ Input passive

■ Input active

Factory setting Disabled

Additional information

■ 78 Operating mopdes of the Digital I/O module

- A Input passive
- B Input active
- C Output passive

Digital input source

Navigation

Prerequisite

Operating mode (→ 🖺 216) = Output passive

Description

Defines which device state is indicated by the digital output.

Selection

- None
- Alarm x any
- Alarm x High
- Alarm x HighHigh
- Alarm x High or HighHigh
- Alarm x Low
- Alarm x LowLow
- Alarm x Low or LowLow
- Digital Xx-x
- Pri. Modbus x
- Sec. Modbus x

Factory setting

None

Additional information

Meaning of the options

 Alarm x any, Alarm x High, Alarm x HighHigh, Alarm x High or HighHigh, Alarm x Low, Alarm x LowLow, Alarm x Low or LowLow

The digital output indicates if the selected alarm is currently active. The alarms themselves are defined in the **Alarm 1 to 4** submenus.

■ Digital Xx-x ⁶⁾

The digital signal present at the digital input $\mathbf{X}\mathbf{x}-\mathbf{x}$ is passed through to the digital output.

- Pri. Modbus x
 - in preparation
- Sec. Modbus x in preparation

Endress+Hauser 217

-

⁶⁾ Only present if "Operating mode (> 🗎 216)" = "Input passive" or "Input active" for the respective Digital I/O module.

Input value

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Digital $Xx-x \rightarrow$ Input value

Prerequisite Operating mode (→ 🖺 216) = "Input passive" option or "Input active" option

Description Shows the digital input value.

Additional information

Read access	Operator
Write access	-

Contact type

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Digital Xx-x \rightarrow Contact type

Prerequisite Operating mode (→ 🖺 216) ≠ Disabled

Description Determines the switching behavior of the input or output.

Selection ■ Normally open ■ Normally closed

Factory setting Normally open

Output simulation

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Digital $Xx-x \rightarrow$ Output simulation

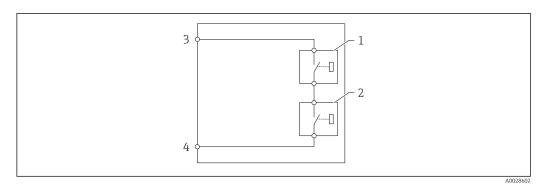
Prerequisite Operating mode (→ 🗎 216) = Output passive

Description Sets the output to a specific simulated value.

Selection • Disable

Simulating activeSimulating inactive

Fault 1Fault 2


Factory setting Disable

Additional information

Read access	Operator
Write access	Maintenance

The digital output consists of two relays connected in series:

218

■ 79 The two relays of a digital output

1/2 The relays

3/4 The terminals of the digital output

The switching state of these relays is defined by the **Output simulation** parameter as follows:

Output simulation	State of relay 1	State of relay 2	Expected result on the terminals of the I/O module
Simulating active	Closed	Closed	Closed
Simulating inactive	Open	Open	Open
Fault 1	Closed	Open	Open
Fault 2	Open	Closed	Open

The **Fault 1** and **Fault 2** options can be used to check the correct switching behavior of the two relays.

Output value

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Digital Xx-x \rightarrow Output values

Prerequisite Operating mode ($\rightarrow \stackrel{\triangle}{=} 216$) = Output passive

Description Shows the digital output value.

Additional information

Read access	Operator
Write access	-

Readback value

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Digital Xx-x \rightarrow Readback value

Prerequisite Operating mode (→ 🗎 216) = Output passive

Description Shows the value read back from the output.

Additional information

Read access	Operator
Write access	-

Used for SIL/WHG

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Digital $Xx-x \rightarrow$ Used for SIL/WHG

Prerequisite

Description Determines whether the discrete I/O module is in SIL/WHG mode.

Selection ■ Enabled Disabled

Factory setting Disabled

Additional information

Read access	Operator
Write access	Maintenance

220

"Digital input mapping" submenu

Navigation $\blacksquare \ \$ Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Digital input mapping

Digital input source 1

source 1

Description Selects the source of digital input #1 (for gauge command).

Selection • None

Digital A1-2
Digital A3-4
Digital B1-2
Digital B3-4
Digital C1-2

Digital C3-4Digital D1-2Digital D3-4

Factory setting None

Additional information

Read access	Operator
Write access	Maintenance

Digital input source 2

Navigation Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Digital input mapping \rightarrow Digital input source 2

Description Selects the source of digital input #2 (for gauge command).

Selection ■ None

Digital A1-2Digital A3-4

Digital B1-2Digital B3-4

■ Digital C1-2

■ Digital C3-4

■ Digital D1-2

■ Digital D3-4

Factory setting None

Additional information

Read access	Operator
Write access	Maintenance

Gauge command 0

Navigation

Prerequisite

Description

Gauge command assigned to digital input combination 0 (DI2=0, DI1=0).

Selection

- Stop
- Level
- Up
- Bottom level
- Upper I/F level
- Lower I/F level
- Upper density
- Middle density
- Lower density
- Repeatability
- Water dip
- Release overtension
- Tank profile
- Interface profile
- Manual profile
- Level standby

Factory setting

Level

Additional information

Read access	Operator
Write access	Maintenance

Gauge command 1

Navigation

Prerequisite

Digital input source 1 (→ 🗎 221) ≠ None

Description

Gauge command assigned to digital input combination 1 (DI2=0, DI1=1).

Selection

- Stop
- Level
- Up
- Bottom level
- Upper I/F level
- Lower I/F level
- Upper density
- Middle density
- Lower density
- Repeatability
- Water dip
- Release overtension

- Tank profile
- Interface profile
- Manual profile
- Level standby

Factory setting

Up

Additional information

Read access	Operator
Write access	Maintenance

Gauge command 2

Navigation

Setup → Advanced setup → Input/output → Digital input mapping → Gauge command 2

Prerequisite

- Digital input source 1 (→ ≅ 221) ≠ None
 Digital input source 2 (→ ≅ 221) ≠ None
- Description

Gauge command assigned to digital Input combination 2 (DI2=1, DI1=0).

Selection

- Stop
- Level
- Up
- Bottom level
- Upper I/F level
- Lower I/F level
- Upper density
- Middle density
- Lower density
- RepeatabilityWater dip
- Release overtension
- Tank profile
- Interface profile
- Manual profile
- Level standby

Factory setting

Stop

Additional information

Read access	Operator
Write access	Maintenance

Gauge command 3

Navigation

Setup → Advanced setup → Input/output → Digital input mapping → Gauge command 3

Prerequisite

Digital input source 1 (→ ≅ 221) ≠ None
 Digital input source 2 (→ ≅ 221) ≠ None

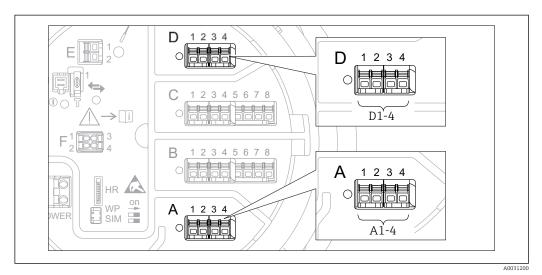
Description

Gauge command assigned to digital input combination 3 (DI2=1, DI1=1).

Selection

- Stop
- Level
- Up
- Bottom level
- Upper I/F level
- Lower I/F level
- Upper density
- Middle density
- Lower density
- Repeatability
- Water dip
- Release overtension
- Tank profile
- Interface profile
- Manual profile
- Level standby

Factory setting


Upper I/F level

Additional information

Read access	Operator
Write access	Maintenance

"Communication" submenu

This menu contains a submenu for each digital communication interface of the device. The communication interfaces are designated by "X1-4" where "X" specifies the slot in the terminal compartmen and "1-4" the terminals within this slot.

 \blacksquare 80 Designation of the "Modbus" or "V1" modules (examples); depending on the device version these modules may also be in slot B or C.

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Communication

"Modbus X1-4" or "V1 X1-4" submenu

This submenu is only present for devices with MODBUS and/or V1 communication interface. There is one submenu of this type for each communication interface.

Navigation \bigcirc Setup → Advanced setup → Communication → Modbus X1-4 / V1 X1-4

Communication interface protocol

Navigation

Setup → Advanced setup → Communication → Modbus X1-4 / V1 X1-4 → Communication interface protocol

Description

Shows the type of communication protocol.

Additional information

Read access	Operator
Write access	-

"Configuration" submenu

This submenu is only present for devices with a **MODBUS** communication interface.

Navigation

Setup → Advanced setup → Communication → Modbus X1-4→ Configuration

→ Comiguration

Baudrate

Navigation

Setup → Advanced setup → Communication → Modbus X1-4 → Configuration
 → Baudrate

Prerequisite

Description

Defines the baud rate of the Modbus communication.

Selection

- 300 BAUD1200 BAUD
- 2400 BAUD
- 4800 BAUD
- 9600 BAUD
- 19200 BAUD

Factory setting

9600 BAUD

Additional information

Read access	Operator
Write access	Maintenance

Parity

Navigation

Prerequisite

Communication interface protocol (→ 🗎 225) = MODBUS

Description

Defines the parity of the Modbus communication.

Selection

- Odd
- Even
- None / 1 stop bitNone / 2 stop bits

Factory setting

None / 1 stop bit

Additional information

Read access	Operator
Write access	Maintenance

Modbus address

Navigation Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow Modbus X1-4 \rightarrow Configuration

→ Device ID

Prerequisite Communication interface protocol (→ 🗎 225) = MODBUS

Description Defines the Modbus address of the device.

User entry 1 to 247

Factory setting 1

Additional information

Read access	Operator
Write access	Maintenance

Float swap mode

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow Modbus X1-4 \rightarrow Configuration

→ Float swap mode

Prerequisite Communication interface protocol (→ 🗎 225) = MODBUS

Description Sets the format of how the floating point value is transferred on Modbus.

Selection ■ Normal 3-2-1-0

Swap 0-1-2-3WW Swap 1-0-3-2

Factory setting Swap 0-1-2-3

Additional information

Read access	Operator
Write access	Maintenance

Bus termination 🛅

Navigation Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow Modbus X1-4 \rightarrow Configuration \rightarrow Bus

termination

Prerequisite Communication interface protocol (→ 🖺 225) = MODBUS

Description Activates or deactivates the bus termination at the device. Should only be activated on the

last device in a loop.

Selection ■ Off

■ On

Factory setting

Off

Additional information

Read access	Operator
Write access	Maintenance

"Configuration" submenu

This submenu is only present for devices with a **V1** communication interface.

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow V1 X1-4

→ Configuration

Communication interface protocol variant

Navigation Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow V1 X1-4 \rightarrow Configuration

→ Communication interface protocol variant

Description Determines which variant of the V1 protocol is used.

Selection ■ None

■ V1

Factory setting None

Additional information

Read access	Operator
Write access	Maintenance

V1 address

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow V1 X1-4 \rightarrow Configuration \rightarrow V1

address

Prerequisite Communication interface protocol variant (→ 🖺 229) = V1 or MDP

Description Identifier of the device for the V1 communication.

User entry 0 to 99

Factory setting 1

Additional information

Read access	Operator
Write access	Maintenance

V1 address

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow V1 X1-4 \rightarrow Configuration \rightarrow V1

address

Prerequisite Communication interface protocol variant ($\Rightarrow \triangleq 229$) = BBB or MIC+232

Description Identifier of the previous device for V1 communication.

User entry

0 to 255

Factory setting

1

Additional information

Read access	Operator
Write access	Maintenance

Level mapping

Navigation

Setup → Advanced setup → Communication → V1 X1-4 → Configuration → Level mapping

Prerequisite

Communication interface protocol (→ 🗎 225) = V1

Description

Determines the transmittable range of levels.

Selection

■ +A6

■ +ve & -ve

Factory setting

+ve

Additional information

Read access	Operator
Write access	Maintenance

In V1, the level is always represented by a number in the range from 0 to 999 999. This number corresponds to a level as follows:

"Level mapping" = "+ve"

Number	Corresponding level
0	0.0 mm
999 999	99 999.9 mm

"Level mapping" = "+ve & -ve"

Number	Corresponding level
0	0.0 mm
500 000	50 000.0 mm
500 001	-0.1 mm
999 999	-49 999.9 mm

Line impedance

Navigation Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow V1 X1-4 \rightarrow Configuration \rightarrow Line

impedance

Prerequisite Communication interface protocol (→ 🗎 225) = V1

Description Adjusts the impedance of the communication line.

User entry 0 to 15

Factory setting 15

Additional information

Read access	Operator
Write access	Maintenance

The line impedance affects the voltage difference between a logical 0 and a logical 1 on the message of the device to the bus. The default setting is suitable for most applications.

Compatibility mode

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow Modbus Xx-x / V1 Xx-x

→ Configuration → Compatibility mode

Description Defines the compatibility mode.

Selection ■ NMS5x

NMS8x

Factory setting NMS8x

Additional information

Read access	Operator
Write access	Maintenance

"V1 input selector" submenu

This submenu is only present for devices with a V1 communication interface.

Navigation

input selector

Alarm 1 input source

Navigation

Setup → Advanced setup → Communication → V1 X1-4 → V1 input selector
→ Alarm 1 input source

Description

Determines which discrete value will be transmitted as V1 alarm 1 status.

Selection

- None
- Alarm 1-4 any
- Alarm 1-4 HighHigh
- Alarm 1-4 High or HighHigh
- Alarm 1-4 High
- Alarm 1-4 Low
- Alarm 1-4 Low or LowLow
- Alarm 1-4 LowLow

Factory setting

None

Additional information

Read access	Operator
Write access	Maintenance

Alarm 2 input source

Navigation

Setup → Advanced setup → Communication → V1 X1-4 → V1 input selector
→ Alarm 2 input source

Description

Determines which discrete value will be transmitted as V1 alarm 2 status.

Selection

- None
- Alarm 1-4 any
- Alarm 1-4 HighHigh
- Alarm 1-4 High or HighHigh
- Alarm 1-4 High
- Alarm 1-4 Low
- Alarm 1-4 Low or LowLow
- Alarm 1-4 LowLow

Factory setting

None

Additional information

Read access	Operator
Write access	Maintenance

Value percent selector

percent selector

Description Selects which value shall be transmitted as a 0..100% value in the V1 Z0/Z1 message.

Selection ■ None

Tank level %Tank ullage %AIO B1-3 value %AIO C1-3 value %

Factory setting None

Additional information

Read access	Operator
Write access	Maintenance

"HART output" submenu

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow HART output

"Configuration" submenu

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow HART output

 \rightarrow Configuration

System polling address

Navigation Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow HART output \rightarrow Configuration

→ System polling address

Description Device address for HART communication.

User entry 0 to 63

Factory setting 15

Additional information

Read access	Operator
Write access	Maintenance

No. of preambles

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow HART output \rightarrow Configuration \rightarrow No.

of preambles

Description Defines the number o preambles in the HART telegram.

User entry 5 to 20

Factory setting 5

Additional information

Read access	Operator
Write access	Maintenance

PV source

Navigation $\blacksquare \square$ Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow HART output \rightarrow Configuration \rightarrow PV

source

Description Decides, if the PV configuration is according to an analog output (HART slave) or

customized (in case of HART tunneling only).

234

Selection ■ AIO B1-3

■ AIO C1-3

Custom

Factory setting

Custom

Additional information

Read access	Maintenance
Write access	Maintenance

Assign PV

Navigation → Assign PV

Prerequisite **PV** source (→ 🗎 234) = Custom

Description Assigns a tank variable to the primary HART variable (PV).

Selection None

■ Tank level

■ Tank ullage

Measured level

Distance

Displacer position

Water level

Upper interface level

■ Lower interface level

■ Bottom level

■ Tank reference height

■ Liquid temperature

Vapor temperature

Air temperature

Observed density value

Average profile density

Upper density

Middle density

Lower density

■ P1 (bottom)

■ P2 (middle)

■ P3 (top)

■ GP 1 value

■ GP 2 value

■ GP 3 value

■ GP 4 value

Factory setting Tank level

Visibility depends on order options or device settings

Additional information

Read access	Operator
Write access	Maintenance

Th

The **Measured level** option doesn't contain a unit. If a unit is needed, select the **Tank level** option.

0 % value

value

Prerequisite PV source = Custom

Description 0% value of the primary variable (PV).

User entry Signed floating-point number

Factory setting 0 mm

Additional information

Read access	Operator
Write access	Maintenance

100 % value

Navigation Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow HART output \rightarrow Configuration \rightarrow 100

% value

Prerequisite PV source = Custom

Description 100% value of the primary variable (PV).

User entry Signed floating-point number

Factory setting 0 mm

Additional information

Read access	Operator
Write access	Maintenance

PV mA selector

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow HART output \rightarrow Configuration \rightarrow PV

mA selector

Prerequisite PV source = Custom

Description Assigns a current to the primary HART variable (PV).

Selection • None

AIO B1-3 value mAAIO C1-3 value mA

Factory setting None

Additional information

Read access	Operator
Write access	Maintenance

Primary variable (PV)

Navigation Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow HART output \rightarrow Configuration

→ Primary variable (PV)

Description Shows the value of the primary HART variable (PV).

Additional information

Read access	Operator
Write access	-

Percent of range

Navigation Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow HART output \rightarrow Configuration

→ Percent of range

Description Shows the value of the primary variable (PV) as a percentage of the defined 0% to 100%

range.

Additional information

Read access	Operator
Write access	-

Assign SV 🗈

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow HART output \rightarrow Configuration

→ Assign SV

Description Assigns a tank variable to the secondary HART variable (SV).

Selection • None

■ Tank level

Tank ullageMeasured level

Distance

Displacer position

- Water level
- Upper interface level
- Lower interface level
- Bottom level
- Tank reference height
- Liquid temperature
- Vapor temperature
- Air temperature
- Observed density value
- Average profile density *
- Upper density
- Middle density
- Lower density
- P1 (bottom)
- P2 (middle)
- P3 (top)
- GP 1 value
- GP 2 value
- GP 3 value
- GP 4 value

Factory setting

Liquid temperature

Additional information

Read access	Operator
Write access	Maintenance

The **Measured level** option doesn't contain a unit. If a unit is needed, select the **Tank level** option.

Secondary variable (SV)

Navigation

→ Secondary variable (SV)

Prerequisite

Assign SV (→ 🗎 237) ≠ None

Description

Shows the value of the secondary HART variable (SV).

Additional information

Read access	Operator
Write access	-

Visibility depends on order options or device settings

Assign TV

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow HART output \rightarrow Configuration \rightarrow Assign TV

Description Assigns a tank variable to the third HART variable (TV).

Selection • None

- Tank level
- Tank ullage
- Measured level
- Distance
- Displacer position
- Water level
- Upper interface level
- Lower interface level
- Bottom level
- Tank reference height
- Liquid temperature
- Vapor temperature
- Air temperature
- Observed density value
- Average profile density *
- Upper density
- Middle density
- Lower density
- P1 (bottom)
- P2 (middle)
- P3 (top)
- GP 1 value
- GP 2 value
- GP 3 value
- GP 4 value

Factory setting Water level

Additional information

Read access	Operator
Write access	Maintenance

The **Measured level** option doesn't contain a unit. If a unit is needed, select the **Tank level** option.

Tertiary variable (TV)

→ Tertiary variable (TV)

Prerequisite Assign TV (→ 🗎 239) ≠ None

Visibility depends on order options or device settings

Description

Shows the value of the third HART variable (TV).

Additional information

Read access	Operator
Write access	-

Assign QV

Navigation

Description

Assigns a tank variable to the fourth HART variable (QV).

Selection

- None
- Tank level
- Tank ullage
- Measured level
- Distance
- Displacer position
- Water level
- Upper interface level
- Lower interface level
- Bottom level
- Tank reference height
- Liquid temperature
- Vapor temperature
- Air temperature
- Observed density value
- Average profile density *
- Upper density
- Middle density
- Lower density
- P1 (bottom)
- P2 (middle)
- P3 (top)
- GP 1 value
- GP 2 value
- GP 3 value
- GP 4 value

Factory setting

Observed density value

Additional information

Read access	Operator
Write access	Maintenance

The **Measured level** option doesn't contain a unit. If a unit is needed, select the **Tank level** option.

^{*} Visibility depends on order options or device settings

Quaternary variable (QV)

→ Quaternary variable (QV)

Prerequisite Assign QV (→ 🖺 240) ≠ None

Description Shows the value of the fourth HART variable (QV).

Additional information

Read access	Operator
Write access	-

"Information" submenu

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow HART output

 \rightarrow Information

HART short tag	

short tag

Description Defines the short tag for the measuring point. Maximum length: 8 characters Allowed

characters: A-Z, 0-9, certain special characters.

Factory setting NMS8x

Additional information

Read access	Operator
Write access	Maintenance

Device tag

 $\textbf{Navigation} \hspace{1cm} \hline{\textbf{ }} \hline{\textbf{ }} \hline{\textbf{ }} Setup \rightarrow Advanced \ setup \rightarrow Communication \rightarrow HART \ output \rightarrow Information \rightarrow Device$

tag

Description Enter a unique name for the measuring point to identify the device quickly within the

plant.

Factory setting NMS8x

Additional information

Read access	Operator
Write access	Maintenance

HART descriptor	
-----------------	--

Navigation Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow HART output \rightarrow Information \rightarrow HART

descriptor

Description User defined HART descriptor (16 characters).

Factory setting NMS8x

Additional information

Read access	Operator
Write access	Maintenance

HART message

Navigation Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow HART output \rightarrow Information \rightarrow HART

message

Description User defined HART message (32 characters).

Factory setting NMS8x

Additional information

Read access	Operator
Write access	Maintenance

HART date code

Navigation Setup \rightarrow Advanced setup \rightarrow Communication \rightarrow HART output \rightarrow Information \rightarrow HART

date code

Description Enter date of the last configuration change.

Factory setting 2009-07-20

Additional information

Read access	Operator
Write access	Maintenance

"Application" submenu

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Application

"Tank configuration" submenu

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration

"Level" submenu

Navigation В Setup → Advanced setup → Application → Tank configuration

→ Level

Level source

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Level

source

Description Defines the source of the level value.

Selection • No input value

■ HART device 1 ... 15 level

■ Level SR

■ Level

Displacer position *

■ AIO B1-3 value

■ AIO C1-3 value

■ AIP B4-8 value

■ AIP C4-8 value

Factory setting Dependent on the device version

Additional information

Read access	Operator
Write access	Maintenance

Empty

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Level \rightarrow Empty

Description Distance from reference point to zero position (tank bottom or datum plate).

User entry 0 to 100 000 mm

Factory setting Dependent on the device version

^{*} Visibility depends on order options or device settings

Additional information

Read access	Operator
Write access	Maintenance

i

surface.

The reference point is the reference line of the calibration window.

Tank reference height		
Navigation	Setup → Advar reference height	a ced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Level \rightarrow Tank at
Description	Defines the distance from the dipping reference point to the zero position (tank bottom or datum plate).	
User entry	0 to 100 000 mm	
Factory setting	Dependent on the device version	
Additional information	Read access	Operator
	Write access	Maintenance
Tank level		
Navigation	Setup → Advar.	ced setup → Application → Tank configuration → Level → Tank level

Additional information	Read access	Operator
	Write access	-

Set level			

Navigation \square Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Level \rightarrow Set level

Description If the level measured by the device does not match the actual level obtained by a manual

dip, enter the correct level into this parameter.

User entry 0 to 100 000 mm

Factory setting 0 mm

Additional information

Description

Read access	Operator
Write access	Maintenance

Shows the distance from the zero position (tank bottom or datum plate) to the product

The device adjusts the **Empty** parameter ($\rightarrow \implies 180$) according to the entered value, such that the measured level will match the actual level.

Water level source		
Navigation		l setup → Application → Tank configuration → Level → Water level
Description	Defines the source of the bottom water level.	
Selection	 Manual value Bottom level HART device 1 15 level AIO B1-3 value AIO C1-3 value AIP B4-8 value AIP C4-8 value 	
Factory setting	Manual value	
Additional information	Read access	Operator
	Write access	Maintenance

Manual water level		
Navigation	Setup → Advanced setup → Applicati water level	on → Tank configuration → Level → Manual
Prerequisite	Water level source (→ 🖺 246) = Manual value	
Description	Defines the manual value of the bottom water level.	
User entry	-2 000 to 5 000 mm	
Factory setting	0 mm	
Additional information	Read access Operator	

Water level	
Navigation	$\blacksquare \blacksquare \text{Setup} \rightarrow \text{Advanced setup} \rightarrow \text{Application} \rightarrow \text{Tank configuration} \rightarrow \text{Level} \rightarrow \text{Water level}$
Description	Shows the bottom water level.

Maintenance

Write access

246

Additional information

Read access	Operator
Write access	-

"Temperature" submenu

Read access	Maintenance
-------------	-------------

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration

→ Temperature

Liquid temp source

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Temperature

→ Liquid temp source

Description Defines source from which the liquid temperature is obtained.

Selection • Manual value

■ HART device 1 ... 15 temperature

AIO B1-3 valueAIO C1-3 valueAIP B4-8 valueAIP C4-8 value

Factory setting

Manual value

Additional information

Read access	Operator
Write access	Maintenance

Manual liquid temperature

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Temperature

→ Manual liquid temperature

Prerequisite Liquid temp source (→ 🖺 183) = Manual value

Description Defines the manual value of the liquid temperature.

User entry $-50 \text{ to } 300 \,^{\circ}\text{C}$

Factory setting 25 °C

Additional information

Read access	Operator
Write access	Maintenance

Liquid temperature

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Temperature

→ Liquid temperature

Description Shows the average or spot temperature of the measured liquid.

Additional information

Read access	Operator
Write access	-

Air temperature source

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Temperature \rightarrow Air

temperature source

Description Defines source from which the air temperature is obtained.

Selection • Manual value

■ HART device 1 ... 15 temperature

AIO B1-3 valueAIO C1-3 valueAIP B4-8 valueAIP C4-8 value

Factory setting Manual value

Additional information

Read access	Operator
Write access	Maintenance

Manual air temperature

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Temperature

→ Manual air temperature

Prerequisite Air temperature source (→ 🖺 249) = Manual value

Description Defines the manual value of the air temperature.

User entry $-50 \text{ to } 300 \,^{\circ}\text{C}$

Factory setting 25 °C

Additional information

Read access	Operator
Write access	Maintenance

Air temperature

Navigation

 $\blacksquare \blacksquare \quad \text{Setup} \rightarrow \text{Advanced setup} \rightarrow \text{Application} \rightarrow \text{Tank configuration} \rightarrow \text{Temperature} \rightarrow \text{Air}$

temperature

Description Shows the air temperature.

Additional information

Read access	Operator
Write access	-

Vapor temp source

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Temperature

→ Vapor temp source

Description Defines the source from which the vapor temperature is obtained.

Selection ■ Manual value

■ HART device 1 ... 15 vapor temp

AIO B1-3 valueAIO C1-3 valueAIP B4-8 valueAIP C4-8 value

Factory setting Manual value

Additional information

Read access	Operator
Write access	Maintenance

Manual vapor temperature

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Temperature

→ Manual vapor temperature

Prerequisite Vapor temp source (→ 🖺 250) = Manual value

Description Defines the manual value of the vapor temperature.

User entry $-50 \text{ to } 300 \,^{\circ}\text{C}$

Factory setting 25 °C

Additional information

Read access	Operator
Write access	Maintenance

250

Vapor temperature

Navigation

Description Shows the measured vapor temperature.

Additional information

Read access	Operator
Write access	-

"Density" submenu

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Density

Observed density source

Navigation

 $\ \ \ \ \ \ \ \$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Density \rightarrow Observed density source

Description

Determines how the density is obtained.

Selection

- HTG
- HTMS
 - Average profile density *
 - Upper densityMiddle densityLower density

Factory setting

Dependent on the device version

Additional information

Read access	Operator
Write access	Maintenance

Observed density

Navigation

Description

Shows the measured or calculated density.

Additional information

Read access	Operator
Write access	-

Air density

Navigation

Description

Defines the density of the air surrounding the tank.

User entry

 $0.0 \text{ to } 500.0 \text{ kg/m}^3$

^{*} Visibility depends on order options or device settings

Factory setting 1.2 kg/m^3

Additional information

Read access	Operator
Write access	Maintenance

Vapor density

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Density \rightarrow Vapor

density

Description Defines the density of the gas phase in the tank.

User entry $0.0 \text{ to } 500.0 \text{ kg/m}^3$

Factory setting 1.2 kg/m³

Additional information

Read access	Operator
Write access	Maintenance

"Pressure" submenu

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration

→ Pressure

P1 (bottom) source

Navigation

Setup → Advanced setup → Application → Tank configuration → Pressure → P1 (bottom) source

Description

Defines the source of the bottom pressure (P1).

Selection

- Manual value
- HART device 1 ... 15 pressure
- AIO B1-3 valueAIO C1-3 valueAIP B4-8 valueAIP C4-8 value

Factory setting

Manual value

Additional information

Read access	Operator
Write access	Maintenance

P1 (bottom)

Navigation

Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Pressure \rightarrow P1 (bottom)

Description

Shows the pressure at the tank bottom.

Additional information

Read access	Operator
Write access	-

P1 (bottom) manual pressure

Navigation

Setup → Advanced setup → Application → Tank configuration → Pressure → P1 (bottom) manual pressure

Prerequisite

P1 (bottom) source ($\rightarrow \triangleq 254$) = Manual value

Description

Defines the manual value of the bottom pressure (P1).

User entry

-25 to 25 bar

254

Factory setting

0 bar

Additional information

Read access	Operator
Write access	Maintenance

P1 position

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Pressure \rightarrow P1

position

Description Defines the position of the bottom pressure transmitter (P1), measured from zero position

(tank bottom or datum plate).

User entry -10 000 to 100 000 mm

Factory setting 5 000 mm

Additional information

Read access	Operator
Write access	Maintenance

P1 offset

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Pressure \rightarrow P1

offset

Description Offset for the bottom pressure (P1). The offset is added to the measured pressure prior to

any tank calculation.

User entry –25 to 25 bar

Factory setting 0 bar

Additional information

Read access	Operator
Write access	Maintenance

P1 absolute / gauge

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Pressure \rightarrow P1

absolute / gauge

Description Defines whether the connected pressure transmitter measures an absolute or a gauge

pressure.

Selection • Absolute

■ Gauge

Factory setting

Gauge

Additional information

Read access	Operator
Write access	Maintenance

P3 (top) source

Navigation

Description

Defines the source of the top pressure (P3).

Selection

- Manual value
- HART device 1 ... 15 pressure
- AIO B1-3 valueAIO C1-3 valueAIP B4-8 valueAIP C4-8 value

Factory setting

Manual value

Additional information

Read access	Operator
Write access	Maintenance

P3 (top)

Navigation

Setup → Advanced setup → Application → Tank configuration → Pressure → P3 (top)

Description

Shows the pressure (P3) at the top transmitter.

Additional information

Read access	Operator
Write access	-

P3 (top) manual pressure

Navigation

Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Pressure \rightarrow P3 (top) manual pressure

Prerequisite

P3 (top) source ($\rightarrow \triangleq 256$) = Manual value

Description

Defines the manual value of the top pressure (P3).

User entry

-2.5 to 2.5 bar

Factory setting

0 bar

256

Additional	inform	ation
Auuitionai	ппопп	ıauvıı

Read access	Operator
Write access	Maintenance

P3 position

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Pressure \rightarrow P3

position

Description Defines the position of the top pressure transmitter (P3), measured from zero position

(tank bottom or datum plate).

User entry 0 to 100 000 mm

Factory setting 20 000 mm

Additional information

Read access	Operator
Write access	Maintenance

P3 offset

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Pressure \rightarrow P3

offset

Description Offset for the top pressure (P3). The offset is added to the measured pressure prior to any

tank calculation.

User entry −2.5 to 2.5 bar

Factory setting 0 bar

Additional information

Read access	Operator
Write access	Maintenance

P3 absolute / gauge

Navigation $\blacksquare \square$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Pressure \rightarrow P3

absolute / gauge

Description Defines whether the connected pressure transmitter measures an absolute or a gauge

pressure.

Selection ■ Absolute

Gauge

Factory setting Gauge

Additional information

Read access	Operator
Write access	Maintenance

Ambient pressure

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank configuration \rightarrow Pressure

→ Ambient pressure

Description Defines the manual value of the ambient pressure.

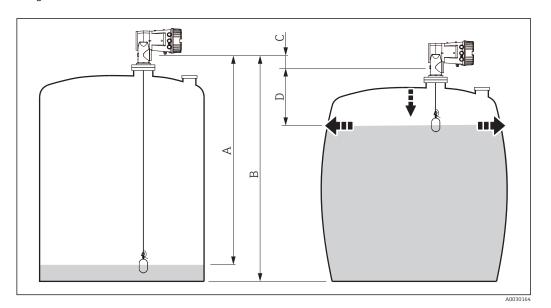
User entry 0 to 2.5 bar

Factory setting 1 bar

Additional information

Read access	Operator
Write access	Maintenance

258

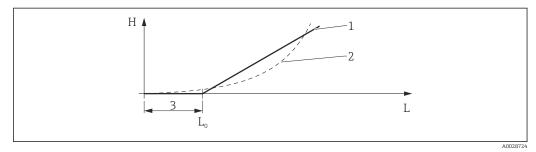

"Tank calculation" submenu

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank calculation

"HyTD" submenu

Overview

Hydrostatic Tank Deformation can be used to compensate the vertical movement of the Gauge Reference Height (GRH) due to bulging of the tank shell caused by the hydrostatic pressure exerted by the liquid stored in the tank. The compensation is based on a linear approximation obtained from manual hand dips at several levels distributed over the full range of the tank.



 \blacksquare 81 Correction of the hydrostatic tank deformation (HyTD)

- A "Distance" (level below $L_0 \rightarrow$ "HyTD correction value" = 0)
- B Gauge Reference Height (GRH)
- C HyTD correction value
- $D \qquad "Distance" (level above \ L_0 \rightarrow "HyTD \ correction \ value" > 0)$

Linear approximation of the HyTD correction

The real amount of deformation varies non-linearly with the level due to the construction of the tank. However, as the correction values are typically small compared to the measured level, a simple straight line method can be used with good results.

■ 82 Calculation of the HyTD correction

- *1* Linear correction according to "Deformation factor (→ 🖺 262)"
- 2 Real correction
- 3 Starting level ($\rightarrow \triangle 261$)
- L Measured level
- *H* HyTD correction value ($\rightarrow \triangleq 261$)

Calculation of the HyTD correction

$$L \le L_0 \implies C_{HyTD} = 0$$
 $L > L_0 \implies C_{HyTD} = -(L - L_0) \times D$

A0028715

L	Measured level
L_0	Starting level
c_{HyTD}	HyTD correction value
D	Deformation factor

Description of parameters

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank calculation

→ HyTD

HyTD correction value

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank calculation \rightarrow HyTD \rightarrow HyTD

correction value

Description Shows the correction value from the Hydrostatic Tank Deformation.

Additional information

Read access	Operator
Write access	-

HyTD mode

Description Activates or deactivates the calculation of the Hydrostatic Tank Deformation.

Selection ■ No

Yes

Factory setting No

Additional information

Read access	Operator
Write access	Maintenance

Starting level

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank calculation \rightarrow HyTD \rightarrow Starting level

Description Defines the starting level for the Hydrostatic Tank Deformation. Levels below this value

are not corrected.

User entry 0 to 5 000 mm

Factory setting 500 mm

Additional information

Read access	Operator
Write access	Maintenance

Deformation factor

factor

Description Defines the deformation factor for the HyTD (change of device position per change of

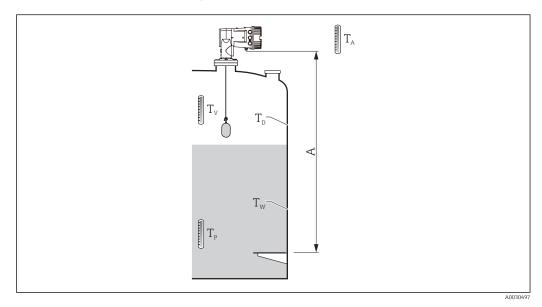
level).

User entry -1.0 to 1.0 %

Factory setting 0.2 %

Additional information

Read access	Operator
Write access	Maintenance


"CTSh" submenu

Overview

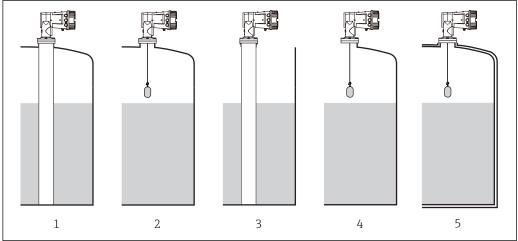
CTSh (correction of the thermal tank shell expansion) compensates for effects on the Gauge Reference Height (GRH) due to temperature effects on the tank shell or stilling well. The temperature effects are separated into two parts, respectively effecting the 'dry' and 'wetted' part of the tank shell or stilling well. The calculation is based on thermal expansion coefficients of steel and insulation factors for both the 'dry' and 'wet' shell. The assessed temperatures are based on manual or measured values and the temperature of the shell when the tank was calibrated (for details refer to API MPMS Chapter 12.1).

- This correction is recommended for the following situations:
 - if the operating temperature deviates consided enably from the temperature during calibration ($\Delta T > 10 \,^{\circ}\text{C} \, (18 \,^{\circ}\text{F})$)
 - for extremely high tanks
 - for refrigerated, cryogenic or heated applications
- As the use of this correction will influence the innage level reading, it is recommended to review the manual hand dip and level verification procedures prior to enabling this correction method.
- This mode should not be used in conjunction with HTG as with HTG the level is not measured relative to the gauge reference height.

CTSh: Calculation of the wall temperature

 \blacksquare 83 Parameters for the CTSh calculation

A Gauge Reference Height (GRH)


T _W	Temperature of the wetted part of the tank shell	
T_D	Temperature of the dry part of the tank shell	
T _P	Product temperature	
T _V	Vapor temperature (in the tank)	
T _A	Ambient temperature (atmosphere surrounding the tank)	

CTSh: Calculation of the wall temperature

Depending on the parameters Covered tank (\rightarrow \boxminus 267) and Stilling well (\rightarrow \trianglerighteq 268), the temperatures T_W of the wetted and T_D of the dry part of the tank wall are calculated as follows:

Covered tank (→ 🗎 267)	Stilling well (→ 🗎 268)	T _W	T_{D}
Covered	Yes 1)	T _P	T _V
Covered	No	(7/8) T _P + (1/8) T _A	$(1/2) T_V + (1/2) T_A$
Open top	Yes	T _P	T _A
Open top	No	(7/8) T _P + (1/8) T _A	T _A

1) This option is also valid for insulated tanks without a stilling welll. This is due to the temperature inside and outside of the tank shell being the same due to the insulation of the tank.

A0030509

- 1 2 3

CTSh: Calculation of the correction

$C_{CTSh} = \alpha (H - L)(T_D - T_{cal}) + \alpha L (T_W - T_{cal})$

10028716

Н	Gauge Reference Height	
L	Measured level	
T_{D}	Temperature of the dry part of the tank shell (calculated from T_P,T_V and $T_A)$	
T _W	Temperature of the wetted part of the tank shell (calculated from T_P , T_V and T_A)	
T_{cal}	Temperature at which the measurement has been calibrated	
α	Linear expansion coefficient	
c _{CTSh}	CTSh correction value	

Description of parameters

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank calculation

 \rightarrow CTSh

CTSh correction value

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank calculation \rightarrow CTSh \rightarrow CTSh

correction value

Description Shows the CTSh correction value.

Additional information

Read access	Operator	
Write access	-	l

CTSh mode

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank calculation \rightarrow CTSh \rightarrow CTSh mode

Description Activates or deactivates the CTSh.

Selection ■ No

Yes

Factory setting No

Additional information

Read access	Operator
Write access	Maintenance

Covered tank

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank calculation \rightarrow CTSh \rightarrow Covered tank

Description Determines whether the tank is covered.

Selection ■ Open top

■ Covered

Factory setting Open top

Additional information

Read access	Operator
Write access	Maintenance

i

The **Covered** option is only valid for fixed tank roofs. For a floating roof select **Open top**.

Stilling well

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank calculation \rightarrow CTSh \rightarrow Stilling well

Description Determines whether the device is mounted on a stilling well.

Selection ■ No

Yes

Factory setting No

Additional information

Read access	Operator
Write access	Maintenance

Calibration temperature

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank calculation \rightarrow CTSh \rightarrow Calibration

temperature

Description Specify temperature at which the measurement has been calibrated.

User entry $-50 \text{ to } 250 \,^{\circ}\text{C}$

Factory setting 25 °C

Additional information

Read access	Operator
Write access	Maintenance

Linear expansion coefficient

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank calculation \rightarrow CTSh \rightarrow Linear

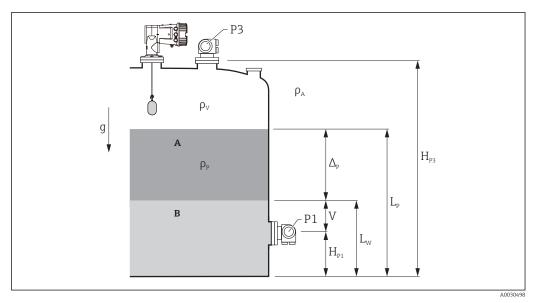
expansion coefficient

Description Defines the linear expansion coefficient of the tank shell material.

User entry 0 to 100 ppm

Factory setting 15 ppm

Additional information


Read access	Operator
Write access	Maintenance

"HTMS" submenu

Overview

The Hybrid Tank Measurement System (HTMS) is a method to calculate the density of a product in a tank based on both a (top mounted) level and at least one (bottom mounted) pressure measurement. An additional pressure sensor can be installed at the top of the tank to provide information about the vapor pressure and to make the density calculation more accurate. The calculation method also takes into account a possible level of water at the bottom of the tank to make density calculations as accurate as possible.

HTMS parameters

■ 84 HTMS parameters

A Product

B Water

Parameter	Navigation path
P1 (Bottom pressure)	$Setup \to Advanced \ setup \to Tank \ configuration \to Pressure \to P1 \ (bottom)$
H _{P1} (Position of P1 transmitter)	$Setup \to Advanced \ setup \to Tank \ configuration \to Pressure \to P1 \ position$
P3 (Top pressure)	Setup \rightarrow Advanced setup \rightarrow Tank configuration \rightarrow Pressure \rightarrow P3 (top)
H _{P3} (Position of P3 transmitter)	Setup \rightarrow Advanced setup \rightarrow Tank configuration \rightarrow Pressure \rightarrow P3 position
ρ_P (Density of the product $^{1)}$)	 Measured value: Setup → Advanced setup → Calculation → HTMS → Density value User-defined value: Setup → Advanced setup → Calculation → HTMS → Manual upper density
ρ _V (Vapor density)	Expert \rightarrow Application \rightarrow Tank configuration \rightarrow Density \rightarrow Vapor density
ρ _A (Ambient air temperature)	$Setup \to Advanced \ setup \to Tank \ configuration \to Density \to Air \ density$
g (Local gravity)	Expert \rightarrow Application \rightarrow Tank Calculation \rightarrow Local gravity
L _p (Level of the product)	Operation → Tank level
L _W (Bottom water level)	Operation → Water level
V = L _W - H _{P1}	
$\Delta_{P} = L_{P} - L_{W} = L_{P} - V - H_{P1}$	

1) Depending on the situation this parameter is measured or a user-defined value is used.

HTMS modes

Two HTMS modes can be selected in the **HTMS mode** parameter ($\rightarrow \boxminus 272$). The mode determines whether one or two pressure values are used. Depending on the selected mode a number of additional parameters are required for the calculation of the product density.

The **HTMS P1+P3** option must be used in pressurized tanks in order to compensate for the pressure of the vapor phase.

HTMS mode (→ 🗎 272)	Measured variables	Required additional parameters	Calculated variables
HTMS P1	■ P ₁ ■ L _p	■ g ■ H _{P1} ■ L _W (optional)	ρ_{P}
HTMS P1+P3	■ P ₁ ■ P ₃ ■ L _P	 ρ_V ρ_A g H_{P1} H_{P3} L_W (optional) 	P _P (more precise calculation for pressurized tanks)

Minimum level

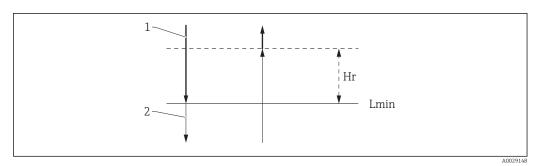
The density of the product can only be calculated if the product has a minimum thickness:

$$\Delta_{
m p} \geq \Delta_{
m p,\,min}$$

A0028864

This is equivalent to the following condition for the product level:

$$L_P - V \ge \Delta_{P, \min} + H_{P1} = L_{\min}$$


A0028863

 L_{min} is defined in the **Minimum level** parameter ($\rightarrow \triangleq 273$). As can be seen from the formula it always must be bigger than H_{P1} .

If L_P - V falls below this limit, the density is calculated as follows:

- If a previous calculated value is available, this value will be kept as long as no new calculation is possible.
- If no value was previously calculated, the manual value (defined in the **Manual upper density** parameter) will be used.

Hysteresis

■ 85 HTMS hysteresis

- 1 Value calculated
- 2 Value held/manual

 L_{min} Minimum level (\rightarrow $\stackrel{\triangle}{=}$ 273)

 H_r Hysteresis ($\Rightarrow \square 274$)

Description of parameters

HTMS mode

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank calculation \rightarrow HTMS \rightarrow HTMS mode

Description Defines the HTMS mode. Depending on the mode one or two pressure transmitters are

used.

Selection ■ HTMS P1 ■ HTMS P1+P3

Factory setting HTMS P1

Additional information

Read access	Operator
Write access	Maintenance

Meaning of the options

■ HTMS P1

Only a bottom pressure transmitter (P1) is used.

■ HTMS P1+P3

A bottom (P1) and top (P3) pressure transmitter are used. This option should be selected for pressurized tanks.

Manual density

Navigation $\blacksquare \ \$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank calculation \rightarrow HTMS \rightarrow Manual density

Description Defines the manual density.

User entry $0 \text{ to } 3000 \text{ kg/m}^3$

Factory setting 800 kg/m³

Additional information

Read access	Maintenance
Write access	Maintenance

Density value

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank calculation \rightarrow HTMS \rightarrow Density value

Description Shows the calculated product density.

Additional information

Read access	Operator
Write access	-

Minimum level

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank calculation \rightarrow HTMS \rightarrow Minimum

level

Description Defines the minimum product level for a HTMS calculation. If Lp - V falls below the limit

defined in this parameter, the density retains its last value or the manual value is used

instead.

User entry 0 to 20 000 mm

Factory setting 7 000 mm

Additional information

Read access	Operator
Write access	Maintenance

Minimum pressure

pressure

Description Defines the minimum pressure for a HTMS calculation. If the pressure P1 falls below the

limit defined in this parameter, the density retains its last value or the manual value is

used instead.

User entry 0 to 100 bar

Factory setting 0.1 bar

A 1 1	. 1		. •
Addii	nonal	inform	iation

Read access	Operator
Write access	Maintenance

Safety distance

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank calculation \rightarrow HTMS \rightarrow Safety

distance

Description Defines the minimum level which must be present above the bottom pressure sensor

before its signal is used for the calculation.

User entry 0 to 10 000 mm

Factory setting 2 000 mm

Additional information

Read access	Operator
Write access	Maintenance

Hysteresis 🙃

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank calculation \rightarrow HTMS \rightarrow Hysteresis

Description Defines the hysteresis for the HTMS calculation. Prevents constant switching if the level is

near the switch-over point.

User entry 0 to 2 000 mm

Factory setting 50 mm

Additional information

Read access	Operator
Write access	Maintenance

Water density

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Tank calculation \rightarrow HTMS \rightarrow Water

density

Description Density of the water in the tank.

User entry Signed floating-point number

Factory setting 1000 kg/m^3

Additional information

Read access	Operator
Write access	Maintenance

"Alarm" submenu

Alarm mode

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Alarm \rightarrow Alarm mode

Description Defines the alarm mode of the selected alarm.

Selection ■ Off ■ On

Latching

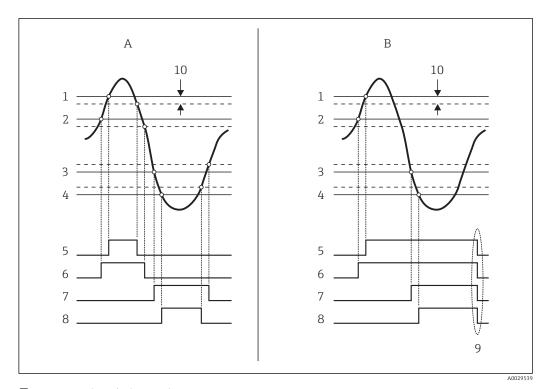
Factory setting Off

Additional information

Read access	Operator
Write access	Maintenance

Meaning of the options

Off


No alarms are generated.

On

An alarm disappears if the alarm condition is no longer present (taking into consideration the hysteresis).

Latching

All alarms remain active until the user selects **Clear alarm** (\Rightarrow \cong **282)** = **Yes** or the power is switched off and on.

■ 86 Principle of the limit evaluation

A Alarm mode ($\rightarrow \triangleq 276$) = On

B Alarm mode (\rightarrow $\stackrel{\cdot}{\cong}$ 276) = Latching

1 HH alarm value ($\rightarrow \triangleq 279$)

2 *H alarm value* (→ 🖺 279)

3 Lalarm value ($\rightarrow = 280$)

4 LL alarm value (→ 🖺 280)

5 HH alarm (→ 🖺 280)

6 H alarm (→ 🖺 281)

7 L alarm (→ 🖺 281)

9 "Clear alarm ($\rightarrow \triangleq 282$)" = "Yes" or power off-on

10 Hysteresis (→ 🖺 283)

Error value

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Alarm \rightarrow Error value

Prerequisite Alarm mode (\rightarrow \cong 276) \neq Off

Description Defines the alarm to be issued if the input value is invalid.

Selection ■ No alarm

■ HH+H alarm

■ H alarm

■ L alarm

LL+L alarmAll alarms

Factory setting All alarms

Additional information Read access Operator
Write access Maintenance

Alarm value source

Navigation

 $\blacksquare \blacksquare \quad \text{Setup} \rightarrow \text{Advanced setup} \rightarrow \text{Application} \rightarrow \text{Alarm} \rightarrow \text{Alarm} \rightarrow \text{Alarm value source}$

Prerequisite

Alarm mode ($\rightarrow \stackrel{\triangle}{=} 276$) \neq Off

Description

Determines the process variable to be monitored.

Selection

- Tank level
- Liquid temperature
- Vapor temperature
- Water level
- P1 (bottom)
- P2 (middle)
- P3 (top)
- Observed density value
- Volume
- Flow velocity
- Volume flow
- Vapor density
- Middle density
- Upper density
- Correction
- Tank level %
- GP 1...4 value
- Measured level
- P3 position
- Tank reference height
- Local gravity
- P1 position
- Manual density
- Tank ullage
- Average profile density
- Lower density
- Upper interface level
- Lower interface level
- Bottom level
- Displacer position
- HART device 1...15 PV
- HART device 1...15 SV
- HART device 1...15 TV
- HART device 1...15 QVHART device 1...15 PV mA
- HART device 1...15 PV %
- Element temperature 1...24
- AIO B1-3 value
- AIO C1-3 value
- AIP B4-8 value
- AIP C4-8 value
- None

Factory setting

None

Additional information

Read access	Operator
Write access	Maintenance

Alarm value

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Alarm \rightarrow Alarm value

Prerequisite Alarm mode ($\rightarrow \stackrel{\triangle}{=} 276$) \neq Off

Description Shows the current value of the process variable being monitored.

User interface Signed floating-point number

Factory setting 0 None

Additional information

Read access	Operator
Write access	-

HH alarm value

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Alarm \rightarrow Alarm \rightarrow HH alarm value

Prerequisite Alarm mode (→ 🗎 276) ≠ Off

Description Defines the high-high(HH) limit value.

User entry Signed floating-point number

Factory setting 0 None

Additional information

Read access	Operator
Write access	Maintenance

H alarm value

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Alarm \rightarrow Alarm \rightarrow H alarm value

Prerequisite Alarm mode (→ 🗎 276) ≠ Off

Description Defines the high(H) limit value.

User entry Signed floating-point number

Factory setting 0 None

Additional information

Read access	Operator
Write access	Maintenance

L alarm value

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Alarm \rightarrow Lalarm value

Prerequisite Alarm mode ($\Rightarrow \stackrel{\triangle}{=} 276$) \neq Off

Description Defines the low limit value.

User entry Signed floating-point number

Factory setting 0 None

Additional information

Read access	Operator
Write access	Maintenance

LL alarm value

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Alarm \rightarrow Alarm \rightarrow LL alarm value

Prerequisite Alarm mode ($\Rightarrow \stackrel{\triangle}{=} 276$) \neq Off

Description Defines the low-low(LL) limit value.

User entry Signed floating-point number

Factory setting 0 None

Additional information

Read access	Operator
Write access	Maintenance

HH alarm

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Alarm \rightarrow Alarm \rightarrow HH alarm

Prerequisite Alarm mode (→ 🗎 276) ≠ Off

Description Shows whether an HH alarm is currently active.

Additional information

Read access	Operator
Write access	-

H alarm

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Alarm \rightarrow Alarm \rightarrow H alarm

Prerequisite Alarm mode ($\Rightarrow \triangleq 276$) $\neq Off$

Description Shows whether an H alarm is currently active.

Additional information

Read access	Operator
Write access	-

HH+H alarm

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Alarm \rightarrow HH+H alarm

Prerequisite Alarm mode ($\Rightarrow \triangleq 276$) $\neq Off$

Description Shows whether an HH or H alarm is currently active.

Additional information

Read access	Operator
Write access	-

L alarm

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Alarm \rightarrow L alarm

Prerequisite Alarm mode ($\Rightarrow \triangleq 276$) $\neq 0$ ff

Description Shows whether an L alarm is currently active.

Additional information

Read access	Operator
Write access	-

LL alarm

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Alarm \rightarrow Alarm \rightarrow LL alarm

Prerequisite Alarm mode ($\Rightarrow \triangleq 276$) $\neq Off$

Description Shows whether an LL alarm is currently active.

Additional information

Read access	Operator
Write access	-

LL+L alarm

Navigation Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Alarm \rightarrow Alarm \rightarrow LL+L alarm

Prerequisite Alarm mode ($\rightarrow \triangleq 276$) $\neq Off$

Description Shows whether an LL or L alarm is currently active.

Additional information

Read access	Operator
Write access	-

Any error

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Alarm \rightarrow Any error

Prerequisite Alarm mode ($\Rightarrow \triangleq 276$) $\neq Off$

Description Show whether any alarm is currently active.

User interface ■ Unknown

InactiveActiveError

Factory setting Unknown

Additional information

Read access	Operator
Write access	-

Clear alarm

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Alarm \rightarrow Alarm \rightarrow Clear alarm

Prerequisite Alarm mode (→ 🗎 276) = Latching

Description Deletes an alarm which is still active although the alarm condition is no longer present.

Selection • No

Yes

Factory setting No

282

Additional information

Read access	Operator
Write access	Maintenance

Alarm hysteresis

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Alarm \rightarrow Alarm hysteresis

Prerequisite Alarm mode ($\rightarrow \stackrel{\triangle}{=} 276$) \neq Off

Description Defines the hysteresis for the limit values. The hystersis prevents constant changes of the

alarm state if the level is near one of the limit values.

User entry Signed floating-point number

Factory setting 0.001

Additional information

Read access	Maintenance
Write access	Maintenance

Damping factor

Description Defines the damping constant (in seconds).

User entry 0 to 999.9 s

Factory setting 0 s

Additional information

Read access	Operator
Write access	Maintenance

"Safety settings" submenu

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Safety settings

Output out of range

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Safety settings \rightarrow Output out of range

Description Selection of behavior when displacer reached **High stop level (→ 🖺 182)**, **Low stop level**

or **Reference position**.

Selection • Last valid value

Alarm

Factory setting Last valid value

Additional information

Read access	Operator
Write access	Maintenance

High stop level

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Safety settings \rightarrow High stop level

Description Position of the displacer high stop as measured from defined zero position (tank bottom or

datum plate).

User entry -999 999.9 to 999 999.9 mm

Factory setting Dependent on the device version

Additional information

Read access	Operator
Write access	Maintenance

Low stop level

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Safety settings \rightarrow Low stop level

Description Position of the displacer low stop as measured from defined zero position (tank bottom or

datum plate).

User entry -999 999.9 to 999 999.9 mm

Factory setting 0 mm

Δdd	itiona	l inform	ation

Read access	Operator
Write access	Maintenance

Slow hoist zone

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Safety settings \rightarrow Slow hoist zone

Description Defines the interval in millimeters, measured down from the Reference Position, in which

the Displacer reduces moving speed.

User entry -999 999.9 to 999 999.9 mm

Factory setting 70 mm

Additional information

Read access	Operator
Write access	Maintenance

Overtension weight

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Safety settings \rightarrow Overtension weight

Description Sets the minimum Weight in grams when Overtension Alarm will be set.

User entry 100 to 999.9 q

Factory setting 350 g

Additional information

Read access	Operator
Write access	Maintenance

Undertension weight

Navigation Setup \rightarrow Advanced setup \rightarrow Safety settings \rightarrow Undertension weight

Description Defines the undertension error weight. Untertension error will be issued if displacer

weight is below this value longer than 7 seconds.

User entry 0 to 300 q

Factory setting 10 g

Additional information

Read access	Operator
Write access	Maintenance

"Sensor config" submenu

Write access

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Sensor config

Post gauge command Navigation Defines the gauge command that will be executed after a one-time gauge command has Description finished. Selection Stop ■ Level ■ Up Upper I/F level ■ Lower I/F level ■ None **Factory setting** Level Additional information Read access Operator

Maintenance

"Displacer" submenu

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Displacer

Displacer type

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Displacer type

Description Chooses the type of displacer used.

Selection • Custom diameter

Diameter 30 mmDiameter 50 mmDiameter 70 mmDiameter 110 mm

Factory setting Dependent on the device version

Additional information

Read access	Operator
Write access	Maintenance

Displacer diameter ©

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Displacer \rightarrow Displacer diameter

Prerequisite Displacer type (→ 🗎 288) = Custom diameter

Description Sets the diameter of the cylindrical part of displacer.

User entry 0 to 999.9 mm

Factory setting See label on the device.

Additional information

Read access	Operator
Write access	Maintenance

Displacer weight

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Displacer weight

Description Set the weight of the diplacer in air. Indicated on the displacer in grams.

User entry 10 to 999.9 g

Factory setting See label on the device.

Additional information

Read access	Operator
Write access	Maintenance

Displacer volume ©

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Displacer \rightarrow Displacer volume

Description Displacer volume indicated on displacer in mililiter.

User entry 10 to 999.9 ml

Factory setting See label on the device.

Additional information

Read access	Operator
Write access	Maintenance

Displacer balance volume

Navigation Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Displacer \rightarrow Displacer balance volume

Description Defines the balance volume of the displacer as the lower part of displacer immersed in

liquid. Units in milliliters. Indicated on displacer.

User entry 10 to 999.9 ml

Factory setting See label on the device.

Additional information

Read access	Operator
Write access	Maintenance

Displacer height

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Displacer \rightarrow Displacer height

Description Sets the displacer height in mm.

User entry 10 to 300 mm

Factory setting Dependent on the device version

Additional information

Read access	Operator
Write access	Maintenance

Immersion depth

Navigation Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Displacer \rightarrow Immersion depth

Description Defines distance (mm) from displacer bottom to balancing line defined by balanced

volume. Value is needed for correct bottom level measurement.

User entry 0 to 99.9 mm

Factory setting Dependent on the device version

Additional information

Read access	Operator
Write access	Maintenance

"Wiredrum" submenu

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Wiredrum

Drum circumference

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Wiredrum \rightarrow Drum circumference

Description Sets the circumference of the wire drum. Indicated in Label.

User entry 100 to 999.9 mm

Factory setting See label on the device.

Additional information

Read access	Operator
Write access	Maintenance

Wire weight

Description Defines the weight of the measuring wire in g/10m. Indicated on Label.

User entry 0 to 999.9 g

Factory setting See label on the device.

Additional information

Read access	Operator
Write access	Maintenance

"Spot density" submenu

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Spot density

Upper density offset

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Spot density \rightarrow Upper density offset

Description Defines an offset value which is added to the measured upper density value.

User entry -999.99 to 999.99 kg/m³

Factory setting 0 kg/m³

Additional information

Read access	Operator
Write access	Maintenance

Middle density offset

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Spot density \rightarrow Middle density offset

Description Defines an Offset Value which is added to the measured Middle Density Value.

User entry $-999.99 \text{ to } 999.99 \text{ kg/m}^3$

Factory setting 0 kg/m³

Additional information

Read access	Operator
Write access	Maintenance

Lower density offset

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Spot density \rightarrow Lower density offset

Description Defines an offset value which is added to the measured lower density value.

User entry $-999.99 \text{ to } 999.99 \text{ kg/m}^3$

Factory setting 0 kg/m³

Additional information

Read access	Operator
Write access	Maintenance

Submersion depth

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Spot density \rightarrow Submersion depth

Description Sets the displacer submersion depth (mm) for spot density operations.

User entry 50 to 99 999.9 mm

Factory setting 150 mm

Additional information

Read access	Operator
Write access	Maintenance

"Profile density" submenu

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Profile density

Density measurement mode

Navigation $\blacksquare \ \$ Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Profile density \rightarrow Density measurement

mode

Description In normal measure mode, measures at specified positions. In compensation mode

measures using next integer value of drum turns to improve accuracy.

Selection • Normal measure mode

Compensation mode

Factory setting Normal measure mode

Additional information

Read access	Operator
Write access	Maintenance

Manual profile level

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Profile density \rightarrow Manual profile level

Description Sets the level position in the tank where the manual profile density operation starts.

User entry -999 999.9 to 999 999.9 mm

Factory setting 1 000 mm

Additional information

Read access	Operator
Write access	Maintenance

Profile density offset distance

distance

Description Profile density offset distance [mm] is the distance between start point and first

measurement point.

User entry 0 to 999 999.9 mm

Factory setting 500 mm

Additional information

Read access	Operator
Write access	Maintenance

Profile density interval

Navigation Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Profile density interval

Description Sets the interval between two measurement points in profile density operation.

User entry 1 to 100 000 mm

Factory setting 1000 mm

Additional information

Read access	Operator
Write access	Maintenance

Profile density offset

Navigation $\blacksquare \square$ Setup \rightarrow Advanced setup \rightarrow Sensor config \rightarrow Profile density \rightarrow Profile density offset

Description Defines an offset value which is added to the measured profile density value.

User entry $-999.99 \text{ to } 999.99 \text{ kg/m}^3$

Factory setting 0 kg/m³

Additional information

Read access	Operator
Write access	Maintenance

"Display" submenu

This menu is only visible if the device has a local display.

Navigation

Language

Navigation

Prerequisite The device has a local display.

Description Set display language.

Selection

- English
- Deutsch *
- Français *
- Español ²
- Italiano ^{*}
- Nederlands
- Portuguesa
- Polski*
- русский язык (Russian) *
- Svenska *
- Türkçe
- 中文 (Chinese) *
- 日本語 (Japanese) *
- 한국어 (Korean)
- ٌ (Arabic) الْعَرَبيّة ■
- Bahasa Indonesia *
- ภาษาไทย (Thai) ่
- tiếng Việt (Vietnamese) *
- čeština (Czech)

Factory setting

English

Additional information

Read access	Operator
Write access	Operator

Format display

Navigation

Prerequisite The device has a local display.

Description Select how measured values are shown on the display.

Visibility depends on order options or device settings

Selection

- 1 value, max. size
- 1 bargraph + 1 value
- 2 values
- 1 value large + 2 values
- 4 values

Factory setting

2 values

Additional information

Read access	Operator
Write access	Operator

- The **Value 1 to 4 display (→** 🗎 **297)** parameters specify which measured values are shown on the display and in which order.
- If more measured values are specified than the current display mode permits, the values alternate on the device display. The display time until the next change is configured in the **Display interval** parameter ($\rightarrow \triangleq 300$).

Value 1 to 4 display	
- data = 10 - datapady	_

Navigation

Prerequisite

The device has a local display.

Description

Select the measured value that is shown on the local display.

Selection

- None ⁷⁾
- Tank level
- Measured level
- Tank level %
- Water level ⁷⁾
- Liquid temperature ⁷⁾
- Vapor temperature ⁷⁾
- Air temperature ⁷⁾
- Tank ullage
- Tank ullage %
- Observed density value ⁷⁾
- P1 (bottom) ⁷⁾
- P2 (middle) 7)
- P3 (top) ⁷⁾
- GP 1 value ⁷⁾
- GP 2 value ⁷⁾
- GP 3 value ⁷⁾
- GP 4 value ⁷⁾
- Gauge command ⁷⁾
- Gauge status ⁷⁾
- AIO B1-3 value ⁷⁾
- AIO B1-3 value mA ⁷⁾
- AIO B1-3 value % ⁷⁾
- AIO C1-3 value ⁷⁾
- AIO C1-3 value mA ⁷⁾
- AIO C1-3 value % ⁷⁾

⁷⁾ not available for the **Value 1 display** parameter

■ AIP B4-8 value ⁷⁾

■ AIP B4-8 value mA ⁷⁾

■ AIP B4-8 value % 7)

■ AIP C4-8 value ⁷⁾

■ AIP C4-8 value mA 7)

■ AIP C4-8 value % 7)

Factory setting

Depending on device version

Additional information

Read access	Operator
Write access	Maintenance

Decimal places 1 to 4

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Display \rightarrow Decimal places 1

Prerequisite The device has a local display.

Description This selection does not affect the measurement and calculation accuracy of the device.

Selection ■ x

X.XX.XX

X.XXX

X.XXXX

Factory setting

X.X

Additional information

Read access	Operator
Write access	Maintenance

Separator

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Display \rightarrow Separator

Prerequisite The device has a local display.

Description Select decimal separator for displaying numerical values.

Selection •

.

Factory setting

Additional information

Read access	Operator
Write access	Maintenance

Number format

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Display \rightarrow Number format

Prerequisite The device has a local display.

Description Choose number format for the display.

Selection • Decimal

• ft-in-1/16"

Factory setting Decimal

Additional information

Read access	Operator	
Write access	Maintenance	ĺ

The **ft-in-1/16"** option is only valid for distance values.

Header 🔯

Navigation $\blacksquare \blacksquare$ Setup \rightarrow Advanced setup \rightarrow Display \rightarrow Header

Prerequisite The device has a local display.

Description Select header contents on local display.

Selection ■ Device tag ■ Free text

Factory setting Device tag

Additional information

Read access	Operator
Write access	Maintenance

Meaning of the options

Device tag

The header contents is defined in the **Device tag** parameter ($\rightarrow \implies 314$).

Free text

The header contents is defined in the **Header text** parameter ($\rightarrow \triangleq 299$).

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Display \rightarrow Header text

Prerequisite Header (→ 🖺 299) = Free text

Description Enter display header text.

Factory setting TG-Platform

Additional information

Read access	Operator
Write access	Maintenance

Display interval

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Display \rightarrow Display interval

Description Set time measured values are shown on display if display alternates between values.

User entry 1 to 10 s

Factory setting 5 s

Additional information

Read access	Operator
Write access	Operator

Display damping

Navigation Setup \rightarrow Advanced setup \rightarrow Display \rightarrow Display damping

Prerequisite The device has a local display.

Description Set display reaction time to fluctuations in the measured value.

User entry 0.0 to 999.9 s

Factory setting 0.0 s

Additional information

Read access	Operator
Write access	Maintenance

Backlight

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Display \rightarrow Backlight

Prerequisite The device has a local display.

Description Switch the local display backlight on and off.

Selection • Disable

■ Enable

Factory setting Enable

Additional information

Read access	Operator
Write access	Operator

Contrast display

Navigation Setup \rightarrow Advanced setup \rightarrow Display \rightarrow Contrast display

Prerequisite The device has a local display.

Description Adjust local display contrast setting to ambient conditions (e.g. lighting or reading angle).

User entry 20 to 80 %

Factory setting 30 %

Additional information

Read access	Operator
Write access	Operator

"System units" submenu

Navigation

Units preset

Navigation

Description Defines a set of units for length, pressure and temperature.

Selection ■ mm, bar, °C

- m, bar, °C
- mm, PSI, °C
- ft, PSI, °F
- ft-in-16, PSI, °F
- ft-in-8, PSI, °F
- Customer value

Factory setting

mm, bar, °C

Additional information

Read access	Operator
Write access	Maintenance

If the **Customer value** option is selected, the units are defined in the following parameters:

- Distance unit (\rightarrow 🖺 302)
- Pressure unit (\rightarrow 🖺 303)
- Temperature unit (→ 🖺 303)
- Density unit (\rightarrow 🖺 303)

In any other case these are read-only parameters used to indicate the respective unit.

Distance unit

Navigation

Description Select distance unit.

Selection **US** units SI units ■ ft

■ cm

m

■ mm ■ in ■ ft-in-16

■ ft-in-8

Factory setting mm

Additional information

Read access	Operator
Write access	Maintenance (if Units preset (→ 🖺 178) = Customer value)

Pressure unit

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow System units \rightarrow Pressure unit

Description Select process pressure unit.

Selection SI units US units Other units

bar psi
 inH2O
 Pa
 inH2O (68°F)
 kPa
 ftH2O (68°F)
 MPa
 mbar a
 mmH2O
 mmHq

Factory setting bar

Additional information Read access

 Read access
 Operator

 Write access
 Maintenance (if Units preset (→ 🖺 178) = Customer value)

Temperature unit

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow System units \rightarrow Temperature unit

Description Select temperature unit.

Selection SI units US units

• °C • K • °R

Factory setting °C

Additional information

 Read access
 Operator

 Write access
 Maintenance (if Units preset (→ 🖺 178) = Customer value)

Density unit

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow System units \rightarrow Density unit

Description Select density unit.

SelectionSI unitsUS unitsOther units• g/cm^3 • lb/ft^3 • $^{\circ}API$ • g/ml• lb/gal (us)• SGU

kg/dm³
 kg/m³

Factory setting

kg/m³

Additional information

Read access	Operator
Write access	Maintenance (if Units preset (→ 🖺 178) = Customer value)

"Date / time" submenu

Navigation $\blacksquare \Box$ Setup \rightarrow Advanced setup \rightarrow Date / time

Date/time

Navigation Setup \rightarrow Advanced setup \rightarrow Date / time \rightarrow Date/time

Description Displays the device internal real time clock.

Additional information

Read access	Operator
Write access	-

Set date

Navigation \square Setup \rightarrow Advanced setup \rightarrow Date / time \rightarrow Set date

Description Controls the setting of the real-time clock.

Selection • Please select

Abort

Start

■ Confirm time

Factory setting Please select

Additional information

Read access	Operator
Write access	Maintenance

Meaning of the options

■ Please select

Prompts the user to select an action.

Abort

Discards the entered date and time.

Start

Starts the setting of the real time clock.

Confirm time

Sets the real-time clock to the entered date and time.

Year

Navigation

Prerequisite Set date (→ 🗎 305) = Start

Description Enter the current year.

User entry 2 016 to 2 079

Factory setting 2 016

Additional information

Read access	Operator
Write access	Maintenance

Month

Navigation \square Setup \rightarrow Advanced setup \rightarrow Date / time \rightarrow Month

Prerequisite Set date (\rightarrow \cong 305) = Start

Description Enter the current month.

User entry 1 to 12

Factory setting 1

Additional information

Read access	Operator
Write access	Maintenance

Day 🗈

Navigation \square Setup \rightarrow Advanced setup \rightarrow Date / time \rightarrow Day

Prerequisite Set date (\rightarrow \cong 305) = Start

Description Enter the current day.

User entry 1 to 31

Factory setting 1

Additional information

Read access	Operator
Write access	Maintenance

Hour

Navigation \square Setup \rightarrow Advanced setup \rightarrow Date / time \rightarrow Hour

Prerequisite Set date (\rightarrow \cong 305) = Start

Description Enter the current hour.

User entry 0 to 23

Factory setting 0

Additional information

Read access	Operator
Write access	Maintenance

Minute ©

Prerequisite Set date (\rightarrow 🗎 305) = Start

Description Enter the current minute.

User entry 0 to 59

Factory setting 0

Additional information

Read access	Operator
Write access	Maintenance

"SIL confirmation" wizard

■ The **SIL confirmation** wizard is only available for devices with SIL or WHG approval (Feature 590: "Additional Approval", option LA: "SIL" or LC: "WHG overfill prevention") which are currently **not** in the SIL- or WHG-locked state.

■ The **SIL confirmation** wizard is required to lock the device according to SIL or WHG. For details refer to the "Functional Safety Manual" of the respective device, which describes the locking procedure and the parameters of this wizard.

Navigation

"Deactivate SIL/WHG" wizard

- The **Deactivate SIL/WHG** wizard is only available for devices with SIL or WHG approval (Feature 590: "Additional Approval", option LA: "SIL" or LC: "WHG overfill prevention") which are currently in the SIL- or WHG-locked state.
- The **Deactivate SIL/WHG** wizard is required to undo the locking of the device according to SIL or WHG. For details refer to the "Functional Safety Manual" of the respective device, which describes the locking procedure and the parameters of this wizard.

Navigation

Setup → Advanced setup → Deactivate SIL/WHG

"Administration" submenu

Navigation \square Setup \rightarrow Advanced setup \rightarrow Administration

Define access code

Navigation \square Setup \rightarrow Advanced setup \rightarrow Administration \rightarrow Define access code

Description Define release code for write access to parameters.

User entry 0 to 9 999

Factory setting 0

Additional information

Read access	Operator
Write access	Maintenance

- If the factory setting is not changed or 0 is defined as the access code, the parameters are not write-protected and the configuration data of the device can then always be modified. The user is logged on in the *Maintenance* role.
- The write protection affects all parameters marked with the symbol in this document.
- Once the access code has been defined, write-protected parameters can only be modified if the access code is entered in the **Enter access code** parameter.

Device reset

Navigation \blacksquare Setup \rightarrow Advanced setup \rightarrow Administration \rightarrow Device reset

Description Reset the device configuration - either entirely or in part - to a defined state.

Selection • Cancel

To fieldbus defaults
To factory defaults
Restart device

Factory setting Cancel

Additional information

Read access	Operator
Write access	Maintenance

^{**} Visibility depends on communication

15.4 "Diagnostics" menu

Navigation

Diagnostics

Actual diagnostics

Navigation

Description

Shows the current occured diagnostic event along with its diagnostic information.

Additional information

Read access	Operator
Write access	-

The display consists of:

- Symbol for event behavior
- Code for diagnostic behavior
- Operating time of occurrence
- Event text
- If several messages are active at the same time, the messages with the highest priority is displayed.
- Information on what is causing the message, and remedy measures, can be viewed via the ③ symbol on the display.

Timestamp

Navigation

□ □ Diagnostics → Timestamp

Description

Displays the timestamp for the currently active diagnostic message.

Additional information

Read access	Operator
Write access	-

Previous diagnostics

Navigation

 \square Diagnostics \rightarrow Previous diagnostics

Description

Shows the diagnostic event that occurred prior to the current diagnostic event along with its diagnostic information.

Additional information

Read access	Operator
Write access	-

The display consists of:

- Symbol for event behavior
- Code for diagnostic behavior
- Operating time of occurrence
- Event text
- If several messages are active at the same time, the messages with the highest priority is displayed.
- Information on what is causing the message, and remedy measures, can be viewed via the (i) symbol on the display.

Timestamp

Description Shows the timestamp of the previous diagnostic message.

Additional information

Read access	Operator
Write access	-

Operating time from restart

Navigation \square Diagnostics \rightarrow Operating time from restart

Description Shows the time the device has been in operation since the last device restart.

Additional information

Read access	Operator
Write access	-

Operating time

Navigation \blacksquare Diagnostics \rightarrow Operating time

Description Indicates how long the device has been in operation.

Additional information

Read access	Operator
Write access	-

Date/time

Navigation \square Diagnostics \rightarrow Date/time

Description Displays the device internal real time clock.

Additional information

Read access	Operator
Write access	-

15.4.1 "Diagnostic list" submenu

Navigation \Box Diagnostics \rightarrow Diagnostic list

Diagnostics 1 to 5

Navigation Diagnostics \rightarrow Diagnostic list \rightarrow Diagnostics 1 to 5

Description Display the current diagnostics messages with the highest to fifth-highest priority.

Additional information The display consists of:

Symbol for event behaviorCode for diagnostic behaviorOperating time of occurrence

■ Event text

Timestamp 1 to 5

Navigation □ Diagnostics → Diagnostic list → Timestamp

Description Timestamp of the diagnostic message.

15.4.2 "Device information" submenu

Navigation \square Diagnostics \rightarrow Device information

Device tag

Navigation \Box Diagnostics \rightarrow Device information \rightarrow Device tag

Description Shows the device tag.

Factory setting NMS8x

Additional information

Read access	Operator
Write access	-

Serial number

Navigation $\blacksquare \Box$ Diagnostics \rightarrow Device information \rightarrow Serial number

Description Shows the serial number of the measuring device.

Additional information

Read access	Operator
Write access	-

Firmware version

Navigation \blacksquare Diagnostics \rightarrow Device information \rightarrow Firmware version

Description Shows the device firmware version installed.

Additional information

Read access	Operator
Write access	-

Firmware CRC

Navigation \blacksquare Diagnostics \rightarrow Device information \rightarrow Firmware CRC

Description Result of the cyclic redundancy check of the firmware.

Additional information

Read access	Operator
Write access	-

Weight and measures configuration CRC

Navigation \Box Diagnostics \rightarrow Device information \rightarrow Weight and measures configuration CRC

Description Result of the cyclic redundancy check of the weights and measure relevant parameters.

Additional information

Read access	Operator
Write access	-

Device name

Navigation Diagnostics \rightarrow Device information \rightarrow Device name

Description Shows the name of the transmitter.

Additional information

Read access	Operator
Write access	-

Order code

Navigation \blacksquare Diagnostics \rightarrow Device information \rightarrow Order code

Description Shows the device order code.

Additional information

Read access	Operator
Write access	Service

Extended order code 1 to 3

Navigation \blacksquare Diagnostics \rightarrow Device information \rightarrow Extended order code 1

Description Display the three parts of the extended order code.

Additional information

Read access	Operator
Write access	Service

The extended order code indicates the selected option of all ordering features and thus uniquely identifies the device.

15.4.3 "Simulation" submenu

Read access Maintenance

Navigation Diagnostics → Simulation

Device alarm simulation

Navigation Diagnostics \rightarrow Simulation \rightarrow Device alarm simulation

Description Switch the device alarm on and off.

Selection Off

■ On

Factory setting Off

Additional information

Read access	Operator
Write access	Maintenance

Diagnostic event simulation

Navigation Diagnostics → Simulation → Diagnostic event simulation

Description Select a diagnostic event to simulate this event.

Selection The diagnostic events of the device

Factory setting Off

Additional information

Read access	Operator
Write access	Maintenance

To terminate the simulation, select **Off**.

Simulation distance on

Navigation Diagnostics \rightarrow Simulation \rightarrow Simulation distance on

Description Switches the distance simulation on or off.

Selection Off

■ On

Factory setting

Off

Additional information

Read access	Operator
Write access	Maintenance

Simulation distance

Navigation $\blacksquare \Box$ Diagnostics \rightarrow Simulation \rightarrow Simulation distance

Description Defines the distance value to be simulated.

User entry Signed floating-point number

Factory setting 0 mm

Additional information

Read access	Operator
Write access	Maintenance

Current output simulation

Navigation \blacksquare Diagnostics \rightarrow Simulation \rightarrow Current output 1 simulation

Prerequisite ■ The device has an Anlog I/O module.

■ Operating mode (→ 🖺 206) = 4..20mA output or HART slave +4..20mA output

Description Switches the simulation of the current on or off.

Selection ■ Off

On

Factory setting Off

Additional information

Read access	Operator
Write access	Maintenance

Simulation value

Navigation $\blacksquare \Box$ Diagnostics \rightarrow Simulation \rightarrow Simulation value

Prerequisite Current output simulation (→ 🗎 318) = On

Description Defines the current to be simulated.

User entry 3.4 to 23 mA

Factory setting The current at the time the simulation was started.

Additional information

Read access	Operator
Write access	Maintenance

15.4.4 "Device check" submenu

Navigation \Box Diagnostics \rightarrow Device check

Result drum check

Navigation \Box Diagnostics \rightarrow Device check \rightarrow Result drum check

Description Gives feedback on the latest status of the commissioning check.

Additional information

Read access	Operator
Write access	-

"Commissioning check" wizard

Commissioning check		
Navigation	□ Diagnostics → D	evice check → Commissioning check → Commissioning check
Description	This sequence supports the sensor.	s checking of the hardware on sensor side and correct installation of
Additional information	Read access	Operator
	Write access	Maintenance
Result drum check		
Navigation		evice check \rightarrow Commissioning check \rightarrow Result drum check
Description	Gives feedback on the l	latest status of the commissioning check.
r		g
	Read access	Operator
Additional information	Read access Write access	
Additional information Step X / 11	Write access	
Additional information Step X / 11 Navigation	Write access □ Diagnostics → D	Operator -
Additional information	Write access □ Diagnostics → D	Operator - evice check → Commissioning check → Step X / 11

Index Proservo NMS80

Index

Symbols	Commissioning check (Wizard) 321
#blank# (Parameter) 195, 196	Communication (Submenu)
	Communication interface protocol (Parameter) 225
0 9	Communication interface protocol variant
0 % value (Parameter) 202, 210, 236	(Parameter)
100 % value (Parameter) 202, 211, 236	Communication status (Parameter) 195
	Compatibility mode (Parameter) 231
A	Configuration (Submenu) 226, 229, 234
Access status tooling (Parameter) 192	Contact type (Parameter)
Accessories	Contrast display (Parameter) 301
Communication specific	Covered tank (Parameter)
Service specific	CTSh (Submenu)
Actual diagnostics (Parameter)	CTSh correction value (Parameter) 267
Administration (Submenu)	CTSh mode (Parameter)
Advanced setup (Submenu)	Current output 1 simulation (Parameter) 318
Air density (Parameter)	Current output 2 simulation (Parameter) 318
Air temperature (Parameter) 168, 250	Current span (Parameter) 207
Air temperature source (Parameter) 249	D
Alarm (Submenu)	D
Alarm 1 input source (Parameter)	Damping factor (Parameter) 204, 214, 283
Alarm 2 input source (Parameter)	Date / time (Submenu)
Alarm hysteresis (Parameter) 283	Date/time (Parameter)
Alarm mode (Parameter)	Day (Parameter)
Alarm value (Parameter)	DD
Alarm value source (Parameter)	Deactivate SIL/WHG (Wizard)
Ambient pressure (Parameter)	Decimal places 1 (Parameter)
Analog I/O (Submenu) 206	Declaration of Conformity
Analog input 0% value (Parameter)	Define access code (Parameter)
Analog input 100% value (Parameter) 212	Deformation factor (Parameter)
Analog input source (Parameter) 208	Density (Submenu)
Analog IP (Submenu)	Density measurement mode (Parameter) 294
Any error (Parameter)	Density unit (Parameter)
Application	Density value (Parameter)
Residual risk	Designated use
Application (Submenu)	Device alarm simulation (Parameter)
Assign PV (Parameter)	Device check (Submenu)
Assign QV (Parameter)	Device Descriptions
Assign SV (Parameter)	Device ID (Parameter)
Assign TV (Parameter)	Device information (Submenu)
В	Device name (Parameter)
	Device replacement
Backlight (Parameter)	Device reset (Parameter)
Balance flag (Parameter)	Device tag (Parameter)
Baudrate (Parameter)	Diagnostic event simulation (Parameter) 317
Bottom level (Parameter)	Diagnostic events
Bottom level timestamp (Parameter)	Diagnostic information
Bus termination (Parameter)	FieldCare
С	Diagnostic list
Calibration (Submenu)	Diagnostic list (Submenu)
Calibration status (Parameter) 187, 189, 191	Diagnostic message
Calibration temperature (Parameter)	Diagnostics
CE mark	Symbols
Cleaning	Diagnostics (Menu)
Exterior cleaning	Diagnostics 1 to 5 (Parameter)
Clear alarm (Parameter)	Diagnostics event
Commissioning check (Parameter)	Digital input mapping (Submenu)
Commissioning check (Larameter)	

Proservo NMS80 Index

Digital input source (Darameter) 217	C
Digital input source (Parameter)	G
Digital input source 1 (Parameter)	Gauge command (Parameter) 162, 180
Digital input source 2 (Parameter)	Gauge command 0 (Parameter)
Digital Xx-x (Submenu)	Gauge command 1 (Parameter)
	Gauge command 2 (Parameter)
see Write protection switch	Gauge command 3 (Parameter) 223
Displacer (Submenu)	Gauge current (Parameter) 205
Displacer balance volume (Parameter) 289	Gauge status (Parameter)
Displacer diameter (Parameter) 288	GP 1 name (Parameter)
Displacer height (Parameter) 289	GP Value 1 (Parameter)
Displacer position (Parameter)	GP Value 2 (Parameter)
Displacer type (Parameter)	GP Value 3 (Parameter)
Displacer volume (Parameter) 289	GP Value 4 (Parameter)
Displacer weight (Parameter) 288	GP values (Submenu)
Display (Submenu)	,
Display damping (Parameter) 300	Н
Display interval (Parameter) 300	H alarm (Parameter) 281
Disposal	H alarm value (Parameter) 279
Distance (Parameter) 163, 168, 183, 184	Hardware write protection
Distance unit (Parameter)	HART date code (Parameter)
Document	HART descriptor (Parameter)
Function 4	HART Device(s) (Submenu)
Document function	HART devices (Submenu)
Drum calibration (Parameter)	HART message (Parameter)
Drum calibration (Wizard)	HART output (Submenu)
Drum circumference (Parameter)	HART short tag (Parameter)
Drum table point (Parameter)	Header (Parameter)
Druin table point (i arameter)	Header text (Parameter)
E	
Element position (Submenu)	HH alarm (Parameter)
Element position 1 to 24 (Parameter)	HH alarm value (Parameter)
Element temperature (Submenu)	HH+H alarm (Parameter)
Element temperature 1 to 24 (Parameter)	High stop level (Parameter)
Empty (Parameter)	Hour (Parameter)
Empty (Farameter)	HTMS (Submenu)
	HTMS mode (Parameter)
Maintenance	Hysteresis (Parameter)
Repair	HyTD (Submenu)
	HyTD correction value (Parameter)
Error event type (Parameter)	HyTD mode (Parameter) 261
Error value (Parameter) 210, 277	T
Event level	I
Explanation	Immersion depth (Parameter) 290
Symbols	Information (Submenu)
Event text	Input value (Parameter) 203, 210, 218
Expected SIL/WHG chain (Parameter)	Input value % (Parameter)
Extended order code 1 (Parameter)	Input value in mA (Parameter) 213
Exterior cleaning	Input value percent (Parameter) 214
F	Input/output (Submenu)
	T
Failure mode (Parameter) 209	L
Firmware CRC (Parameter)	L alarm (Parameter)
Firmware version (Parameter)	L alarm value (Parameter) 280
Fixed current (Parameter)	Language (Parameter)
Float swap mode (Parameter)	Level (Submenu)
Forget device (Parameter)	Level mapping (Parameter) 230
Forget device (Wizard)	Level source (Parameter)
Format display (Parameter) 296	Line impedance (Parameter) 231
	Linear expansion coefficient (Parameter) 268
	Liquid temp source (Parameter) 183, 248

Index Proservo NMS80

Liquid temperature (Parameter) 168, 249	Offset weight (Parameter)	86
LL alarm (Parameter)	One-time command status (Parameter) 1	64
LL alarm value (Parameter) 280	Operating elements	
LL+L alarm (Parameter) 282	Diagnostics message	31
Local display	Operating mode (Parameter) 195, 200, 206, 2	
see Diagnostics message	Operating time (Parameter)	
see In alarm condition	Operating time from restart (Parameter) 3	
Locking status (Parameter)	Operation (Menu)	
Low stop level (Parameter)	Operational safety	
Lower density (Parameter)	Order code (Parameter)	
Lower density offset (Parameter)	Output density (Parameter)	
Lower density timestamp (Parameter)	Output level (Parameter)	
Lower interface level (Parameter)	Output out of range (Parameter)	
Lower interface level timestamp (Parameter) 166	Output pressure (Parameter)	
Lower interface lever timestamp (i arameter) 100	Output simulation (Parameter)	
M	Output temperature (Parameter)	
Maintenance		
Make drum table (Parameter)	Output value (Parameter)	
Make low table (Parameter)	Output values (Parameter)	
	Output vapor temperature (Parameter)	
Manual air temperature (Parameter)	Overtension weight (Parameter) 2	85
Manual density (Parameter)	P	
Manual liquid temperature (Parameter) 248		г.
Manual profile level (Parameter)	P1 (bottom) (Parameter)	
Manual vapor temperature (Parameter)	P1 (bottom) manual pressure (Parameter) 2	
Manual water level (Parameter)	P1 (bottom) source (Parameter)	
Maximum probe temperature (Parameter) 203	P1 absolute / gauge (Parameter)	
Measured level (Parameter)	P1 offset (Parameter)	
Measured lower density (Parameter)	1 '	55
Measured materials	P3 (top) (Parameter)	
Measured middle density (Parameter) 171	P3 (top) manual pressure (Parameter) 2	
Measured upper density (Parameter) 171	P3 (top) source (Parameter) 2	
Menu	P3 absolute / gauge (Parameter) 2	
Diagnostics	P3 offset (Parameter) 2	
Operation	P3 position (Parameter) 2	57
Setup	Parity (Parameter) 2	26
Middle density (Parameter) 179	Percent of range (Parameter) 2	37
Middle density offset (Parameter) 292	Polling address (Parameter)	94
Middle Density Timestamp (Parameter) 172	Post gauge command (Parameter) 2	87
Minimum level (Parameter)	Pressure (Submenu)	54
Minimum pressure (Parameter) 273	Pressure unit (Parameter)	03
Minimum probe temperature (Parameter) 203	Previous diagnostics (Parameter) 3	10
Minute (Parameter)	Primary variable (PV) (Parameter) 2	37
Month (Parameter)	Probe position (Parameter) 2	
Motor status (Parameter)	Process condition (Parameter)	
Move displacer (Parameter) 184, 185	Process value (Parameter) 201, 2	
Move displacer (Wizard)	Process variable (Parameter) 202, 2	
Move distance (Parameter)	Product safety	
(Profile average density (Parameter)	
N	Profile density (Submenu)	
Net weight (Parameter)	Profile density 0 to 49 (Parameter)	
NMT element values (Submenu) 169	Profile density interval (Parameter)	
No. of preambles (Parameter)		95
Number format (Parameter) 299	Profile density offset distance (Parameter) 2	
Number of devices (Parameter)	Profile density position 0 to 49 (Parameter) 1	
(Profile density timestamp (Parameter)	
0	Profile point (Parameter)	
Observed density (Parameter) 170, 252	Progress (Parameter)	
Observed density source (Parameter)	PV mA selector (Parameter)	
Offset calibration (Parameter)	PV source (Parameter)	
,	i v source (r arameter)	1 4

Proservo NMS80 Index

Q	Configuration
Quaternary variable (QV) (Parameter) 241	CTSh
	Date / time
R	Density
Readback value (Parameter)	Device check
Recalibration	Device information
Reference calibration (Parameter)	Diagnostic list
Reference calibration (Wizard)	Digital input mapping
Reference position (Parameter)	Digital Xx-x
Remedial measures	Displacer
Calling up	Display
Closing	Element position
Repair concept	Element temperature
Replacing a device	GP values
Requirements for personnel	HART Device(s)
Result drum check (Parameter) 320, 321	HART devices
Return	HART output
RTD connection type (Parameter)	HTMS
RTD type (Parameter)	HyTD
S	Input/output
Safety distance (Parameter)	Level
Safety instructions	NMT element values
Basic	Pressure
Safety settings (Submenu)	Profile density
Secondary variable (SV) (Parameter)	Safety settings
Sensor calibration (Parameter)	Sensor config
Sensor calibration (Wizard)	Simulation
Sensor config (Submenu)	Spot density
Separator (Parameter)	System units
Serial number (Parameter)	Tank calculation
Set date (Parameter)	Tank configuration
Set high weight (Parameter) 190	Temperature
Set level (Parameter)	V1 input selector
Set low weight (Parameter)	Wiredrum
Setup (Menu)	Submersion depth (Parameter) 293
SIL confirmation (Wizard)	System components
Simulation (Submenu)	System polling address (Parameter) 234
Simulation distance (Parameter)	System units (Submenu)
Simulation distance on (Parameter)	
Simulation value (Parameter)	T
Slow hoist zone (Parameter) 285	Tank calculation (Submenu)
Span calibration (Parameter)	Tank configuration (Submenu) 244
Span weight (Parameter)	Tank level (Parameter) 165, 181, 245
Spot density (Submenu)	Tank Level % (Parameter)
Standby level (Parameter)	Tank reference height (Parameter) 181, 245
Starting level (Parameter)	Tank ullage (Parameter)
Status signals	Tank ullage % (Parameter)
Step X / 11 (Parameter)	Temperature (Submenu)
Stilling well (Parameter)	Temperature unit (Parameter)
Submenu	Tertiary variable (TV) (Parameter)
Administration	Timestamp (Parameter)
Advanced setup	Trouble shooting
Alarm	U
Analog I/O	_
Analog IP	Undertension weight (Parameter)
Application	Upper density (Parameter)
Calibration	Upper density offset (Parameter)
Communication	opper density offset (1 arameter)

Index Proservo NMS80

, ,	166 166
r,	232 297 233 253 250
Water level (Parameter)	246
Wire weight (Parameter) Wiredrum (Submenu) Wizard Commissioning check Deactivate SIL/WHG Drum calibration Forget device Move displacer	291 321 308 190 199 184 188 186 308 11
Y Year (Parameter)	305
Z Zero calibration (Parameter)	187

www.addresses.endress.com