Prowirl 70, 77 Proline Prowirl 72 and 73 Vortex Flow Measuring System

Instructions for Conversion

Contents

Contents
Notes on conversion and ordering, Prowirl 72
Parameters to be read out for conversion, Prowirl 77 to Prowirl 725
Notes on conversion and ordering, Prowirl 7312
Parameters to be read out for conversion, Prowirl 77 to Prowirl 7314
Prowirl 72 parameters to be read out for conversion to Prowirl 73
Documentation to be used
Prowirl 77W, 77F compact version (standard temperature) to Proline Prowirl 72 compact version
Prowirl 77W, 77F, 77H compact version (high/low temperature and high pressure) to Proline Prowirl 72 compact version
Prowirl 77F, 77H compact version to Proline Prowirl 73 compact version25
Prowirl 70H compact version to Proline Prowirl 72 compact version
Prowirl 77W, 77F compact version (standard temperature) to Proline Prowirl 72 remote version
Prowirl 77W, 77F compact version (standard temperature) to Proline Prowirl 72 remote version
Prowirl 77W, 77F compact version (standard temperature) to Proline Prowirl 72 remote version
Prowirl 77W, 77F compact version (standard temperature) to Proline Prowirl 72 remote version
Prowirl 77W, 77F compact version (standard temperature) to Proline Prowirl 72 remote version
Prowirl 77W, 77F compact version (standard temperature) to Proline Prowirl 72 remote version
Prowirl 77W, 77F compact version (standard temperature) to Proline Prowirl 72 remote version
Prowirl 77W, 77F compact version (standard temperature) to Proline Prowirl 72 remote version30Prowirl 77W, 77F, 77H compact version (high/low temperature and high pressure) to Proline Prowirl 72 remote version35Prowirl 77F, 77H compact version to Proline Prowirl 73 remote version35Prowirl 70F compact version to Proline Prowirl 72 remote version35Proline Prowirl 72 compact version to Proline Prowirl 72 remote version (non-Ex)41Proline Prowirl 73 compact version to Proline Prowirl 73 remote version (non-Ex)41Proline Prowirl 72 compact version to Proline Prowirl 73 remote version (non-Ex)41Proline Prowirl 72 compact version to Proline Prowirl 73 remote version (non-Ex)41Proline Prowirl 72 compact version to Proline Prowirl 73 remote version (non-Ex)41Proline Prowirl 73 compact version to Proline Prowirl 73 remote version (and the proving 73 remote version (Ex-d (XP), Ex-i (IS))45Proline Prowirl 73 remote version (Ex-d (XP), Ex-i (IS))45
Prowirl 77W, 77F compact version (standard temperature) to Proline Prowirl 72 remote version

Notes on conversion and ordering, Prowirl 72

You must read these notes on conversion and ordering before proceeding, because you must provide certain information when ordering.

Selecting the conversion kit (see table):

Invariably, a distinction has to be drawn between conversion of a Prowirl 77W, 77F or 70H, 77H (to a Proline Prowirl 72) and the conversion of a Proline Prowirl 72 (compact version to remote version).

In order to convert a Prowirl 77W or 77F, you need the order code quoted on the nameplate of the transmitter so that you can select the correct conversion kit. A number of conversion kits are available; the distinguishing features are the temperature range and the seal. An asterisk (*) in the order code quoted in the table indicates information that is not relevant with regard to selecting the conversion kit.

There is only one conversion kit for converting a Prowirl 70H or 77H respectively.

The differences between the kits for converting a Proline Prowirl 72 compact version to remote version are the cable lengths and the design of the cable gland.

Conversion options, Prowirl 77 / Proline Prowirl 72	Nameplate Transmitter	Order structure for conversion kit / comments
 Prowirl 70H compact version to Proline Prowirl 72 compact version → Use the Instructions for Conversion on page 25. Prowirl 70H remote version to Proline Prowirl 72 remote → Use the Instructions for Conversion on page 35. Note This conversion is not allowable for devices with FM or CSA approvals. 	70H***_*0*****A*** B C M	DK7UP-6A (currently not available) The Proline Prowirl 72XXX transmitter has to be ordered separately.
 Prowirl 77W or 77F compact version (standard temperature) to Proline Prowirl 72 compact version → Use the Instructions for Conversion on Page 21. Prowirl 77W or 77F compact version (standard temperature) to Proline Prowirl 72 remote → Use the Instructions for Conversion on Page 30. 	77W***-*A0**A0* F B2 C3 C3 D F6 E 7 F G M P Q	DK7UP-11 The Proline Prowirl 72XXX transmitter has to be ordered separately.
 Prowirl 77W or 77F K compact version (high/low temperature) to Proline Prowirl 72 compact version → Use the Instructions for Conversion on Page 25. Prowirl 77W or 77F K compact version (high/low temperature) to Proline Prowirl 72 remote → Use the Instructions for Conversion on Page 35. 	77W***-*A0**A1* F B2 C C3 D F6 E 7 F G M P Q	DK7UP-1A (with graphite seal) DK7UP-1B (with Viton seal) DK7UP-1C (with Kalrez seal) DK7UP-1F (with Gylon seal) The Proline Prowirl 72XXX transmitter has to be ordered separately.
 Prowirl 77H compact version (high pressure) to Proline Prowirl 72 compact version → Use the Instructions for Conversion on Page 25. Prowirl 77H compact version (high pressure) to Proline Prowirl 72 remote → Use the Instructions for Conversion on Page 35. 	77H***-**0**A** 2 C 3 D 6 E 7 F G M P Q	DK7UP–2A The Proline Prowirl 72XXX transmitter has to be ordered separately.

Note Note

• Invariably, devices ordered in compliance with the Pressure Equipment Directive (PED 97/23/EC) must be converted by Endress+Hauser Flowtec.

- Conversion work on meters with PROFIBUS or FOUNDATION Fieldbus communication should be performed by Endress+Hauser Service.
- Devices with FM or CSA approval must be converted by Endress+Hauser Flowtec or Endress+Hauser Service only.
- Reading out the parameters of the Prowirl 70H version is NOT described in this conversion instructions. For this reason this conversion including the programming of the device has to be done exclusively by the Endress and Hauser Service

Conversion options, Proline Prowirl 72	Nameplate Transmitter	Order structure for conversion kit / comments
 Proline Prowirl 72 compact version to Proline Prowirl 72 remote (non-Ex) → Use the Instructions for Conversion on Page 41. Note This conversion is also possible for measuring devices ordered in compliance with the Pressure Equipment Directive (PED 97/23/EC). 	72***-****** AA**** AJ	DK7UP-EA DK7UP-AB DK7UP-FA DK7UP-FB it is not necessary to order a Proline Prowirl72XXX transmitter.
 Proline Prowirl 72 compact version to Proline Prowirl 72 remote (Ex-i (IS), Ex-d (XP)) → Use the Instructions for Conversion on Page 45. Note Only Endress+Hauser Flowtec is permitted to perform this conversion on devices ordered in compliance with the Pressure Equipment Directive (PED 97/23/EC). Conversion work on meters with PROFIBUS or FOUNDATION Fieldbus communication should be performed by Endress+Hauser Service. Devices with FM or CSA approval must be converted by Endress+Hauser Flowtec or Endress+Hauser Service only. 	72****_********************************	The Proline Prowirl72XXX transmitter (including transmitter connection housing) has to be ordered separately. 7 2 *** - ****** CE**** DF H N P 1 2 3

Parameters to be read out for conversion, Prowirl 77 to Prowirl 72

You must read out the principal parameters/settings in order to ensure that the device can continue to operate with the original basic configuration after conversion. Read out the parameters/settings listed in the table and re-use these values to commission the Proline Prowirl 72.

🔊 Note

- You will find a complete list of all readable parameters and their settings in the Operating Instructions for the Prowirl 77 HART (BA032D/06/en).
- You will find more information on the functions of the Prowirl 72 in the section entitled "Description of device functions" in the Operating Instructions of the Prowirl 72 (BA00084D/06/EN).

Reading out parameters on the local display or the HART handheld and reading the nameplate:

	Parameters, Prowirl 77				Parameters, Prowirl 72			
	Value to be read out	Local display	HART handheld	Value read out Value		Value to be entered	In parameter	
1	Process temperature	Fu 64	Ave. process temp.		\rightarrow		OPERATING TEMPERATURE	
2	K-factor sensor	CALF	K-factor		\rightarrow		K-FACTOR	
3	Read the order code/serial nu serial number against the tabl	mber on the names on Page 8 ff.	eplate of the Prowirl 77. Cl to identify the type of Mete	heck the order code/ r Body Type (MB).	\rightarrow		METER BODY TYPE MB	
4	Expansion coefficient	Fu 63	Body expan. coeff.		\rightarrow		TEMPERATURE COEFFICIENT	
5	Amplifikation	Fu 65	Ampl. Gain	1 = 1 2 = 2 normal = 3 3 = 4	\rightarrow		AMPLIFICATION	
6	Application	APPL	Fluid	LI = Liquid GAS = Gas	\rightarrow		APPLICATION	
	See explanatory notes on "Se	lecting the unit f	or flow" on Page 6					
7	Flow unit	UNIT	FLOW UNIT		\rightarrow		UNIT FLOW	
8	Do not read out unless the UNIT or FLOW UNIT parameter = 15, see explanatory notes on "The "FACTOR ARBITRARY VOLUME UNIT" parameter" on 8 Page 7				FACTOR ARBITRARY VOLUME UNIT			
	User defined unit flow rate	Fu 12	Flow user unit		\rightarrow			
	See explanatory notes on "Se	lecting the unit f	or the totalizer" on Page 6					
9	Totalizer unit	Fu 11	Tot. unit		\rightarrow		UNIT TOTALIZER	
10	Output signal	Fu 20	Not HART-compatible		\rightarrow	Depends on the self 4-20 \rightarrow CURREN PULSE \rightarrow MODE PF \rightarrow MODE (PFI	ection in the Prowirl 77: T RANGE (PULSE selected) M selected)	
Cu	rrent output		r	1				
11	Full scale value	F 5	PV URV		\rightarrow		VALUE 20 mA	
12	Time-constant	Fu 22	PV Damping		\rightarrow		TIME CONSTANT	
13	Failsafe mode	Fu 23	AO Alarm type		\rightarrow		FAILSAFE MODE	
Pu	lse output		r	T	r			
14	Pulse value	PSCA	Not HART-compatible		\rightarrow		PULSE VALUE	
15	Pulse width	Fu 31	Not HART-compatible		\rightarrow		PULSE WIDTH	

Commissioning the Proline Prowirl 72

Use the values noted in the table above for commissioning. Begin by entering the values you read out for parameters 1 to 6 or, as applicable, 7 (see "Selecting the unit for flow") directly into the corresponding parameters of the Prowirl 72.

Then start the Quick Setup routine of the Prowirl 72 and, when prompted, enter the parameter settings you read out beforehand.

Selecting the unit for flow

You can read the unit used by the Prowirl 77 in numerical form only in the UNIT (local display) or FLOW UNIT (HART) parameter.

The table below lists the units in question and outlines the rest of the procedure for transfer to the FLOW UNIT parameter of the Prowirl 72:

Value, UNIT / FLOW UNIT	Unit, Prowirl 77		Unit Prowirl 72	Enter through:
0	dm³/s	\rightarrow	dm³/s	Quick Setup
1	dm³/min	\rightarrow	dm³/min	Quick Setup
2	dm³/h	\rightarrow	dm³/h	Quick Setup
3	m³/s	\rightarrow	m³/s	Quick Setup
4	m³/min	\rightarrow	m³/min	Quick Setup
5	m³/h	\rightarrow	m³/h	Quick Setup
6	ACFS	\rightarrow	ft³/s	Quick Setup
7	ACFM	\rightarrow	ft³/min	Quick Setup
8	ACFH	\rightarrow	ft³/h	Quick Setup
9	IGPS	\rightarrow	imp gal/s	Quick Setup
10	IGPM	\rightarrow	imp gal/min	Quick Setup
11	IGPH	\rightarrow	imp gal/h	Quick Setup
12	gps	\rightarrow	gal/s	Quick Setup
13	gpm	\rightarrow	gal/min	Quick Setup
14	gph	\rightarrow	gal/h	Quick Setup
15	USER	\rightarrow	See Page 7, explanatory ARBITRARY VOLU	remarks: The "FACTOR JME UNIT" parameter

 $\begin{array}{c} \rightarrow \\ \rightarrow \end{array}$

Selecting the unit for the totalizer

You can read the unit used by the Prowirl 77 in numerical form only in the Fu 11 (local display) or Tot. unit (HART) parameter. The table below lists the units in question and outlines the rest of the procedure for transfer to the TOTALIZER UNIT parameter of the Prowirl 72:

Value, UNIT / FLOW UNIT	Unit, Prowirl 77
0	dm³
1	m³
2	ACF
3	lgallons
4	gallons
5	USER

Unit Prowirl 72	Enter through:			
dm ³	Quick Setup			
m ³	Quick Setup			
ft ³	Quick Setup			
imp gal	Quick Setup			
gal	Quick Setup			
Suitable unit	Quick Setup			

The "FACTOR ARBITRARY VOLUME UNIT" parameter

If the UNIT or FLOW UNIT parameter of the Prowirl 77 is set to a value of 15, flow is computed by application of a factor. This factor is based on 1 dm³/s and expresses the quantity of the units in question that equal one "dm³/s".

The factor is employed to calculate a customer-defined unit of mass or corrected volume.

The unit that the Prowirl 77 displays (for example, kg/h) is stated on the adhesive label affixed to the local display.

You have two options at your disposal for working with the same unit with the Prowirl 72:

1. Operational density or operational and reference densities are known:

- The factor in the "Fu 12" or "Flow user unit" parameter of the Prowirl 77 does not have to be read out.
- Use Quick Setup for parameterization
- Go to the TYPE OF FLOW UNIT parameter and select CALCULATED MASS FLOW or CORRECTED VOLUME FLOW.
- When prompted to do so in Quick Setup, select the desired unit ad enter the optional density or the operational and reference densities.

$\int Caution!$

The "Calculated mass flow" and "Corrected volume flow" unit types are calculated with fixed values (the OPERATIONAL DENSITY and REFERENCE DENSITY you entered). Consequently, do not select these two unit types unless the process conditions are known and are unchanging.

2. Using the factor defined in the Prowirl 77:

- Read the setting of the "Fu 12" or "Flow user unit" parameter of the Prowirl 77.
- Use this factor and the unit used by the Prowirl 77 (see the label affixed to the local display) to calculate the factor for the FACTOR FREE VOLUME UNIT parameter of the Prowirl 72 as follows:

Divide the factor you read out by 1 (for units per second, for example kg/s) or by 60 (for units per minute, e.g. kg/min) or by 3600 (for units per hour, e.g. kg/h).

Example:

The Prowirl 77 shows flow in kg/h.

The value of the "Fu 12" or "Flow user unit" parameter of the Prowirl 77 is 2.128^{-1} .

 $2.128^{-1}: 3600 = 0.2128: 3600 = 0.0059$

- In the TYPE UNIT FLOW parameter, select \rightarrow VOLUME FLOW.
- Enter the value calculated in this way (in this worked example 0.0059) as the setting for the FACTOR FREE VOLUME UNIT parameter.
- Enter the name of the unit (without the unit of time) as the setting for the TEXT FREE VOLUME UNIT parameter (in this worked example kg).
- In the UNIT FLOW → parameter, select the text of the free volume unit (in this worked example kg) and the desired unit of time (in this worked example h).

Flow as calculated with the factor you selected in shown on the local display in the unit you specified (e.g. 1.4359 kg/h).

Ascertaining the type of Meter Body Type (MB)

In order to ascertain the type of Meter Body Type (MB), you must be able to quote the order code or the nominal diameter (DN) and in some instances the pressure class (PN) of the Prowirl 77.

This information is on the nameplate of the measuring device.

Check the nameplate and use the information to read off the MB value from the appropriate table (for the wafer, flange or high-pressure type, as applicable):

• Prowirl 77W (wafer):

Nameplate, Prowirl 77W	D	N	PN (connecting pipe)			MB
77WS15 - A******	15	1⁄2"	PN	10	\rightarrow	201
77WS15 - A******	15	1⁄2"	PN	16	\rightarrow	202
77WS15 - A******	15	1⁄2"	PN	25	\rightarrow	203
77WS15 - A******	15	1⁄2"	PN	40	\rightarrow	204
77WS15 - B******	15	1⁄2"	Cl. 150	Sch. 40	\rightarrow	205
77WS15 - B******	15	1⁄2"	Cl. 300	Sch. 40	\rightarrow	206
77WS15 - C******	15	1⁄2"	10 K	Sch. 40	\rightarrow	207
77WS15 - C******	15	1⁄2"	20 K	Sch. 40	\rightarrow	208
77WS25 - A******	25	1"	PN	10	\rightarrow	209
77WS25 - A******	25	1"	PN	16	\rightarrow	210
77WS25 - A******	25	1"	PN	25	\rightarrow	211
77WS25 - A******	25	1"	PN	40	\rightarrow	212
77WS25 - B******	25	1"	Cl. 150	Sch. 40	\rightarrow	213
77WS25 - B******	25	1"	Cl. 300	Sch. 40	\rightarrow	214
77WS25 - C******	25	1"	10 K	Sch. 40	\rightarrow	215
77WS25 - C******	25	1"	20 K	Sch. 40	\rightarrow	216
77WS40 - A******	40	11⁄2"	PN	10	\rightarrow	217
77WS40 - A******	40	11⁄2"	PN 16		\rightarrow	218
77WS40 - A******	40	11⁄2"	PN 25		\rightarrow	219
77WS40 - A******	40	11⁄2"	PN 40		\rightarrow	220
77WS40 - B******	40	11⁄2"	Cl. 150	Sch. 40	\rightarrow	221
77WS40 - B******	40	11⁄2"	Cl. 300	Sch. 40	\rightarrow	222
77WS40 - C******	40	11⁄2"	10 K	Sch. 40	\rightarrow	223
$77WS40 - C^{*******}$	40	11⁄2"	20 K	Sch. 40	\rightarrow	224
$77WS50 - A^{*******}$	50	2"	PN	10	\rightarrow	225
77WS50 - A******	50	2"	PN 16		\rightarrow	226
77WS50 - A******	50	2"	PN 25		\rightarrow	227
77WS50 - A******	50	2"	PN	40	\rightarrow	228
$77WS50 - B^{*******}$	50	2"	Cl. 150	Sch. 40	\rightarrow	229
$77WS50 - B^{*******}$	50	2"	Cl. 300	Sch. 40	\rightarrow	230
$77WS50 - C^{*******}$	50	2"	10 K	Sch. 40	\rightarrow	231
$77WS50 - C^{*******}$	50	2"	20 K	Sch. 40	\rightarrow	232
77WS80 - A******	80	3"	PN	10	\rightarrow	233
77WS80 - A******	80	3"	PN	16	\rightarrow	234
77WS80 - A******	80	3"	PN	25	\rightarrow	235
77WS80 - A******	80	3"	PN	40	\rightarrow	236
77WS80 - B******	80	3"	Cl. 150	Sch. 40	\rightarrow	237
77WS80 - B******	80	3"	Cl. 300	Sch. 40	\rightarrow	238
77WS80 - C******	80	3"	10 K	Sch. 40	\rightarrow	239
77WS80 - C******	80	3"	20 K	Sch. 40	\rightarrow	240
77WS1H – A******	100	4"	PN	10	\rightarrow	241
77WS1H – A******	100	4"	PN	16	\rightarrow	242
77WS1H – A******	100	4"	PN	25	\rightarrow	243

Nameplate, Prowirl 77W	D	N	PN (conne	cting pipe)		MB
77WS1H - A******	100	4"	PN	PN 40		244
77WS1H - B******	100	4"	Cl. 150	Sch. 40	\rightarrow	245
77WS1H - B******	100	4"	Cl. 300	Sch. 40	\rightarrow	246
77WS1H - C******	100	4"	10 K	Sch. 40	\rightarrow	247
77WS1H - C******	100	4"	20 K	Sch. 40	\rightarrow	248
77WS1F - A******	150	6"	PN 10		\rightarrow	249
$77WS1F-A^{\ast\ast\ast\ast\ast\ast}$	150	6"	PN 16		\rightarrow	250
77WS1F - A******	150	6"	PN 25		\rightarrow	251
77WS1F - A******	150	6"	PN 40		\rightarrow	252
$77WS1F - B^{*******}$	150	6"	Cl. 150	Sch. 40	\rightarrow	253
77WS1F - B******	150	6"	Cl. 300	Sch. 40	\rightarrow	254
77WS1F - C******	150	6"	10 K	Sch. 40	\rightarrow	255
77WS1F - C******	150	6"	20 K	Sch. 40	\rightarrow	256

• Prowirl 77F (flange):

Nameplate, Prowirl 77F	[DN .	Р	N		MB
77FS15 – 4******	15	1⁄2"	PN	40	\rightarrow	6
77FS15 – E******	15	1⁄2"	PN	40	\rightarrow	6
77FS15 - G******	15	1⁄2"	Cl. 150	Sch. 40	\rightarrow	10
77FS15 – H******	15	1⁄2"	Cl. 150	Sch. 80	\rightarrow	11
$77FS15 - J^{************************************$	15	1⁄2"	Cl. 300	Sch. 40	\rightarrow	12
77FS15 – K******	15	1⁄2"	Cl. 300	Sch. 80	\rightarrow	13
77FS15 – Q******	15	1⁄2"	10 K	Sch. 40	\rightarrow	16
77FS15 - R******	15	1⁄2"	10 K	Sch. 80	\rightarrow	17
77FS15 - S******	15	1⁄2"	20 K	Sch. 80	\rightarrow	19
77FS25 - 4******	25	1"	PN	40	\rightarrow	26
77FS25 – E******	25	1"	PN	40	\rightarrow	26
77FS25 – G******	25	1"	Cl. 150	Sch. 40	\rightarrow	30
77FS25 – H******	25	1"	Cl. 150	Sch. 80	\rightarrow	31
77FS25 – J******	25	1"	Cl. 300	Sch. 40	\rightarrow	32
77FS25 – K******	25	1"	Cl. 300	Sch. 80	\rightarrow	33
77FS25 – Q******	25	1"	10 K	Sch. 80	\rightarrow	37
77FS25 - R******	25	1"	20 K	Sch. 40	\rightarrow	38
77FS25 - S******	25	1"	20 K	Sch. 80	\rightarrow	39
$77FS40 - 4^{********}$	40	11⁄2"	PN	40	\rightarrow	46
77FS40 – E******	40	11⁄2"	PN	40	\rightarrow	46
$77FS40 - G^{*******}$	40	11⁄2"	Cl. 150	Sch. 40	\rightarrow	50
77FS40 – H******	40	11⁄2"	Cl. 150	Sch. 80	\rightarrow	51
$77FS40 - J^{*******}$	40	11⁄2"	Cl. 300	Sch. 40	\rightarrow	52
77FS40 - K******	40	11⁄2"	Cl. 300	Sch. 80	\rightarrow	53
77FS40 – Q******	40	11⁄2"	10 K	Sch. 80	\rightarrow	57
77FS40 - R******	40	11⁄2"	20 K	Sch. 40	\rightarrow	58
77FS40 - S******	40	11⁄2"	20 K	Sch. 80	\rightarrow	59
$77FS50 - 4^{************************************$	50	2"	PN	40	\rightarrow	66
77FS50 – E******	50	2"	PN	40	\rightarrow	66
77FS50 – G******	50	2"	Cl. 150	Sch. 40	\rightarrow	70
77FS50 – H******	50	2"	Cl. 150	Sch. 80	\rightarrow	71
$77FS50 - J^{*******}$	50	2"	Cl. 300	Sch. 40	\rightarrow	72
77FS50 - K******	50	2"	Cl. 300	Sch. 80	$ \rightarrow $	73

Nameplate, Prowirl 77F	D	N	Р	'N		MB
77FS50 - P******	50	2"	10 K	Sch. 40	\rightarrow	76
77FS50 - Q******	50	2"	10 K	Sch. 80	\rightarrow	77
77FS50 - R******	50	2"	20 K	Sch. 40	\rightarrow	78
77FS50 - S******	50	2"	20 K	Sch. 80	\rightarrow	79
77FS80-4******	80	3"	PN	40	\rightarrow	86
77FS80 - E******	80	3"	PN	f 40	\rightarrow	86
77FS80 - G******	80	3"	Cl. 150	Sch. 40	\rightarrow	90
77FS80 - H******	80	3"	Cl. 150	Sch. 80	\rightarrow	91
77FS80 - J******	80	3"	Cl. 300	Sch. 40	\rightarrow	92
77FS80 - K******	80	3"	Cl. 300	Sch. 80	\rightarrow	93
77FS80 - P******	80	3"	10 K	Sch. 40	\rightarrow	96
77FS80 - Q******	80	3"	10 K	Sch. 80	\rightarrow	97
77FS80 - R******	80	3"	20 K	Sch. 40	\rightarrow	98
77FS80 - S******	80	3"	20 K	Sch. 80	\rightarrow	99
77FS1H - 3******	100	4"	PN	16	\rightarrow	103
77FS1H – 4******	100	4"	PN	[40	\rightarrow	106
77FS1H – B******	100	4"	PN	16	\rightarrow	103
77FS1H – E******	100	4"	PN	40	\rightarrow	106
77FS1H – G******	100	4"	Cl. 150	Sch. 40	\rightarrow	110
77FS1H – H******	100	4"	Cl. 150	Sch. 80	\rightarrow	111
77FS1H – J******	100	4"	Cl. 300	Sch. 40	\rightarrow	112
77FS1H – K******	100	4"	Cl. 300	Sch. 80	\rightarrow	113
77FS1H – P******	100	4"	10 K	Sch. 40	\rightarrow	116
77FS1H – O******	100	4"	10 K	Sch. 80	\rightarrow	117
77FS1H – R******	100	4"	20 K	Sch. 40	\rightarrow	118
77FS1H – S******	100	4"	20 K	Sch. 80	\rightarrow	119
77FS1F – 3******	150	6"	PN	16	\rightarrow	123
77FS1F - 4******	150	6"	PN	40	\rightarrow	126
77FS1F – B******	150	6"	PN	16	\rightarrow	123
77FS1F - E******	150	6"	DN 40		\rightarrow	126
77FS1F - G******	150	6"	Cl. 150	Sch. 40	\rightarrow	130
77FS1F - H******	150	6"	Cl. 150	Sch. 80	\rightarrow	131
77FS1F – J******	150	6"	Cl 300	Sch. 40	\rightarrow	132
77FS1F - K******	150	6"	Cl. 300	Sch. 80	\rightarrow	133
77FS1F - P******	150	6"	10 K	Sch. 40	\rightarrow	136
77FS1F - 0******	150	6"	10 K	Sch 80	\rightarrow	137
77FS1F - R******	150	6"	20 K	Sch. 40	\rightarrow	138
77FS1F - S******	150	6"	20 K	Sch. 80	\rightarrow	139
77FS2H – A******	200	8"	PN	10	\rightarrow	141
77FS2H – B******	200	8"	PN	16	\rightarrow	143
77FS2H – D******	200	8"	PN	25)	144
77FS2H – E******	200	8"	PN	40	\rightarrow	146
77FS2H - G******	200	8"	C1 150	Sch 40	, j	150
77FS2H – I******	200	8"	C1 300	Sch 40	, j	150
77FS2H - P******	200	<u> </u>	10 K	Sch 40	Ĺ	156
77FS2H - R******	200	8"	20 K	Sch 40		150
77FS2F - Δ******	250	10"		10		150
77FS2F _ R******	250	10"	DN	16		162
77FS2F - D******	250	10"	DN	10		16/
77FS2F - F******	250	10"	PN	40	, ,	166
//10/41 L	230	10	11	10		100

Nameplate, Prowirl 77F	D	N	P	'n		MB
77FS2F - G******	250	10"	Cl. 150	Sch. 40	\rightarrow	170
77FS2F – J******	250	10"	Cl. 300	Sch. 40	\rightarrow	172
77FS2F – P******	250	10"	10 K	Sch. 40	\rightarrow	176
77FS2F - R******	250	10"	20 K	Sch. 40	\rightarrow	178
77FS3H – A******	300	12"	PN	10	\rightarrow	181
77FS3H – B******	300	12"	PN 16		\rightarrow	183
77FS3H - D******	300	12"	PN 25		\rightarrow	184
77FS3H – E******	300	12"	PN 40		\rightarrow	186
77FS3H – G******	300	12"	Cl. 150	Sch. 40	\rightarrow	190
77FS3H – J******	300	12"	Cl. 300	Sch. 40	\rightarrow	192
77FS3H - P******	300	12"	10 K	Sch. 40	\rightarrow	196
77FS3H - R******	300	12"	20 K	Sch. 40	\rightarrow	198

• Prowirl 77H (flange/high-pressure):

Nameplate, Prowirl 77H	DN		PN		MB
77HS15 - C******	15	1⁄2"	PN 160	\rightarrow	9
77HS15 - E******	15	1⁄2"	Cl. 600	\rightarrow	14
77HS15 - K******	15	1⁄2"	40 K	\rightarrow	20
77HS25 – B******	25	1"	PN 100	\rightarrow	28
77HS25 - C******	25	1"	PN 160	\rightarrow	29
77HS25 – E******	25	1"	Cl. 600	\rightarrow	34
77HS25 - K******	25	1"	40 K	\rightarrow	40
77HS40 - B******	40	11⁄2"	PN 100	\rightarrow	48
77HS40 - C******	40	11⁄2"	PN 160	\rightarrow	49
77HS40 - E******	40	11⁄2"	Cl. 600	\rightarrow	54
77HS40 - K******	40	11⁄2"	40 K	\rightarrow	60
77HS50 - A******	50	2"	PN 64	\rightarrow	67
77HS50 - B******	50	2"	PN 100	\rightarrow	68
77HS50 - C******	50	2"	PN 160	\rightarrow	69
77HS50 - E******	50	2"	Cl. 600	\rightarrow	74
77HS50 - K******	50	2"	40 K	\rightarrow	80
77HS80 – A******	80	3"	PN 64	\rightarrow	87
77HS80 - B******	80	3"	PN 100	\rightarrow	88
77HS80 - C******	80	3"	PN 160	\rightarrow	89
77HS80 - E******	80	3"	Cl. 600	\rightarrow	94
77HS80 - K******	80	3"	40 K	\rightarrow	100
77HS1H – A******	100	4"	PN 64	\rightarrow	107
77HS1H – B******	100	4"	PN 100	\rightarrow	108
77HS1H - C******	100	4"	PN 160	\rightarrow	109
77HS1H – E******	100	4"	Cl. 600	\rightarrow	114
77HS1H - K******	100	4"	40 K	\rightarrow	120
77HS1F – A******	150	6"	PN 64	\rightarrow	127
77HS1F - B*****	150	6"	PN 100	\rightarrow	128
77HS1F - C******	150	6"	PN 160	\rightarrow	129
$77HS1F-E^{\ast\ast\ast\ast\ast}$	150	6"	C1. 600	\rightarrow	134
77HS1F – K******	150	6"	40 K	\rightarrow	140

Notes on conversion and ordering, Prowirl 73

You must read these notes on conversion and ordering before proceeding, because you must provide certain information when ordering.

Selecting the conversion kit (see table):

Invariably, a distinction has to be drawn between conversion of a Prowirl 77F (to a Proline Prowirl 73) and the conversion of a Proline Prowirl 73 (compact version to remote version).

In order to convert a Prowirl 77F, you need the order code quoted on the nameplate of the transmitter so that you can select the correct conversion kit. A number of conversion kits are available; the distinguishing features are the temperature range and the seal. An asterisk (*) in the order code quoted in the table indicates information that is not relevant with regard to selecting the conversion kit.

The differences between the kits for converting a Proline Prowirl 73 compact version to remote version are the cable lengths and the design of the cable gland.

Conversion options, Prowirl 77 / Proline Prowirl 73	Nameplate Transmitter	Order structure for conversion kit / comments
 Prowirl 77F compact version to Proline Prowirl 73 compact version → Use the Instructions for Conversion on Page 25. Prowirl 77F compact version to Proline Prowirl 73 remote → Use the Instructions for Conversion on Page 35. 	77W***-*A0**A1* F B2 C C3 D F6 E 7 F G M P Q	DK7UP-4A (with graphite seal) DK7UP-4B (with Viton seal) DK7UP-4C (with Kalrez seal) DK7UP-4F (with Gylon seal) The Proline Prowirl73XXX transmitter has to be ordered separately.
 Prowirl 77H compact version to Proline Prowirl 73 compact version → Use the Instructions for Conversion on Page 25. Prowirl 77H remote version to Proline Prowirl 73 remote → Use the Instructions for Conversion on Page 35. 	77H***-**0**A** 2 C 3 D 6 E 7 F G M P Q	DK7UP-7A (currently not available) The Proline Prowirl 73XXX transmitter has to be ordered separately.

🕲 Note

- Invariably, devices ordered in compliance with the Pressure Equipment Directive (PED 97/23/EC) must be converted by Endress+Hauser Flowtec.
- Conversion work on meters with PROFIBUS or FOUNDATION Fieldbus communication should be performed by Endress+Hauser Service.
- Devices with FM or CSA approval must be converted by Endress+Hauser Flowtec or Endress+Hauser Service only.

	Conversion options, Proline Prowirl 72 / Proline Prowirl 73	Nameplate Transmitter	Order structure for conversion kit / comments
•	Proline Prowirl 72 compact version to Proline Prowirl 73 compact version \rightarrow Use the Instructions for Conversion on Page 45. Proline Prowirl 72 remote to Proline Prowirl 73 remote \rightarrow Use the Instructions for Conversion on Page 45.	72***-**0*******************************	DK7UP-AA (with graphite seal) DK7UP-AB (with Viton seal) DK7UP-AC (with Kalrez seal) DK7UP-AF (with Gylon seal) The Proline Prowirl73XXX transmitter has to be ordered separately.
•	Proline Prowirl 72 high pressure compact version to Proline Prowirl 73 high pressure compact version \rightarrow Use the Instructions for Conversion on Page 50. Proline Prowirl 72 high pressure remote to Proline Prowirl 73 high pressure remote \rightarrow Use the Instructions for Conversion on Page 55.	72F**-**2A********	DK7UP–7A (currently not available) The Proline Prowirl 73XXX transmitter has to be ordered separately.

🖄 Note

- Invariably, devices ordered in compliance with the Pressure Equipment Directive (PED 97/23/EC) must be converted by Endress+Hauser Flowtec.
- Conversion work on meters with PROFIBUS or FOUNDATION Fieldbus communication should be performed by Endress+Hauser Service.
- Devices with FM or CSA approval must be converted by Endress+Hauser Flowtec or Endress+Hauser Service only.

Conversion options, Proline Prowirl 73	Nameplate Transmitter	Order structure for conversion kit / comments
 Proline Prowirl 73 compact version to Proline Prowirl 73 remote (non-Ex) → Use the Instructions for Conversion on Page 41. Note This conversion is also possible for measuring devices ordered in compliance with the Pressure Equipment Directive (PED 97/23/EC). 	73***-***** AA**** AJ	DK7UP-EA DK7UP-AB DK7UP-FA DK7UP-FB It is not necessary to order a Proline Prowirl73XXX transmitter.
 Proline Prowirl 73 compact version version to Proline Prowirl 73 remote (Ex-i (IS), Ex-d (XP)) → Use the Instructions for Conversion on Page 45. Note Only Endress+Hauser Flowtec is permitted to perform this conversion on devices ordered in compliance with the Pressure Equipment Directive (PED 97/23/EC). Conversion work on meters with PROFIBUS or FOUNDATION Fieldbus communication should be performed by Endress+Hauser Service. Devices with FM or CSA approval must be converted by Endress+Hauser Flowtec or Endress+Hauser Service only 	73***_*********************************	The Proline Prowirl73XXX transmitter (including transmitter connection housing) has to be ordered separately. 7 3 * * * - * * * * * * CE* * * * DF H N P 1 2 3

Parameters to be read out for conversion, Prowirl 77 to Prowirl 73

You must read out the principal parameters/settings in order to ensure that the device can continue to operate with the original basic configuration after conversion. Read out the parameters/settings listed in the table and re-use these values to commission the Proline Prowirl 73.

🖄 Note

- You will find a complete list of all readable parameters and their settings in the Operating Instructions for the Prowirl 77 HART (BA032D/06/en).
- You will find more information on the functions of the Prowirl 73 in the section entitled "Description of device functions" in the Operating Instructions of the Prowirl 73 (BA00094D/06/EN).

Reading out parameters on the local display or the HART handheld and reading the nameplate:

	Parameters, Prowirl 77					Parameters, Prowirl 73		
	Value to be read out	Local dis- play	HART handheld	Value read out Value		Value to be entered	In parameter	
16	Calibration factor	CALF	K-factor		\rightarrow		K-FACTOR	
17	Read the order code/serial nur serial number against the table	mber on the nam es on Page 16 ff.	eplate of the Prowirl 77. Cl to identify the type of Mete	heck the order code/ er Body Type (MB).	\rightarrow		METER BODY TYPE MB	
18	Expansion coefficient	Fu 63	Body expan. coeff.		\rightarrow		TEMPERATURE COEFFICIENT	
19	Gain	Fu 65	Ampl. Gain	1 = 1 2 = 2 normal = 3 3 = 4	\rightarrow		AMPLIFICATION	
20	Fluid / application	APPL	Fluid	LI = Liquid GAS = Gas	\rightarrow		SELECT FLUID You can use this function to select the fluid directly.	
	See explanatory notes on "Sel	lecting the unit f	or flow" on Page 15		1		UNIT VOLUME FLOW	
21	Unit of flow	UNIT	FLOW UNIT		\rightarrow		or UNIT MASS FLOW	
							VOLUME FLOW	
	See explanatory notes on "Sel	lecting the unit f	or the totalizer" on Page 15	1			UNIT TOTALIZER 1	
22	Unit of the totalizer	Fu 11	Tot. unit		\rightarrow		UNIT TOTALIZER 2	
23	Output signal	Fu 20	Not HART-compatible		\rightarrow	Depends on the selection in the Prowirl 77: $4-20 \rightarrow \text{CURRENT RANGE}$ PULSE $\rightarrow \text{MODE}$ (PULSE selected) PF $\rightarrow \text{MODE}$ (PFM selected)		
Cu	rrent output			1			1	
24	Full scale value / value 20 mA	F 5	PV URV		\rightarrow		VALUE 20 mA	
25	Time-constant current out- put	Fu 22	PV Damping		\rightarrow		TIME CONSTANT	
26	Error response, current out- put	Fu 23	AO Alarm		\rightarrow		FAILSAFE MODE	
Pu	se output							
27	Pulse value	PSCA	Not HART-compatible		\rightarrow		PULSE VALUE	
28	Pulse width	Fu 31	Not HART-compatible		\rightarrow		PULSE WIDTH	

Commissioning the Proline Prowirl 73

Use the values noted in the table for commissioning. Begin by entering the values you read out for parameters 1 to 4 directly into the corresponding parameters of the Prowirl 73.

Then start the Quick Setup routine of the Prowirl 73 and, when prompted, enter the parameter settings you read out beforehand.

Selecting the unit for flow

You can read the unit used by the Prowirl 77 in numerical form only in the UNIT (local display) or FLOW UNIT (HART) parameter.

The table below lists the units in question and outlines the rest of the procedure for transfer to the corresponding parameters of the Prowirl 73:

Value, UNIT / FLOW UNIT	Unit, Prowirl 77		Unit Prowirl 73	Enter through:
0	dm³/s	\rightarrow	dm³/s	Quick Setup
1	dm³/min	\rightarrow	dm³/min	Quick Setup
2	dm³/h	\rightarrow	dm³/h	Quick Setup
3	m³/s	\rightarrow	m³/s	Quick Setup
4	m³/min	\rightarrow	m³/min	Quick Setup
5	m³/h	\rightarrow	m³/h	Quick Setup
6	ACFS	\rightarrow	ft³/s	Quick Setup
7	ACFM	\rightarrow	ft³/min	Quick Setup
8	ACFH	\rightarrow	ft³/h	Quick Setup
9	IGPS	\rightarrow	imp gal/s	Quick Setup
10	IGPM	\rightarrow	imp gal/min	Quick Setup
11	IGPH	\rightarrow	imp gal/h	Quick Setup
12	gps	\rightarrow	gal/s	Quick Setup
13	gpm	\rightarrow	gal/min	Quick Setup
14	gph	\rightarrow	gal/h	Quick Setup
	USER		depending on unit from the "Units" label:	
15	(use the unit as stated on the "Units" label on the meter)	\rightarrow	UNIT VOL. FLOW or UNIT MASS FLOW or UNIT CORRECTED VOL. FLOW	Quick Setup

Selecting the unit for the totalizer

You can read the unit used by the Prowirl 77 in numerical form only in the Fu 11 (local display) or Tot. unit (HART) parameter. The table below lists the units in question and outlines the rest of the procedure for transfer to the TOTALIZER UNIT parameter of the Prowirl 73:

Value, UNIT / FLOW UNIT	Unit, Prowirl 77
0	dm³
1	m³
2	ACF
3	lgallons
4	gallons
5	USER

	Unit Prowirl 72	Enter through:
\rightarrow	dm³	Quick Setup
\rightarrow	m³	Quick Setup
\rightarrow	ft ³	Quick Setup
\rightarrow	imp gal	Quick Setup
\rightarrow	gal	Quick Setup
\rightarrow	Suitable unit	Quick Setup

Ascertaining the type of Meter Body Type (MB)

In order to ascertain the type of Meter Body Type (MB), you must be able to quote the order code or the nominal diameter (DN) and in some instances the pressure class (PN) of the Prowirl 77.

This information is on the nameplate of the measuring device.

Check the nameplate and use the information to read off the MB value from the appropriate table (for the wafer or flange version, as applicable):

• Prowirl 77W (wafer):

Nameplate, Prowirl 77W	D	N	PN (connecting pipe)			MB
77WS15 - A******	15	1⁄2"	PN	10	\rightarrow	201
77WS15 - A******	15	1⁄2"	PN	16	\rightarrow	202
77WS15 - A******	15	1⁄2"	PN	25	\rightarrow	203
77WS15 - A******	15	1⁄2"	PN	40	\rightarrow	204
77WS15 - B******	15	1⁄2"	Cl. 150	Sch. 40	\rightarrow	205
77WS15 - B******	15	1⁄2"	Cl. 300	Sch. 40	\rightarrow	206
77WS15 - C******	15	1⁄2"	10 K	Sch. 40	\rightarrow	207
77WS15 - C******	15	1⁄2"	20 K	Sch. 40	\rightarrow	208
77WS25 - A******	25	1"	PN	10	\rightarrow	209
77WS25 - A******	25	1"	PN	16	\rightarrow	210
77WS25 - A******	25	1"	PN	25	\rightarrow	211
77WS25 - A******	25	1"	PN	40	\rightarrow	212
$77WS25 - B^{*******}$	25	1"	Cl. 150	Sch. 40	\rightarrow	213
$77WS25 - B^{*******}$	25	1"	Cl. 300	Sch. 40	\rightarrow	214
$77WS25 - C^{*******}$	25	1"	10 K	Sch. 40	\rightarrow	215
77WS25 – C******	25	1"	20 K	Sch. 40	\rightarrow	216
77WS40 – A******	40	11⁄2"	PN	10	\rightarrow	217
$77WS40 - A^{*******}$	40	11⁄2"	PN	16	\rightarrow	218
$77WS40 - A^{*******}$	40	11⁄2"	PN 25		\rightarrow	219
$77WS40 - A^{*******}$	40	11⁄2"	PN 40		\rightarrow	220
77WS40 - B******	40	11⁄2"	Cl. 150	Sch. 40	\rightarrow	221
77WS40 - B******	40	11⁄2"	Cl. 300	Sch. 40	\rightarrow	222
77WS40 - C******	40	11⁄2"	10 K	Sch. 40	\rightarrow	223
77WS40 - C******	40	11⁄2"	20 K	Sch. 40	\rightarrow	224
77WS50 - A******	50	2"	PN 10		\rightarrow	225
77WS50 - A******	50	2"	PN	16	\rightarrow	226
77WS50 - A******	50	2"	PN	25	\rightarrow	227
77WS50 - A******	50	2"	PN	40	\rightarrow	228
77WS50 - B******	50	2"	Cl. 150	Sch. 40	\rightarrow	229
77WS50 - B******	50	2"	Cl. 300	Sch. 40	\rightarrow	230
77WS50 - C******	50	2"	10 K	Sch. 40	\rightarrow	231
77WS50 - C******	50	2"	20 K	Sch. 40	\rightarrow	232
77WS80 - A******	80	3"	PN	10	\rightarrow	233
77WS80 - A******	80	3"	PN	16	\rightarrow	234
77WS80 - A******	80	3"	PN	25	\rightarrow	235
77WS80 - A******	80	3"	PN	40	\rightarrow	236
77WS80 - B******	80	3"	Cl. 150	Sch. 40	\rightarrow	237
77WS80 - B******	80	3"	Cl. 300	Sch. 40	\rightarrow	238
77WS80 - C******	80	3"	10 K	Sch. 40	\rightarrow	239
77WS80 - C******	80	3"	20 K	Sch. 40	\rightarrow	240
77WS1H – A******	100	4"	PN 10		\rightarrow	241
77WS1H – A******	100	4"	PN 16		\rightarrow	242
77WS1H – A******	100	4"	PN	25	\rightarrow	243
77WS1H – A******	100	4"	PN	40	\rightarrow	244
77WS1H – B******	100	4"	Cl. 150	Sch. 40	\rightarrow	245
77WS1H - B******	100	4"	Cl. 300	Sch. 40	\rightarrow	246

Nameplate, Prowirl 77W	D	N	PN (conne	PN (connecting pipe)		MB
77WS1H - C******	100	4"	10 K	Sch. 40	\rightarrow	247
77WS1H - C******	100	4"	20 K	Sch. 40	\rightarrow	248
77WS1F - A******	150	6"	PN	PN 10		249
77WS1F - A******	150	6"	PN	PN 16		250
77WS1F - A******	150	6"	PN	PN 25		251
77WS1F - A******	150	6"	PN	PN 40		252
77WS1F - B******	150	6"	Cl. 150	Sch. 40	\rightarrow	253
77WS1F - B******	150	6"	Cl. 300	Sch. 40	\rightarrow	254
77WS1F - C******	150	6"	10 K	Sch. 40	\rightarrow	255
$77WS1F - C^{*******}$	150	6"	20 K	Sch. 40	\rightarrow	256

• Prowirl 77F:

Nameplate, Prowirl 77F	D	N	PN			MB
77FS15 - 4******	15	1⁄2"	PN	40	\rightarrow	6
$77FS15 - E^{********}$	15	1⁄2"	PN	40	\rightarrow	6
77FS15 - G******	15	1⁄2"	Cl. 150	Sch. 40	\rightarrow	10
77FS15 – H******	15	1⁄2"	Cl. 150	Sch. 80	\rightarrow	11
$77FS15 - J^{*******}$	15	1⁄2"	Cl. 300	Sch. 40	\rightarrow	12
77FS15 - K******	15	1⁄2"	Cl. 300	Sch. 80	\rightarrow	13
77FS15 - Q******	15	1⁄2"	10 K	Sch. 40	\rightarrow	16
77FS15 - R******	15	1⁄2"	10 K	Sch. 80	\rightarrow	17
77FS15 - S******	15	1⁄2"	20 K	Sch. 80	\rightarrow	19
$77FS25 - 4^{*******}$	25	1"	PN	40	\rightarrow	26
$77FS25 - E^{************************************$	25	1"	PN	40	\rightarrow	26
77FS25 - G******	25	1"	Cl. 150	Sch. 40	\rightarrow	30
77FS25 – H******	25	1"	Cl. 150	Sch. 80	\rightarrow	31
$77FS25 - J^{*******}$	25	1"	Cl. 300	Sch. 40	\rightarrow	32
77FS25 - K******	25	1"	Cl. 300	Sch. 80	\rightarrow	33
77FS25 – Q******	25	1"	10 K	Sch. 80	\rightarrow	37
77FS25 - R******	25	1"	20 K	Sch. 40	\rightarrow	38
77FS25 - S******	25	1"	20 K	Sch. 80	\rightarrow	39
$77FS40 - 4^{********}$	40	11⁄2"	PN 40		\rightarrow	46
$77FS40 - E^{************************************$	40	11⁄2"	PN 40		\rightarrow	46
77FS40 - G******	40	11⁄2"	Cl. 150	Sch. 40	\rightarrow	50
$77FS40 - H^{*******}$	40	11⁄2"	Cl. 150	Sch. 80	\rightarrow	51
$77FS40 - J^{*******}$	40	11⁄2"	Cl. 300	Sch. 40	\rightarrow	52
$77FS40 - K^{*******}$	40	11⁄2"	Cl. 300	Sch. 80	\rightarrow	53
77FS40 – Q******	40	11⁄2"	10 K	Sch. 80	\rightarrow	57
$77FS40 - R^{*******}$	40	11⁄2"	20 K	Sch. 40	\rightarrow	58
$77FS40 - S^{*******}$	40	11⁄2"	20 K	Sch. 80	\rightarrow	59
$77FS50 - 4^{*******}$	50	2"	PN	40	\rightarrow	66
$77FS50 - E^{*******}$	50	2"	PN	40	\rightarrow	66
77FS50 - G******	50	2"	Cl. 150	Sch. 40	\rightarrow	70
$77FS50 - H^{*******}$	50	2"	Cl. 150	Sch. 80	\rightarrow	71
$77FS50 - J^{*******}$	50	2"	Cl. 300	Sch. 40	\rightarrow	72
$77FS50 - K^{*******}$	50	2"	Cl. 300	Sch. 80	\rightarrow	73
$77FS50 - P^{*******}$	50	2"	10 K	Sch. 40	\rightarrow	76
77FS50 – Q*****	50	2"	10 K	Sch. 80	\rightarrow	77
77FS50 - R******	50	2"	20 K	Sch. 40	\rightarrow	78
77FS50 - S******	50	2"	20 K Sch. 80		\rightarrow	79
77FS80 – 4******	80	3"	PN	40	\rightarrow	86
77FS80 - E******	80	3"	PN	40	\rightarrow	86
77FS80 - G*****	80	3"	Cl. 150	Sch. 40	\rightarrow	90
77FS80 – H******	80	3"	Cl. 150	Sch. 80	\rightarrow	91

Nameplate, Prowirl 77F	D	N	Р	N] [MB
77FS80 - J******	80	3"	Cl. 300	Sch. 40	\rightarrow	92
77FS80 - K******	80	3"	Cl. 300	Sch. 80	\rightarrow	93
77FS80 - P******	80	3"	10 K	Sch. 40	\rightarrow	96
77FS80 - Q******	80	3"	10 K	Sch. 80	\rightarrow	97
77FS80 - R******	80	3"	20 K	Sch. 40	\rightarrow	98
77FS80 - S******	80	3"	20 K	Sch. 80	\rightarrow	99
77FS1H - 3******	100	4"	PN	16	\rightarrow	103
77FS1H – 4******	100	4"	PN	40	\rightarrow	106
77FS1H – B******	100	4"	PN	16	\rightarrow	103
77FS1H – E******	100	4"	PN	40	\rightarrow	106
77FS1H – G******	100	4"	Cl. 150	Sch. 40	\rightarrow	110
77FS1H – H******	100	4"	Cl. 150	Sch. 80	\rightarrow	111
77FS1H – J******	100	4"	Cl. 300	Sch. 40	\rightarrow	112
77FS1H – K******	100	4"	Cl. 300	Sch. 80	\rightarrow	113
77FS1H – P******	100	4"	10 K	Sch. 40	\rightarrow	116
77FS1H – Q******	100	4"	10 K	Sch. 80	\rightarrow	117
77FS1H - R******	100	4"	20 K	Sch. 40	\rightarrow	118
77FS1H - S******	100	4"	20 K	Sch. 80	\rightarrow	119
77FS1F - 3******	150	6"	PN	16	\rightarrow	123
77FS1F - 4******	150	6"	PN	40	\rightarrow	126
77FS1F - B******	150	6"	PN	16	\rightarrow	123
77FS1F - E******	150	6"	PN	40	\rightarrow	126
77FS1F - G******	150	6"	Cl. 150	Sch. 40	\rightarrow	130
77FS1F – H******	150	6"	Cl. 150	Sch. 80	\rightarrow	131
77FS1F - J******	150	6"	Cl. 300	Sch. 40	\rightarrow	132
77FS1F - K******	150	6"	Cl. 300	Sch. 80	\rightarrow	133
77FS1F - P******	150	6"	10 K	Sch. 40	\rightarrow	136
77FS1F – Q******	150	6"	10 K	Sch. 80	\rightarrow	137
77FS1F - R******	150	6"	20 K	Sch. 40	\rightarrow	138
77FS1F - S******	150	6"	20 K	Sch. 80	\rightarrow	139
77FS2H – A******	200	8"	PN	10	\rightarrow	141
77FS2H – B******	200	8"	PN	16	\rightarrow	143
77FS2H – D******	200	8"	PN	25	\rightarrow	144
77FS2H – E******	200	8"	PN	40	\rightarrow	146
77FS2H – G******	200	8"	Cl. 150	Sch. 40	\rightarrow	150
77FS2H – J******	200	8"	Cl. 300	Sch. 40	\rightarrow	152
77FS2H – P******	200	8"	10 K	Sch. 40	\rightarrow	156
77FS2H – R******	200	8"	20 K	Sch. 40	\rightarrow	158
77FS2F - A******	250	10"	PN	10	\rightarrow	161
77FS2F - B******	250	10"	PN	16	\rightarrow	163
77FS2F - D******	250	10"	PN	25	\rightarrow	164
77FS2F - E******	250	10"	PN	40	\rightarrow	166
77FS2F - G******	250	10"	Cl. 150	Sch. 40	\rightarrow	170
77FS2F - J******	250	10"	Cl. 300	Sch. 40	\rightarrow	172
77FS2F - P******	250	10"	10 K	Sch. 40	\rightarrow	176
77FS2F - R******	250	10"	20 K	Sch. 40	\rightarrow	178
77FS3H – A******	300	12"	PN 10		\rightarrow	181
77FS3H - B******	300	12"	PN 16		\rightarrow	183
77FS3H – D******	300	12"	PN 25		\rightarrow	184
77FS3H – E******	300	12"	PN	40	\rightarrow	186
77FS3H – G******	300	12"	Cl. 150	Sch. 40	\rightarrow	190
77FS3H – J******	300	12"	Cl. 300	Sch. 40	\rightarrow	192
77FS3H - P******	300	12"	10 K	Sch. 40	\rightarrow	196
77FS3H - R******	300	12"	20 K	Sch. 40	\rightarrow	198

Prowirl 72 parameters to be read out for conversion to Prowirl 73

You must read out the principal parameters/settings in order to ensure that the device can continue to operate with the original basic configuration after conversion. Read out the parameters/settings listed in the table and re-use these values to commission the Proline Prowirl 73.

🕲 Note

- You will find a complete list of all the parameters that can be read out, along with the parameter settings, in the section entitled "Description of device functions" in the Operating Instructions of the Prowirl 72 (BA00084D/06/EN).
- You will find more information on the functions of the Prowirl 73 in the section entitled "Description of device functions" in the Operating Instructions of the Prowirl 73 (BA00094D/06/EN).

	Parameters, Prowirl 72		Parameters, Prowirl 73		
	Read out in function:		Value	Enter in function:	
1	K-FACTOR	\rightarrow		K-FACTOR	
2	METER BODY TYPE MB	\rightarrow		METER BODY TYPE MB	
3	TEMPERATURE COEFFICIENT	\rightarrow		TEMPERATURE COEFFICIENT	
4	AMPLIFICATION	\rightarrow		AMPLIFICATION	
5	APPLICATION	\rightarrow		SELECT FLUID You can use this function to select the fluid directly.	
6	UNIT FLOW	\rightarrow		UNIT VOLUME FLOW or UNIT MASS FLOW or UNIT CORRECTED VOL. FLOW	
7	UNIT TOTALIZER	\rightarrow		UNIT TOTALIZER 1 UNIT TOTALIZER 2	
Cu	rrent output	1			
8	MEASURING UNIT TYPE*	\rightarrow		ASSIGN CURRENT	
9	CURRENT RANGE	\rightarrow		CURRENT RANGE	
10	VALUE 20 mA	\rightarrow		VALUE 20 mA	
11	TIME CONSTANT	\rightarrow		TIME CONSTANT	
12	FAILSAFE MODE	\rightarrow		FAILSAFE MODE	
Pu	lse/status output	1			
13	OPERATING MODE	\rightarrow		OPERATING MODE	
Ор	erating mode = PULSE				
14	MEASURING UNIT TYPE*	\rightarrow		ASSIGN PULSE	
15	PULSE VALUE	\rightarrow		PULSE VALUE	
16	PULSE WIDTH	\rightarrow		PULSE WIDTH	
17	OUTPUT SIGNAL	\rightarrow		OUTPUT SIGNAL	
18	FAILSAFE MODE	\rightarrow		FAILSAFE MODE	
Ор	erating mode = Status				
19	MEASURING UNIT TYPE*	\rightarrow		ASSIGN STATUS	
20	SWITCH-ON POINT	\rightarrow		SWITCH-ON POINT	
21	SWITCH-OFF POINT	\rightarrow		SWITCH-OFF POINT	
22	OUTPUT SIGNAL	\rightarrow		OUTPUT SIGNAL	
23	TIME CONSTANT	\rightarrow		TIME CONSTANT	
24	FAILSAFE MODE	\rightarrow		FAILSAFE MODE	

Reading out parameters using the local display:

* Group SYSTEM PARAMETER

Documentation to be used

All documentation of the meter to be converted and the new meter is applicable, in addition to the documentation specific to the actual conversion (depends on the particular conversion). The document numbers listed below (e.g. BA032D/06/en) are always printed in the top left corner of the title page.

Prowirl 77:

- Operating Instruction:
- BA032D/06/en
- Ex documentation:
 - ATEX II 2G = XA017D/06/a3
 - ATEX II 3G / Zone 2 = XA018D/06/a3
 - CENELEC = EX014D/06/en
 - SEV = EX015D/06/c2
 - -FM = EX016D/06/a2
 - CSA = EX017D/06/a2

Proline Prowirl 72, 73:

- Operating Instruction:
 - Prowirl 72 = BA00084D/06/EN
 - Prowirl 73 = BA00094D/06/EN

Proline Prowirl 72, 73 PROFIBUS-PA:

- Operating Instruction:
 - Prowirl 72 = BA00085D/06/EN
 - Prowirl 73 = BA00093D/06/EN

Proline Prowirl 72, 73 FOUNDATION Fieldbus:

- Operating Instruction:
 - Prowirl 72 = BA095D/06/en
 - Prowirl 73 = BA096D/06/en

Proline Prowirl 72, 73 Ex documentation:

- ATEX II2G & II1/2 G & II1/2GDII & II1G (Ex-d (XP) version) = XA00092D/06/A3
- ATEX II2G & II1/2 G & II1/2GDII & II1G (Ex-i (IS) version) = XA00093D/06/A3
- ATEX II3G = XA094D/06/a3
- FM/CSA (Ex-d (XP) version) = XA095D/06/en
- FM/CSA (Ex-i (IS) version) = XA096D/06/en

Instructions for Conversion: Prowirl 77W, 77F compact version (standard temperature) to Proline Prowirl 72 compact version

Note!

See Page 3 for an overview of all possible conversions. When converting, use only the Instructions for Conversion listed in the overview for the conversion job in question.

The components required for conversion are as follows:

Units	Designation	Units	Designation
1	Prowirl 72 transmitter	1	Nameplate for transmitter
1	Preamplifier	1	Form for archives
1	Housing neck including O-rings	1	Instructions for Conversion
4	Screws for housing neck		

Note the following points:

- It is important to comply with the documentation specific to the meters in question in addition to these Instructions for Conversion, see Page 20:
- Installation, repair, commissioning and maintenance of the measuring equipment must be carried out by qualified, trained specialists. Conversions in Ex-rated zones, moreover, must be carried out by qualified specialists trained to work on Ex-rated devices.
- Always comply with national regulations concerning the overhaul and modification of officially approved or certified electrical devices.
- Risk of damaging electronic components (ESD protection). Static electricity can damage electronic components or impair their operability. Use an ESD-compatible workbench with a grounded worktop or make sure that you are connected to ground by means of a grounding cable (anti-static wrist strap with 1 M Ω protective resistance), as applicable.
- Ensure compliance with all safety instructions (introduced by "Warning!", "Caution!", "Note") before you commence the individual steps of the installation procedure. Document completion of each step by marking the accompanying checkbox (\Box).
- Once you have completed conversion, complete the form for the archives and send the information to the address printed on the form.
- Once conversion has been completed, the documentation for the Proline Prowirl 72 is valid for the converted device.

Caution!

- Conversion of meters compliant with the pressure equipment directive (PED 97/23/EC) is **not** permissible. Invariably, these meters have to be converted by Endress+Hauser Flowtec.
- Conversion work on meters with PROFIBUS or FOUNDATION Fieldbus communication should be performed by Endress+Hauser Service.
- Devices with FM or CSA approval must be converted by Endress+Hauser Flowtec or Endress+Hauser Service only.

JA017_000

1. Making a backup of the device data

(^)

Caution!

Once you have completed conversion, you need the device parameters of the Prowirl 77 transmitter for commissioning. Without these values you would not be able to have the Prowirl 72 device in operation within a short space of time.

□ 1. Read out the device parameters of the Prowirl 77 (see Page 5 ff.).

2. Entering the data on the nameplate (Figure 1)

□ 1. Enter the data on the new nameplate. You will find the data you need on the nameplate of the Prowirl 77.

Sensorrel Sensor re	evante Daten: levant data:			
TM:	-40+260°C other:		-200+400°C	
Materials:	CF3M (1.4404) other:	/ 316	L (1.4435)	
Gasket:	Graphite Viton		Gylon Kalrez	

Fig. 1: Example of a nameplate; the nameplate is subsequently affixed to the cover of the connection compartment.

3. Removing the connecting cable

rdh -

Caution!

When converting measuring devices used in explosive atmospheres, always comply with the local regulations and safety precautions required by the owner-operator.

Non-Ex / Ex-i (IS) version (Fig. 2)

- □ 1. Screw the cover of the electronics compartment (a) off the transmitter housing.
- □ 2. Slacken the two screws of the cover (b) of the connection compartment and open the bottom-hinged cover.
- □ 3. Disconnect the connections from the terminal block (c) and the earthing terminal (d) of the earthing cable (if installed).
- \Box 4. Open the threaded element of the cable entry (e).
- □ 5. Carefully pull the connecting cable out of the transmitter housing.

- Fig. 2: Removing the connecting cable, non-Ex / Ex-i (IS) version a = Cover of electronics compartment
 - b = Threaded fastener of cover for connection compartment
 - c = Terminal block
 - d = Terminal for earthing cable
 - e = Cable entry

Ex-d (XP) version (Fig. 3)

- \Box 1. Switch off the power supply to the device.
- 2. A Warning! For safety's sake, wait at least 10 minutes before proceeding with the next step.
- □ 3. Open the clamp (a) securing the cover of the connection compartment.
- □ 4. Screw the cover of the connection compartment (b) off the transmitter housing.
- □ 5. Disconnect the connections from the terminal block (c) and the earthing terminal (d) of the earthing cable (if installed).
- □ 6. Slacken the threaded fastener of the cable duct (if installed) and of the cable entry (e).
- □ 7. Carefully pull the connecting cable out of the transmitter housing.

- *Fig. 3: Removing the connecting cable, Ex-d version*
 - a = Clamp securing the cover of the connection compartment
 - b = Cover of connection compartment
 - c = Terminals
 - d = Terminal for earthing cable
 - $e = Cable \ entry$

4. Removing the transmitter housing (Fig. 4)

- □ 1. Screw the cover of the electronics compartment (a) off the transmitter housing.
- \Box 2. Remove the earthing cable (b), if installed.
- \Box 3. Remove the outer screw (c) securing the transmitter housing.
- □ 4. Remove the inner screw (d) securing the transmitter housing.
- \Box 5. Pull the transmitter housing (e) off the housing neck (f).

UA017_003

JA017

Fig. 4: Removing the transmitter housing

- a = Cover of electronics compartment
- b = Threaded fastener of earthing cable
- c = Outer securing screw for transmitter housing
- *d* = Inner securing screw for transmitter housing
- e = Transmitter housing
- f = Housing neck

5. Replacing the housing neck and installing the new preamplifier (*Fig. 5*)

- Caution! When converting the measuring device, replace all small items (screws, etc.) with the material supplied as part of the conversion kit.
- \Box 1. Remove the four screws (a) securing the housing neck (b).
 - Warning! Risk of fatal injury:

Do not, under any circumstances, slacken the screws securing the sensor.

- □ 2. Carefully disengage the housing neck (b) from the sensor (c).
- □ 3. Carefully slip the new housing neck (b) over the sensor (c). Make sure that the arrow on the housing neck is pointing in the direction of flow.
- 4. Tighten the four screws (a) securing the housing neck (b).
 Tightening torque = 5.8 Nm; tighten in diagonally opposite sequence in three uniform steps
- □ 5. Coat the O-ring (d) with silicone grease (the O-ring is fitted to the housing neck).
- \Box 6. Slip the preamplifier (f) into the housing neck (b).
 - Note!

The housing neck has a guide to ensure that the preamplifier can be installed only in the correct position.

 \Box 7. Tighten the two securing screws (e) to secure the preamplifier (f).

- c = Sensor
- d = 0 min a of housing
- *d* = *O*-ring of housing neck (fitted) *e* = Threaded fastener of preamplifier
- f = Preamplifier

6. Installing the new transmitter (Fig. 6)

- □ 1. Screw the cover of the electronics compartment (a) off the transmitter housing.
- \Box 2. Pull the local display module (b) off the retaining rails (c).
- 3. Clip the left side of the local display module (b) into the right-hand retaining rail (to hold the local display module temporarily in position).
- □ 4. Open the top-hinged plastic cover (d).
- \Box 5. Remove the inner screw (h) securing the transmitter.

□ 6. From below, guide the connecting cable (e) through the transmitter housing and set the transmitter housing on the housing neck (f).

Note!

The end of the connecting cable emerges from the transmitter housing underneath the holder for the electronics.

- □ 7. Tighten the inner screw (h) securing the transmitter housing.
- □ 8. Tighten the outer screw securing the transmitter housing (see Page 22, *Fig. 4*, c).
- \Box 9. Connect the connecting cable (e) to the plug (g) of the amplifier board.
- □ 10. Secure the connecting cable to the retainer below the connecting-cable plug (g).
- $\hfill\square$ 11. Close the top-hinged plastic cover (d).
- □ 12. Affix the new nameplate (Page 22) to the outside of the cover of the connection compartment (i).

Steps 13 and 14 are required only in the case of the Ex-d (XP) versions:

- □ 13. Clip the local display module (b) into the retaining rails (c).
- 14. Screw the cover of the electronics compartment (a) onto the amplifier housing.

UA017_005

Fig. 6: Installing the transmitter

JA017_004_en

- a = Cover of electronics compartment
 - b = Local display module
- c = Retaining rails
- $d = Plastic \ cover$
- $e\ =\ Connecting\ cable,\ preamplifier/measuring-amplifier\ board$
- f = Housing neck
- g = Plug for connecting cable on measuring-amplifier board
- $h = Inner \ securing \ screw$
- *i* = New nameplate on cover of connection compartment

7. Wiring the transmitter

Non-Ex, Ex-i (IS) version (Fig. 8 and Fig. 7)

Fig. 7: Non-Ex / Ex-i (IS) version

- *a* = *Threaded fastener of cover for connection compartment*
- b = Cover for connection compartment
- c = Cable entry
- d = Connecting terminal plug
- e = Local display module
- f = Retaining rails
- g = Cover of electronics compartment
- □ 1. Slacken the screw (a) of the cover of the connection compartment (b) and open the bottom-hinged cover.
- \Box 2. Open the threaded element of the cable entry (c).
- □ 3. Guide the connecting cable through the cable entry (c) and into the connection compartment.
- \Box 4. Tighten the threaded element of the cable entry (c).
- □ 5. Pull the connection terminal plug (d) or plugs, depending on the design, off the I/O board (COM module).
- \Box 6. Connect the connecting cable to the connection terminal plugs (d).

- Fig. 8: Electrical connections, transmitter
 - **A** = Power supply, current output
 - B = Pulse, status output (optional)
 - $\mathbf{C} = Earthing \ clamp \ (relevant \ for \ remote \ version)$
 - D = PFM wiring (Pulse/Frequency Modulation)
- □ 7. Reconnect the connection terminal plug or plugs (d) to the I/O board (COM module).

Note!

- The connection terminal plugs are coded, which means that they cannot be connected wrong way round.
- Check that the connecting cable is correctly routed in the transmitter housing and that there is no strain on the connections to the plugs.
- □ 8. Close the cover of the connection compartment (b) and tighten the screw (a).
- □ 9. Clip the local display module (e) into the retaining rails (f).
- □ 10. Screw the cover of the electronics compartment (g) onto the transmitter housing.

Ex-d (XP) version (Fig. 8 and Fig. 9)

JA017_008

- Fig. 9: Ex-d version
 - a = Clamp securing the cover of the connection
 - compartment
 - *b* = Cover of connection compartment *c* = Terminals
 - d = Cable entry
- □ 1. Open the clamp (a) securing the cover of the connection compartment.
- 2. Screw the cover of the connection compartment (b) off the transmitter housing.
- \Box 3. Open the threaded element of the cable entry (c).
- □ 4. Guide the connecting cable through the cable entry (c) and into the connection compartment.
- \Box 5. Tighten the threaded element of the cable entry (c).
- □ 6. Pull the connection terminal plug (d) or plugs, depending on the design, off the I/O board (COM module).
- □ 7. Connect the connecting cable to the connection terminal plugs (d) (wiring diagram, see *Fig. 8*).
- □ 8. Reconnect the connection terminal plug or plugs (d) to the I/O board (COM module).

Note!

- The connection terminal plugs are coded, which means that they cannot be connected wrong way round.
- Check that the connecting cable is correctly routed in the transmitter housing and that there is no strain on the connections to the plugs.
- □ 9. Screw the cover of the connection compartment (b) onto the transmitter housing.
- 10. Engage the clamp (c) to hold the cover of the connection compartment
 (b) in position and tighten the threaded fastener of the clamp.

8. Commissioning the device

□ 1. Switch on the power supply to the device: See the section entitled "Commissioning", "Switching on the device" in the Operating Instructions of the Prowirl 72 (BA00084D/06/EN).

Caution!

If the device is in an Ex-rated zone, the appropriate Ex documentation and the Control Drawings also apply.

 2. Key the parameters you read out beforehand Page 5 into the device from the table (see also the section entitled "Commissioning", "Quick Setup" in the Operating Instructions of the Prowirl 72 (BA00084D/06/EN).

Parameterization completes conversion; the device is now ready for operation.

□ 3. Complete the form for the archives and send the information to the address printed on the form.

Instructions for Conversion: Prowirl 77W, 77F, 77H compact version (high/low temperature and high pressure) to Proline Prowirl 72 compact version

Prowirl 77F, 77H compact version to Proline Prowirl 73 compact version

Prowirl 70H compact version to Proline Prowirl 72 compact version

Note!

See Page 3 (Prowirl 72) or Page 12 (Prowirl 73) for an overview of all possible conversions. When converting, use only the Instructions for Conversion listed in the overview for the conversion job in question.

The com	nonante r	hamirad	for	conversion	ara ac	follows	
The com	iponents i	equileu	101	conversion	are as	TOHOWS	. ر

Units	Designation	Units	Designation
1	Prowirl 72 or Prowirl 73 transmitter, as applicable	4	Screws for DSC sensor
1	Preamplifier	1	DSC sensor seal (flat gasket-type seal)
1	Housing neck including O-rings	1	Nameplate for transmitter
4	Screws for housing neck	1	Form for archives
1	DSC sensor	1	Instructions for Conversion

Note the following points:

- It is important to comply with the documentation specific to the meters in question in addition to these Instructions for Conversion, see Page 20:
- Installation, repair, commissioning and maintenance of the measuring equipment must be carried out by qualified, trained specialists. Conversions in Ex-rated zones, moreover, must be carried out by qualified specialists trained to work on Ex-rated devices.
- Always comply with national regulations concerning the overhaul and modification of officially approved or certified electrical devices.
- Risk of damaging electronic components (ESD protection). Static electricity can damage electronic components or impair their operability. Use an ESD-compatible workbench with a grounded worktop or make sure that you are connected to ground by means of a grounding cable (anti-static wrist strap with 1 M Ω protective resistance), as applicable.
- Ensure compliance with all safety instructions (introduced by "Warning!", "Caution!", "Note") before you commence the individual steps of the installation procedure. Document completion of each step by marking the accompanying checkbox (\Box).
- Once you have completed conversion, complete the form for the archives and send the information to the address printed on the form.
- Once conversion has been competed, the documentation for Proline Prowirl 72 or, as applicable, Proline Prowirl 73, is valid for the converted device.

Caution!

- Conversion of meters compliant with the pressure equipment directive (PED 97/23/EC) is **not** permissible. Invariably, these meters have to be converted by Endress+Hauser Flowtec.
- Conversion work on meters with PROFIBUS or FOUNDATION Fieldbus communication should be performed by Endress+Hauser Service.
- Devices with FM or CSA approval must be converted by Endress+Hauser Flowtec or Endress+Hauser Service only.

1. Making a backup of the device data

(^)

Caution!

Once you have completed conversion, you need the device parameters of the Prowirl 77 transmitter for commissioning. Without these values you would not be able to have the Prowirl 72 or Prowirl 73 device in operation within a short space of time.

□ 1. Read out the device parameters of the Prowirl 77. See Page 5 ff. (for Prowirl 72) or Page 14 ff. (for Prowirl 73).

2. Entering the data on the nameplate (Figure 1)

□ 1. Enter the data on the new nameplate. You will find the data you need on the nameplate of the Prowirl 77.

Fig. 1: Example of a nameplate; the nameplate is subsequently affixed to the cover of the connection compartment.

3. Removing the connecting cable

 \mathcal{A}

Caution!

When converting measuring devices used in explosive atmospheres, always comply with the local regulations and safety precautions required by the owner-operator.

Non-Ex / Ex-i (IS) version (Fig. 2)

- □ 1. Screw the cover of the electronics compartment (a) off the transmitter housing.
- □ 2. Slacken the two screws of the cover (b) of the connection compartment and open the bottom-hinged cover.
- □ 3. Disconnect the connections from the terminal block (c) and the earthing terminal (d) of the earthing cable (if installed).
- \Box 4. Open the threaded element of the cable entry (e).
- □ 5. Carefully pull the connecting cable out of the transmitter housing.

- Fig. 2: Removing the connecting cable, non-Ex / Ex-i (IS) version a = Cover of electronics compartment
 - b = Threaded fastener of cover for connection compartment
 - c = Terminal block
 - d = Terminal for earthing cable
 - e = Cable entry

Ex-d (XP) version (Fig. 3)

- \Box 1. Switch off the power supply to the device.
- 2. A Warning! For safety's sake, wait at least 10 minutes before proceeding with the next step.
- □ 3. Open the clamp (a) securing the cover of the connection compartment.
- □ 4. Screw the cover of the connection compartment (b) off the transmitter housing.
- □ 5. Disconnect the connections from the terminal block (c) and the earthing terminal (d) of the earthing cable (if installed).
- □ 6. Slacken the threaded fastener of the cable duct (if installed) and of the cable entry (d).
- \Box 7. Carefully pull the connecting cable out of the transmitter housing.

- UA017_002
- Fig. 3: Removing the connecting cable, Ex-d version
 - a = Clamp securing the cover of the connection compartment
 - b = Cover of connection compartment
 - c = Terminals
 - d = Terminal for earthing cable
 - e = Cable entry

000

JA01

4. Removing the transmitter housing (Fig. 4)

- □ 1. Screw the cover of the electronics compartment (a) off the transmitter housing.
- \Box 2. Remove the earthing cable (b), if installed.
- \Box 3. Remove the outer screw (c) securing the transmitter housing.
- □ 4. Remove the inner screw (d) securing the transmitter housing.
- \Box 5. Pull the transmitter housing (e) off the housing neck (f).

UA017_003

- Fig. 4: Removing the transmitter housing
 - *a* = Cover of electronics compartment
 - b = Threaded fastener of earthing cable
 - c = Outer securing screw for transmitter housing
 - *d* = Inner securing screw for transmitter housing
 - e = Transmitter housing
 - $f = Housing \ neck$

5. Replacing housing neck and sensor (Fig. 5)

/!\ Warning!

Risk of fatal injury:

• The piping system must be completely free of pressure in order for the sensor to be replaced. Residual pressure acting on the piping run can cause the sensor to jump out as soon as the retaining screws are slackened.

- If the medium is toxic, explosive or flammable, the piping run in which the measuring device is installed must be flushed or purged before the sensor can be replaced.
- Caution

When converting the measuring device, replace all small items (screws, etc.) with the material supplied as part of the conversion kit.

- \Box 1. Remove the four screws (a) securing the housing neck (b).
- \Box 2. Carefully disengage the housing neck (b) from the sensor (c).
- \Box 3. Remove the four screws (d) securing the sensor.
- \Box 4. Carefully remove the sensor (c) from the basic unit (e).
- □ 5. Using a suitable implement, remove the sensor seal (f) without scratching the sealing face.
- \Box 6. Use as suitable solvent to clean the sealing face (g) of the basic unit.

Caution!

- Take great care not to scratch the sealing face (g).
- The adapter bore must be perfectly clean.
- \Box 7. Place the new sensor seal (f) on the sealing face (g).
- \Box 8. Slip the new sensor (c) into the sensor bore of the basic unit (e).

Caution!

The mark (h, small recess) on the sensor (h) must point in the flow direction (arrow on the basic unit).

- □ 9. Apply a drop of a grease appropriate to the temperature range of the application to the threads and seatings of each screw. The high temperature paste HTP (50048898) is recommended.
- \Box 10. Secure the sensor (c) to the basic unit (e). Conversion of Prowirl 77F, 77W: tightening torque = 5.8Nm (4.3lbf ft), cross wise Conversion of Prowirl 77H: 1st step tightening torque = 10Nm (7.4lbf ft), cross wise; 2nd step tightening torque = 15Nm (11.0lbf ft), cross wise

Temperature [°C (°F)]	7	Torques [Nm (1bft)] 7****-**6*******					
	Pos. 11 Steps; tighten in a diagonally opposite sequence	Pos. 14 Steps and sequence					
	1.	1.	2.	3.			
		A, B, A, B, D, C	B, A, C, D	A, B, C, D			
-200 (-328)	not permitted	not	permitted				
-50 (-58)	14.0 (10.3)	10.0 (7.4)	20.0 (14.8)	26.0 (19.2)			
-40 (-40)	14.0 (10.3)	10.0 (7.4)	20.0 (14.8)	26.0 (19.2)			
+20 (+68)	14.0 (10.3)	10.0 (7.4)	20.0 (14.8)	26.0 (19.2)			
+100 (+212)	11.8 (8.7)	8.5 (6.3)	17.0 (12.5)	22.0 (16.2)			
+200 (+392)	11.1 (8.2)	7.9 (5.8)	15.8 (11.7)	20.6 (15.2)			
+260 (+500)	10.9 (8.0)	7.8 (5.7)	15.6 (11.5)	20.2 (14.9)			
+300 (+572)	10.6 (7.8)	7.6 (5.6)	15.2 (11.2)	19.7 (14.5)			
+400 (+752)	10.1 (7.5)	7.0 (5.2)	14.0 (10.3)	18.2 (13.4)			

Apply one drop of grease to each screw. The grease used must be suited to the application temperature range. The high-temperature paste HTP (50048898) is recommended.

- □ 11. Carefully slip the new housing neck (b) over the sensor (c). Make sure that the arrow on the housing neck is pointing in the direction of flow.
- □ 12. Tighten the four screws (a) securing the housing neck (b). Conversion of Prowirl 77F/W/H: tightening torque = 5.8Nm (4.3lbf ft), cross wise. Conversion of Prowirl 70H: tightening torque = 16Nm (11.8lbf ft), cross wise.

🔊 Note!

- · For DSC sensor replacement, the line needs to be completely depressurized.
- · DSC Sensor replacement can only be performed by technically trained staff ..
- · The operator has to take appropriate precautions against injury when handling cot or hot objects. These precautionary actions have to comply with site safety and work instructions.
- The new gasket included in the conversion kit has to used for the replacement. The old gasket has to be disposed off.
- If conversion is done at other temperatures of the piping than ambient temperature, the torques should be adjusted according to the table below
- Sensor, bolts and meter body need to be at the same temperature for conversion. Therefore first mount DSC sensor with bolts tightened slightly by hand. Then allow the DSC sensor to reach the meter body temperature prior to tightening the retaining bolts with the given toraues.
- For devices according to ATEX II 1/2GD and ATEX II 1/2G, the devices have to be pressure tested after DSC sensor replacement. The pressure test has to be done at a test pressure of 1.5 times design pressure.

	Conversion of 77W, 77F standard sensor	Conversion of 77W, 77F high/low temperature sensor		
Temp. [°C]/[°F]	Torque [Nm]/[lbf ft]	Torque [Nm]/[lbf ft]		
-200/-328	not allowed	5.8/4.3		
-50/-58	not allowed	5.8/4.3		
-40/-40	5.8/4.3	5.8/4.3		
20/68	5.8/4.3	5.8/4.3		
100/212	4.9/3.6	4.9/3.6		
200/392	4.6/3.4	4.6/3.4		
260/500	4.5/3.3	4.5/3.3		
300/572	not allowed	4.4/3.2		
400/752	not allowed	not recommended		

	Conversi	ion of 77H	Conversion of 70H		
Temp. [°C]/[°F]	Tor [Nm]/	·que /[lbf ft]	Torque [Nm]/[Ibf ft]		
	Step 1	Step 1 Step 2		Step 2	
-200/-328	10.0/7.4	10.0/7.4 15.0/11.0		mmended	
-50/-58	10.0/7.4	15.0/11.0	10.0/7.4	26.0/19.2	
-40/-40	10.0/7.4	15.0/11.0	10.0/7.4	26.0/19.2	
20/68	10.0/7.4	15.0/11.0	10.0/7.4	26.0/19.2	
100/212	8.5/6.3	12.7/9.4	8.5/6.3	22.0/16.2	
200/392	7.9/5.8	11.9/8.8	7.9/5.8	20.6/15.2	
260/500	7.8/5.7	11.6/8.6	7.8/5.7	20.2/14.9	
300/572	7.6/5.6	11.4/8.4	7.6/5.6	19.7/14.5	
400/752	7.0/5.2	10.5/7.7	7.0/5.2	18.2/13.4	

13. Coat the O-ring (i) with silicone grease (the O-ring is fitted to the housing neck).

- Fig. 5: Replacing housing neck and sensor
 - a = Threaded fastener of housing neck
 - b = Housing neck
 - c = Sensor
 - d = Threaded fastener of sensor
 - e = Basic unit
 - f = Sensor seal
 - g = Sealing face of basic unit
 - h = Mark on sensor (must point in direction of flow)
 - i = O-ring of housing neck (fitted)

6. Installing the new preamplifier (Fig. 6)

□ 14. Slip the preamplifier (a) into the housing neck (b).

Note!

The housing neck has a guide to ensure that the preamplifier can be installed only in the correct position.

□ 15. Tighten the two securing screws (c) to secure the preamplifier (a).

- Fig. 6: Replacing the housing neck / installing the preamplifier
 - *a* = *Preamplifier*
 - b = Housing neck
 - c = Threaded fastener of preamplifier

7. Installing the new transmitter (Fig. 7)

- □ 1. Screw the cover of the electronics compartment (a) off the transmitter housing.
- \Box 2. Pull the local display module (b) off the retaining rails (c).
- □ 3. Clip the left side of the local display module (b) into the right-hand retaining rail (to hold the local display module temporarily in position).
- \Box 4. Open the top-hinged plastic cover (d).

- \Box 5. Remove the inner screw (h) securing the transmitter.
- □ 6. From below, guide the connecting cable (e) through the transmitter housing and set the transmitter housing on the housing neck (f).

🔊 Note!

UA017_009

JA017 010

The end of the connecting cable emerges from the transmitter housing underneath the holder for the electronics.

- □ 7. Tighten the inner screw (h) securing the transmitter housing.
- \Box 8. Tighten the outer screw securing the transmitter housing (see Page 26 *Fig.* 4, c).
- \Box 9. Connect the connecting cable (e) to the plug (g) of the amplifier board.
- 10. Secure the connecting cable (e) to the retainer below the connectingcable plug.
- $\hfill\square$ 11. Close the top-hinged plastic cover (d).
- □ 12. Affix the new nameplate (Page 26) to the outside of the cover of the connection compartment (i).

Steps 13 and 14 are required only in the case of the Ex-d (XP) versions:

- □ 13. Clip the local display module (b) into the retaining rails (c).
- 14. Screw the cover of the electronics compartment (a) onto the amplifier housing.

- Fig. 7: Installing the transmitter
 - a = Cover of electronics compartment
 - b = Local display module
 - $c = Retaining \ rails$
 - $d = Plastic \ cover$
 - e = Connecting cable, preamplifier/measuring-amplifier board
 - f = Housing neck
 - g = Plug for connecting cable on measuring-amplifier board
 - h = Inner securing screw
 - *i* = New nameplate on cover of connection compartment

UA017_005

8. Wiring the transmitter Non-Ex, Ex-i (IS) version (Fig. 9 and Fig. 8) [A017 Non-Ex / Ex-i (IS) version Fig. 8: a = Threaded fastener of cover for connection compartment *b* = *Cover for connection compartment* c = Cable entryd = Connecting terminal plug*e* = *Local display module* f = Retaining railsg = Cover of electronics compartment□ 1. Slacken the screw (a) of the cover of the connection compartment (b) and open the bottom-hinged cover. \Box 2. Open the threaded element of the cable entry (c). \Box 3. Guide the connecting cable through the cable entry (c) and into the connection compartment. \Box 4. Tighten the threaded element of the cable entry (c). □ 5. Pull the connection terminal plug (d) or plugs, depending on the design, off the I/O board (COM module). \Box 6. Connect the connecting cable to the connection terminal plugs (d). в IA017_007 Fig. 9: Electrical connections, transmitter **A** = Power supply, current output B = Optional pulse input, also usable as status output**C** = Earthing clamp (relevant for remote version) **D** = PFM wiring (Pulse/Frequency Modulation) □ 7. Reconnect the connection terminal plug or plugs (d) to the I/O board

 . Reconnect the connection terminal plug or plugs (d) to the I/O board (COM module).

Note!

- The connection terminal plugs are coded, which means that they cannot be connected wrong way round.
- Check that the connecting cable is correctly routed in the transmitter housing and that there is no strain on the connections to the plugs.
- □ 8. Close the cover of the connection compartment (b) and tighten the screw (a).
- □ 9. Clip the local display module (e) into the retaining rails (f).
- □ 10. Screw the cover of the electronics compartment (g) onto the transmitter housing.

Ex-d (XP) version (Fig. 9 and Fig. 10)

UA017_008

Fig. 10: Ex-d version

- a = Clamp securing the cover of the connection compartment
- *b* = *Cover of connection compartment*
- c = Terminals
- d = Cable entry
- □ 1. Open the clamp (a) securing the cover of the connection compartment.
- □ 2. Screw the cover of the connection compartment (b) off the transmitter housing.
- \Box 3. Open the threaded element of the cable entry (c).
- □ 4. Guide the connecting cable through the cable entry (c) and into the connection compartment.
- \Box 5. Tighten the threaded element of the cable entry (c).
- □ 6. Pull the connection terminal plug (d) or plugs, depending on the design, off the I/O board (COM module).
- □ 7. Connect the connecting cable to the connection terminal plugs (d) (wiring diagram, see *Fig. 9*).
- □ 8. Reconnect the connection terminal plug or plugs (d) to the I/O board (COM module).

Note!

- The connection terminal plugs are coded, which means that they cannot be connected wrong way round.
- Check that the connecting cable is correctly routed in the transmitter housing and that there is no strain on the connections to the plugs.
- □ 9. Screw the cover of the connection compartment (b) onto the transmitter housing.
- 10. Engage the clamp (c) to hold the cover of the connection compartment(b) in position and tighten the threaded fastener of the clamp.

9. Commissioning the device

□ 1. Switch on the power supply to the device: See the section entitled "Commissioning", "Switching on the device" in the Operating Instructions of the Prowirl 72 or the Prowirl 73, as applicable.

Caution!

If the device is in an Ex-rated zone, the appropriate Ex documentation and the Control Drawings also apply.

2. Key the parameters you read out beforehand into the device from the table on Page 5 (Prowirl 72) or Page 14 (Prowirl 73) (see also the section entitled "Commissioning", "Quick Setup" in the Operating Instructions of the Prowirl 72 or Prowirl 73, as applicable.

Parameterization completes conversion; the device is now ready for operation.

□ 3. Complete the form for the archives and send the information to the address printed on the form.

Instructions for Conversion: Prowirl 77W, 77F compact version (standard temperature) to Proline Prowirl 72 remote version

Note!

See Page 3 for an overview of all possible conversions. When converting, use only the Instructions for Conversion listed in the overview for the conversion job in question.

The com	ponents rea	mired for	conversion	are as	follows:
The com	ponents rec	juncu 101	conversion	are as	10110 10 3.

Units	Designation	Units	Designation
1	Prowirl 72 transmitter including connection housing (remote version)	4	Screws for housing neck
1	Remote connection housing	1	Form for archives
1	Connecting cable (10 m or 30 m)	1	Nameplate for transmitter
1	Preamplifier	1	Instructions for Conversion
1	Housing neck including O-rings		

Note the following points:

- It is important to comply with the documentation specific to the meters in question in addition to these Instructions for Conversion, see Page 20:
- Installation, repair, commissioning and maintenance of the measuring equipment must be carried out by qualified, trained specialists. Conversions in Ex-rated zones, moreover, must be carried out by qualified specialists trained to work on Ex-rated devices.
- Always comply with national regulations concerning the overhaul and modification of officially approved or certified electrical devices.
- Risk of damaging electronic components (ESD protection). Static electricity can damage electronic components or impair their operability. Use an ESD-compatible workbench with a grounded worktop or make sure that you are connected to ground by means of a grounding cable (anti-static wrist strap with 1 M Ω protective resistance), as applicable.
- Ensure compliance with all safety instructions (introduced by "Warning!", "Caution!", "Note") before you commence the individual steps of the installation procedure. Document completion of each step by marking the accompanying checkbox (\Box).
- Once you have completed conversion, complete the form for the archives and send the information to the address printed on the form.
- Once conversion has been completed, the documentation for the Proline Prowirl 72 is valid for the converted device.
- Caution!
 - Conversion of meters compliant with the pressure equipment directive (PED 97/23/EC) is **not** permissible. Invariably, these meters have to be converted by Endress+Hauser Flowtec.
 - Conversion work on meters with PROFIBUS or FOUNDATION Fieldbus communication should be performed by Endress+Hauser Service.
 - Devices with FM or CSA approval must be converted by Endress+Hauser Flowtec or Endress+Hauser Service only.

1. Making a backup of the device data

Caution!

Once you have completed conversion, you need the device parameters of the Prowirl 77 transmitter for commissioning. Without these values you would not be able to have the Prowirl 72 device in operation within a short space of time.

□ 1. Read out the device parameters of the Prowirl 77 (see Page 5 ff.).

2. Entering the data on the nameplate (Figure 1)

□ 1. Enter the data on the new nameplate. You will find the data you need on the nameplate of the Prowirl 77.

Sensorrel Sensor re	evante Daten: levant data:			
TM:	-40+260°C other:		-200+400°C	
Materials:	CF3M (1.4404) other:	/ 3161	_ (1.4435)	
Gasket:	Graphite Viton		Gylon Kalrez	

Fig. 1: Example of a nameplate; the nameplate is subsequently affixed to the cover of the connection compartment.

3. Removing the connecting cable

When converting measuring devices used in explosive atmospheres, always comply with the local regulations and safety precautions required by the owner-operator.

Non-Ex / Ex-i (IS) version (Fig. 2)

- □ 1. Screw the cover of the electronics compartment (a) off the transmitter housing.
- □ 2. Slacken the two screws of the cover (b) of the connection compartment and open the bottom-hinged cover.
- □ 3. Disconnect the connections from the terminal block (c) and the earthing terminal (d) for the earthing cable (if installed).
- \Box 4. Open the threaded element of the cable entry (e).
- □ 5. Carefully pull the connecting cable out of the transmitter housing.

- *Fig. 2: Removing the connecting cable, non-Ex / Ex-i (IS) version a = Cover of electronics compartment*
 - b = Threaded fastener of cover for connection compartment
 - c = Terminal block
 - d = Terminal for earthing cable
 - e = Cable entry

Ex-d (XP) version (Fig. 3)

- \Box 1. Switch off the power supply to the device.
- 2. A Warning! For safety's sake, wait at least 10 minutes before proceeding with the next step.
- \Box 3. Open the clamp (a) securing the cover of the connection compartment.
- □ 4. Screw the cover of the connection compartment (b) off the transmitter housing.
- □ 5. Disconnect the connections from the terminal block (c) and the earthing terminal (d) for the earthing cable (if installed).
- □ 6. Slacken the threaded fastener of the cable duct (if installed) and of the cable entry (e).
- □ 7. Carefully pull the connecting cable out of the transmitter housing.

JA017_002

Fig. 3: Removing the connecting cable, Ex-d version

- a = Clamp securing the cover of the connection compartment
 - b = Cover of connection compartment
 - c = Terminals

JA017 000

- d = Terminal for earthing cable
- e = Cable entry

4. Removing the transmitter housing (Fig. 4)

- □ 1. Screw the cover of the electronics compartment (a) off the transmitter housing.
- \Box 2. Remove the earthing cable (b), if installed.
- □ 3. Remove the outer screw (c) securing the transmitter housing.
- □ 4. Remove the inner screw (d) securing the transmitter housing.
- \Box 5. Pull the transmitter housing (e) off the housing neck (f).

- Fig. 4: Removing the transmitter housing
 - *a* = Cover of electronics compartment
 - b = Threaded fastener of earthing cable
 - c = Outer securing screw for transmitter housing
 - d = Inner securing screw for transmitter housing
 - e = Transmitter housing
 - $f = Housing \ neck$

JA017_003

Caution!

rdh -

Caution!

When converting the measuring device, replace all small items (screws, etc.) with the material supplied as part of the conversion kit.

 \Box 1. Remove the four screws (a) securing the housing neck (b).

Warning! Risk of fatal injury: Do not, under any circumstances, slacken the screws securing the sensor.

- □ 2. Carefully disengage the housing neck (b) from the sensor (c).
- □ 3. Carefully slip the new housing neck (b) over the sensor (c). Make sure that the arrow on the housing neck is pointing in the direction of flow.
- 4. Tighten the four screws (a) securing the housing neck (b).
 Tightening torque = 5.8Nm (4.3lbf ft); tighten in diagonally opposite sequence in three uniform steps
- □ 5. Coat the O-ring (d) with silicone grease (the O-ring is fitted to the housing neck).
- \Box 6. Slip the preamplifier (f) into the housing neck (b).
 - Note!

The housing neck has a guide to ensure that the preamplifier can be installed only in the correct position.

 \Box 7. Tighten the two securing screws (e) to secure the preamplifier (f).

Danger of life! Don't loosen the sensor screws!

- Fig. 5: Replacing the housing neck / installing the preamplifier
 - a = Threaded fastener of housing neck
 - b = Housing neck
 - c = Sensor
 - d = O-ring of housing neck (fitted)
 - *e* = *Threaded fastener of preamplifier*
 - f = Preamplifier

6. Installing the remote connection housing (Fig. 6)

- □ 1. Unscrew the cover (a) from the remote-version connection housing (b).
- 2. Slacken the screws securing the connection board (c) and remove the connection board from the remove-version connection housing (b).
- 3. Route preamplifier cable (d) from below through the remote-version connection housing (b) and connect the plug of preamplifier cable (d) on connection board (c) (on the underside of the connection board).
- □ 4. Install the connection board (c) in remote-version connection housing (b).

- □ 5. Position the remote-version connection housing (b) on housing neck (e).
- \Box 6. Tighten the screw (f) securing the remote-version connection housing.
- \Box 7. Open the threaded element of the strain relief device (g).
- $\hfill\square$ 8. Open the threaded element of the cable entry (h).
- □ 9. Guide the connecting cable (connection between connection housing and transmitter) through the cable entry (h) and into the connection housing.
- $\hfill\square$ 10. Tighten the threaded element of the cable entry (h).
- $\hfill\square$ 11. Connect the connecting cable.

Note!

See the section entitled "Wiring" \rightarrow "Connecting the remote version" in the Operating Instructions of the Prowirl 72 (BA00084D/06/EN) for a detailed description of the wiring.

- □ 12. Install cable grip (g), making sure that the cable shield is underneath the grip.
- $\hfill\square$ 13. Screw the cover (a) onto the connection housing (b).

- Fig. 6: Installing the remote connection housing
 - a = Housing cover
 - $b = Remote \ connection \ housing$
 - c = Connection board
 - $d = Preamplifier \ cable$
 - e = Housing neck
 - $f = Securing \ screw$
 - g = Cable grip
 - $h = Cable \ entry$

7. Installing the transmitter

□ 1. Install the transmitter.

Note!

See the section entitled "Installation" \rightarrow "Installing the transmitter (remote version)" in the Operating Instructions of the Prowirl 72 (BA00084D/06/EN) for a detailed description of the installation procedure.

UA017_012

8. Connecting the connecting cable

□ 1. Connect the cable between the remote connection housing and the transmitter (remote version) to the transmitter.

Note!

See the section entitled "Wiring" \rightarrow "Connecting the remote version" in the Operating Instructions of the Prowirl 72 (BA00084D/06/EN) for a detailed description of the wiring.

9. Wiring the transmitter

Non-Ex, Ex-i (IS) version (Fig. 8 and Fig. 7)

Fig. 7: Non-Ex / Ex-d (XP) version

- *a* = *Threaded fastener of cover for connection compartment*
- b = Cover for connection compartment
- c = Cable entry
- d = Connecting terminal plug
- e = Local display module
- f = Retaining rails
- g = Cover of electronics compartment
- □ 1. Screw the cover of the electronics compartment (g) off the transmitter housing.
- \Box 2. Pull the local display module (e) off the retaining rails (f).
- 3. Clip the left side of the local display module (e) into the right-hand retaining rail (to hold the local display module temporarily in position).
- □ 4. Slacken the screw (a) of the cover of the connection compartment (b) and open the bottom-hinged cover.
- \Box 5. Open the threaded element of the cable entry (c).
- □ 6. Guide the connecting cable through the cable entry (c) and into the connection compartment.
- \Box 7. Tighten the threaded element of the cable entry (c).
- □ 8. Pull the connection terminal plug (d) or plugs, depending on the design, off the I/O board (COM module).
- □ 9. Connect the connecting cable to the connection terminal plugs (d).

- Fig. 8: Electrical connections, transmitter
 - **A** = Power supply, current output
 - $\mathbf{B} = Optional pulse input, also usable as status output$
 - **C** = *Earthing clamp (relevant for remote version)*
 - **D** = PFM wiring (Pulse/Frequency Modulation)
- □ 10. Reconnect the connection terminal plug or plugs (d) to the I/O board (COM module).

Note!

- The connection terminal plugs are coded, which means that they cannot be connected wrong way round.
- Check that the connecting cable is correctly routed in the transmitter housing and that there is no strain on the connections to the plugs.
- □ 11. Close the cover of the connection compartment (b) and tighten the screw (a).
- □ 12. Affix the new nameplate (Page 31) to the outside of the cover of the connection compartment (b).
- □ 13. Clip the local display module (e) into the retaining rails (f).
- □ 14. Screw the cover of the electronics compartment (g) onto the transmitter housing.

Ex-d (XP) version (Fig. 8 and Fig. 9)

- Fig. 9: Ex-d version
 - a = Clamp securing the cover of the connection compartment
 - b = Cover of connection compartment
 - c = Terminals
 - d = Cable entry
- \Box 1. Open the clamp (a) securing the cover of the connection compartment.
- □ 2. Screw the cover of the connection compartment (b) off the transmitter housing.
- \Box 3. Open the threaded element of the cable entry (c).
- □ 4. Guide the connecting cable through the cable entry (c) and into the connection compartment.
- \Box 5. Tighten the threaded element of the cable entry (c).
- □ 6. Pull the connection terminal plug (d) or plugs, depending on the design, off the I/O board (COM module).
- □ 7. Connect the connecting cable to the connection terminal plugs (d) (wiring diagram, see *Fig. 8*).
- □ 8. Reconnect the connection terminal plug or plugs (d) to the I/O board (COM module).

Note!

JA017_007

- The connection terminal plugs are coded, which means that they cannot be connected wrong way round.
- Check that the connecting cable is correctly routed in the transmitter housing and that there is no strain on the connections to the plugs.
- □ 9. Screw the cover of the connection compartment (b) onto the transmitter housing.
- 10. Engage the clamp (c) to hold the cover of the connection compartment(b) in position and tighten the threaded fastener of the clamp.

UA017_011

10. Marking the converted device (Ex-d (XP) version)

Note Note

The procedure for rewiring the transmitter for the non-Ex and Ex-i versions includes marking of the measuring device as converted. Consequently, the steps described below apply only to Ex-d (XP) transmitters:

Fig. 10: Marking the converted device

- a = Cover of electronics compartment
- b = Local display module
 - c = Retaining rails
 - d = New nameplate on cover of connection compartment
- □ 1. Screw the cover of the electronics compartment (a) off the transmitter housing.
- □ 2. Pull the local display module (b) off the retaining rails (c).
- □ 3. Affix the new nameplate (Page 31) to the outside of the cover of the connection compartment (d).
- $\hfill\square$ 4. Clip the local display module (b) into the retaining rails (c).
- □ 5. Screw the cover of the electronics compartment (a) onto the transmitter housing.

11. Commissioning the device

 I. Switch on the power supply to the device: See the section entitled "Commissioning", "Switching on the device" in the Operating Instructions of the Prowirl 72 (BA00084D/06/EN).

Caution!

If the device is in an Ex-rated zone, the appropriate Ex documentation and the Control Drawings also apply.

□ 2. Key the parameters you read out beforehand Page 5 into the device from the table (see also the section entitled "Commissioning",
 "→Quick Setup" in the Operating Instructions of the Prowirl 72 (BA00084D/06/EN).

Parameterization completes conversion; the device is now ready for operation.

□ 3. Complete the form for the archives and send the information to the address printed on the form.

Instructions for Conversion: Prowirl 77W, 77F, 77H compact version (high/low temperature and high pressure) to Proline Prowirl 72 remote version

Prowirl 77F, 77H compact version to Proline Prowirl 73 remote version

Prowirl 70F compact version to Proline Prowirl 72 remote version

Note!

See Page 3 (Prowirl 72) or Page 12 (Prowirl 73) for an overview of all possible conversions. When converting, use only the Instructions for Conversion listed in the overview for the conversion job in question.

Units	Designation	Units	Designation
1	Prowirl 72 or Prowirl 73 transmitter, as applicable	1	DSC sensor
1	Connection housing, remote version	4	Screws for DSC sensor
1	Connecting cable (10 m or 30 m)	1	DSC sensor seal (flat gasket-type seal)
1	Preamplifier	1	Nameplate for transmitter
1	Housing neck including O-rings	1	Form for archives
4	Screws for housing neck	1	Instructions for Conversion

The components required for conversion are as follows:

Note the following points:

- It is important to comply with the documentation specific to the meters in question in addition to these Instructions for Conversion, see Page 20:
- Installation, repair, commissioning and maintenance of the measuring equipment must be carried out by qualified, trained specialists. Conversions in Ex-rated zones, moreover, must be carried out by qualified specialists trained to work on Ex-rated devices.
- Always comply with national regulations concerning the overhaul and modification of officially approved or certified electrical devices.
- Risk of damaging electronic components (ESD protection). Static electricity can damage electronic components or impair their operability. Use an ESD-compatible workbench with a grounded worktop or make sure that you are connected to ground by means of a grounding cable (anti-static wrist strap with 1 M Ω protective resistance), as applicable.
- Ensure compliance with all safety instructions (introduced by "Warning!", "Caution!", "Note") before you commence the individual steps of the installation procedure. Document completion of each step by marking the accompanying checkbox (\Box).
- Once you have completed conversion, complete the form for the archives and send the information to the address printed on the form.
- Once conversion has been competed, the documentation for Proline Prowirl 72 or, as applicable, Proline Prowirl 73, is valid for the converted device.

Caution!

- Conversion of meters compliant with the pressure equipment directive (PED 97/23/EC) is **not** permissible. Invariably, these meters have to be converted by Endress+Hauser Flowtec.
- Conversion work on meters with PROFIBUS or FOUNDATION Fieldbus communication should be performed by Endress+Hauser Service.
- Devices with FM or CSA approval must be converted by Endress+Hauser Flowtec or Endress+Hauser Service only.

1. Making a backup of the device data

(`)

Caution!

Once you have completed conversion, you need the device parameters of the Prowirl 77 transmitter for commissioning. Without these values you would not be able to have the Prowirl 72 or Prowirl 73 device in operation within a short space of time.

□ 1. Read out the device parameters of the Prowirl 77. See Page 5 ff. (for Prowirl 72) or Page 14 ff. (for Prowirl 73).

2. Entering the data on the nameplate (Figure 1)

 I. Enter the data on the new nameplate. You will find the data you need on the nameplate of the Prowirl 77.

Fig. 1: Example of a nameplate; the nameplate is subsequently affixed to the cover of the connection compartment.

3. Removing the connecting cable

] Caution!

When converting measuring devices used in explosive atmospheres, always comply with the local regulations and safety precautions required by the owner-operator.

Non-Ex / Ex-i (IS) version (Fig. 2)

- □ 1. Screw the cover of the electronics compartment (a) off the transmitter housing.
- □ 2. Slacken the two screws of the cover (b) of the connection compartment and open the bottom-hinged cover.
- □ 3. Disconnect the connections from the terminal block (c) and the earthing terminal (d) for the earthing cable (if installed).
- \Box 4. Open the threaded element of the cable entry (e).
- □ 5. Carefully pull the connecting cable out of the transmitter housing.

- Fig. 2: Removing the connecting cable, non-Ex / Ex-i (IS) version
 - a = Cover of electronics compartment
 - b = Threaded fastener of cover for connection compartment
 - $c = Terminal \ block$
 - d = Terminal for earthing cable
 - e = Cable entry

Ex-d (XP) version (Fig. 3)

- \Box 1. Switch off the power supply to the device.
- 2. A Warning! For safety's sake, wait at least 10 minutes before proceeding with the next step.
- □ 3. Open the clamp (a) securing the cover of the connection compartment.
- □ 4. Screw the cover of the connection compartment (b) off the transmitter housing.
- □ 5. Disconnect the connections from the terminal block (c) and the earthing terminal (d) for the earthing cable (if installed).
- □ 6. Slacken the threaded fastener of the cable duct (if installed) and of the cable entry (e).
- \Box 7. Carefully pull the connecting cable out of the transmitter housing.

JA017_002

- Fig. 3: Removing the connecting cable, Ex-d version
 - a = Clamp securing the cover of the connection compartment
 - b = Cover of connection compartment
 - c = Terminals
 - d = Terminal for earthing cable
 - e = Cable entry

UA017_000

4. Removing the transmitter housing (Fig. 4)

- □ 1. Screw the cover of the electronics compartment (a) off the transmitter housing.
- \Box 2. Remove the earthing cable (b), if installed.
- □ 3. Remove the outer screw (c) securing the transmitter housing.
- □ 4. Remove the inner screw (d) securing the transmitter housing.
- \Box 5. Pull the transmitter housing (e) off the housing neck (f).

UA017_003

- Fig. 4: Removing the transmitter housing
 - *a* = Cover of electronics compartment
 - b = Threaded fastener of earthing cable
 - *c* = Outer securing screw for transmitter housing
 - d = Inner securing screw for transmitter housing
 - e = Transmitter housing
 - $f = Housing \ neck$

5. Replacing housing neck and sensor (Fig. 5)

/!\ Warning!

Risk of fatal injury:

• The piping system must be completely free of pressure in order for the sensor to be replaced. Residual pressure acting on the piping run can cause the sensor to jump out as soon as the retaining screws are slackened.

- If the medium is toxic, explosive or flammable, the piping run in which the measuring device is installed must be flushed or purged before the sensor can be replaced.
- Caution

When converting the measuring device, replace all small items (screws, etc.) with the material supplied as part of the conversion kit.

- \Box 1. Remove the four screws (a) securing the housing neck (b).
- \Box 2. Carefully disengage the housing neck (b) from the sensor (c).
- \Box 3. Remove the four screws (d) securing the sensor.
- □ 4. Carefully remove the sensor (c) from the basic unit (e).
- □ 5. Using a suitable implement, remove the sensor seal (f) without scratching the sealing face.
- \Box 6. Use as suitable solvent to clean the sealing face (g) of the basic unit.

Caution!

- Take great care not to scratch the sealing face (g).
- The adapter bore must be perfectly clean.
- \Box 7. Place the new sensor seal (f) on the sealing face (g).
- \Box 8. Slip the new sensor (c) into the sensor bore of the basic unit (e).

Caution!

The mark (h, small recess) on the sensor (h) must point in the flow direction (arrow on the basic unit).

- □ 9. Apply a drop of a grease appropriate to the temperature range of the application to the threads and seatings of each screw. The high temperature paste HTP (50048898) is recommended.
- \Box 10. Secure the sensor (c) to the basic unit (e). Conversion of Prowirl 77F, 77W: tightening torque = 5.8Nm (4.3lbf ft), cross wise Conversion of Prowirl 77H: 1st step tightening torque = 10Nm (7.4lbf ft), cross wise; 2nd step tightening torque = 15Nm (11.0lbf ft), cross wise

Temperature [°C (°F)]	Torques [Nm (lbft)] 7****-**6*******					
	Pos. 11 Pos. 14 Steps; tighten in a diagonally opposite sequence Steps and sequence					
	1.	1.	2.	3.		
		A, B, A, B, D, C	B, A, C, D	A, B, C, D		
-200 (-328)	not permitted	not	permitted			
-50 (-58)	14.0 (10.3)	10.0 (7.4)	20.0 (14.8)	26.0 (19.2)		
-40 (-40)	14.0 (10.3)	10.0 (7.4)	20.0 (14.8)	26.0 (19.2)		
+20 (+68)	14.0 (10.3)	10.0 (7.4)	20.0 (14.8)	26.0 (19.2)		
+100 (+212)	11.8 (8.7)	8.5 (6.3)	17.0 (12.5)	22.0 (16.2)		
+200 (+392)	11.1 (8.2)	7.9 (5.8)	15.8 (11.7)	20.6 (15.2)		
+260 (+500)	10.9 (8.0)	7.8 (5.7)	15.6 (11.5)	20.2 (14.9)		
+300 (+572)	10.6 (7.8)	7.6 (5.6)	15.2 (11.2)	19.7 (14.5)		
+400 (+752)	10.1 (7.5)	7.0 (5.2)	14.0 (10.3)	18.2 (13.4)		

Apply one drop of grease to each screw. The grease used must be suited to the application temperature range. The high-temperature paste HTP (50048898) is recommended.

- □ 11. Carefully slip the new housing neck (b) over the sensor (c). Make sure that the arrow on the housing neck is pointing in the direction of flow.
- □ 12. Tighten the four screws (a) securing the housing neck (b). Conversion of Prowirl 77F/W/H: tightening torque = 5.8Nm (4.3lbf ft), cross wise. Conversion of Prowirl 70H: tightening torque = 16Nm (11.8lbf ft), cross wise.

🔊 Note!

- For DSC sensor replacement, the line needs to be completely depressurized.
- · DSC Sensor replacement can only be performed by technically trained staff ..
- · The operator has to take appropriate precautions against injury when handling cot or hot objects. These precautionary actions have to comply with site safety and work instructions.
- The new gasket included in the conversion kit has to used for the replacement. The old gasket has to be disposed off.
- If conversion is done at other temperatures of the piping than ambient temperature, the torques should be adjusted according to the table below
- Sensor, bolts and meter body need to be at the same temperature for conversion. Therefore first mount DSC sensor with bolts tightened slightly by hand. Then allow the DSC sensor to reach the meter body temperature prior to tightening the retaining bolts with the given toraues.
- For devices according to ATEX II 1/2GD and ATEX II 1/2G, the devices have to be pressure tested after DSC sensor replacement. The pressure test has to be done at a test pressure of 1.5 times design pressure.

	Conversion of 77W, 77F standard sensor	Conversion of 77W, 77F high/low temperature sensor
Temp. [°C]/[F]	Torque [Nm]/[lbf ft]	Torque [Nm]/[Ibf ft]
-200/-328	not allowed	5.8/4.3
-50/-58	not allowed	5.8/4.3
-40/-40	5.8/4.3	5.8/4.3
20/68	5.8/4.3	5.8/4.3
100/212	4.9/3.6	4.9/3.6
200/392	4.6/3.4	4.6/3.4
260/500	4.5/3.3	4.5/3.3
300/572	not allowed	4.4/3.2
400/752	not allowed	not recommended

	Conversi	ion of 77H	Convers	ion of 70H
Temp. [°C]/[F]	Torque [Nm]/[lbf ft]		Tor [Nm]	rque /[lbf ft]
	Step 1	Step 2	Step 1 Step 2	
-200/-328	10.0/7.4	15.0/11.0	not recommended	
-50/-58	10.0/7.4	15.0/11.0	10.0/7.4 26.0/19	
-40/-40	10.0/7.4	15.0/11.0	10.0/7.4 26.0/19	
20/68	10.0/7.4	15.0/11.0	10.0/7.4 26.0/19.	
100/212	8.5/6.3	12.7/9.4	8.5/6.3	22.0/16.2
200/392	7.9/5.8	11.9/8.8	7.9/5.8	20.6/15.2
260/500	7.8/5.7	11.6/8.6	7.8/5.7 20.2/14.	
300/572	7.6/5.6	11.4/8.4	7.6/5.6 19.7/14.5	
400/752	7.0/5.2	10.5/7.7	7.0/5.2	18.2/13.4

13. Coat the O-ring (i) with silicone grease (the O-ring is fitted to the housing neck).

- Fig. 5: Replacing housing neck and sensor
 - a = Threaded fastener of housing neck
 - b = Housing neck
 - c = Sensor
 - d = Threaded fastener of sensor
 - e = Basic unit
 - f = Sensor seal
 - g = Sealing face of basic unit
 - h = Mark on sensor (must point in direction of flow)

i = O-ring of housing neck (fitted)

6. Installing the new preamplifier (Fig. 6)

□ 14. Slip the preamplifier (a) into the housing neck (b).

Note!

The housing neck has a guide to ensure that the preamplifier can be installed only in the correct position.

□ 15. Tighten the two securing screws (c) to secure the preamplifier (a).

- *Fig. 6: Replacing the housing neck / installing the preamplifier*
 - a = Preamplifier
 - b = Housing neck
 - c = Threaded fastener of preamplifier

7. Installing the remote connection housing (Fig. 7)

- \Box 1. Unscrew the cover (a) from the connection housing (b).
- □ 2. Slacken the screws securing the connection board (c) and remove the connection board from the connection housing.
- □ 3. Route preamplifier cable (d) from below through the remote-version connection housing (b) and connect the plug of preamplifier cable (d) on connection board (c) (on the underside of the connection board).
- □ 4. Install the connection board (c) in remote-version connection housing (b).
- □ 5. Position the remote-version connection housing (b) on housing neck (e).
- \Box 6. Tighten the screw (f) securing the remote-version connection housing.
- \Box 7. Open the threaded element of the strain relief device (g).
- \Box 8. Open the threaded element of the cable entry (h).
- □ 9. Guide the connecting cable (connection between connection housing and transmitter) through the cable entry (h) and into the connection housing.
- \Box 10. Tighten the threaded element of the cable entry (h).
- \Box 11. Connect the connecting cable.

Note!

See the section entitled "Wiring" \rightarrow "Connecting the remote version" in the Operating Instructions of the Prowirl 72 or Prowirl 73, as applicable, for a detailed description of the wiring.

- □ 12. Install cable grip (g), making sure that the cable shield is underneath the grip.
- \Box 13. Screw the cover (a) onto the connection housing (b).

Fig. 7: Installing the remote connection housing

- a = Housing cover
 - b = Remote connection housing
 - c = Connection board
 - $d = Preamplifier \ cable$
 - e = Housing neck
 - $f = Securing \ screw$
 - g = Cable grip
 - $h = Cable \ entry$

JA017_012

UA017_009

JA017 010

8. Installing the transmitter (remote version)

□ 1. Install the transmitter.

Note!

See the section entitled "Installation" \rightarrow "Installing the transmitter remote version" in the Operating Instructions of the Prowirl 72, or Prowirl 73, as applicable, for a detailed description of the installation procedure.

9. Connecting the connecting cable

□ 1. Connect the cable between the remote connection housing and the transmitter (remote version) to the transmitter.

Note!

See the section entitled "Wiring" \rightarrow "Connecting the remote version" in the Operating Instructions of the Prowirl 72 or Prowirl 73, as applicable, for a detailed description of the wiring.

10. Wiring the transmitter

Non-Ex, Ex-i (IS) version (Fig. 8 and Fig. 9)

- Fig. 8: Non-Ex / Ex-i (IS) version
 - *a* = *Threaded fastener of cover for connection compartment*
 - b = Cover for connection compartment
 - c = Cable entry
 - d = Connecting terminal plug
 - *e* = *Local display module*
 - f = Retaining rails
 - g = Cover of electronics compartment
- □ 1. Screw the cover of the electronics compartment (g) off the transmitter housing.
- \Box 2. Pull the local display module (e) off the retaining rails (f).
- □ 3. Clip the left side of the local display module (e) into the right-hand retaining rail (to hold the local display module temporarily in position).
- □ 4. Slacken the screw (a) of the cover of the connection compartment (b) and open the bottom-hinged cover.
- \Box 5. Open the threaded element of the cable entry (c).
- □ 6. Guide the connecting cable through the cable entry (c) and into the connection compartment.
- \Box 7. Tighten the threaded element of the cable entry (c).
- □ 8. Pull the connection terminal plug (d) or plugs, depending on the design, off the I/O board (COM module).

 $\hfill 9. \hfill \ensuremath{\mathsf{G}}$ Connect the connecting cable to the connection terminal plugs (d).

- Fig. 9: Electrical connections, transmitter
 - **A** = Power supply, current output
 - B = Optional pulse input, also usable as status output
 - $\mathbf{C} = Earthing \ clamp \ (relevant \ for \ remote \ version)$
 - D = PFM wiring (Pulse/Frequency Modulation)
- □ 10. Reconnect the connection terminal plug or plugs (d) to the I/O board (COM module).

Note!

- The connection terminal plugs are coded, which means that they cannot be connected wrong way round.
- Check that the connecting cable is correctly routed in the transmitter housing and that there is no strain on the connections to the plugs.
- □ 11. Close the cover of the connection compartment (b) and tighten the screw (a).
- 12. Affix the new nameplate (Page 36) to the outside of the cover of the connection compartment (b).
- □ 13. Clip the local display module (e) into the retaining rails (f).
- □ 14. Screw the cover of the electronics compartment (g) onto the transmitter housing.

Ex-d (XP) version (Fig. 9 and Fig. 10)

7_007

- Fig. 10: Ex-d version
 - a = Clamp securing the cover of the connection compartment
 - b = Cover of connection compartment
 - c = Terminals d = Cable entry
- □ 1. Open the clamp (a) securing the cover of the connection compartment.
- □ 2. Screw the cover of the connection compartment (b) off the transmitter housing.
- \Box 3. Open the threaded element of the cable entry (c).
- □ 4. Guide the connecting cable through the cable entry (c) and into the connection compartment.
- \Box 5. Tighten the threaded element of the cable entry (c).
- □ 6. Pull the connection terminal plug (d) or plugs, depending on the design, off the I/O board (COM module).
- □ 7. Connect the connecting cable to the connection terminal plugs (d) (wiring diagram, see *Fig. 9*).

□ 8. Reconnect the connection terminal plug or plugs (d) to the I/O board (COM module).

Note!

- The connection terminal plugs are coded, which means that they cannot be connected wrong way round.
- Check that the connecting cable is correctly routed in the transmitter housing and that there is no strain on the connections to the plugs.
- □ 9. Screw the cover of the connection compartment (b) onto the transmitter housing.
- 10. Engage the clamp (c) to hold the cover of the connection compartment(b) in position and tighten the threaded fastener of the clamp.

11. Marking the converted device (Ex-d (XP) version)

- Note Note
 - The procedure for rewiring the transmitter for the non-Ex and Ex-i versions includes marking of the measuring device as converted. Consequently, the steps described below apply only to Ex-d (XP) transmitters:
- □ 1. Screw the cover of the electronics compartment (a) off the transmitter housing.
- \Box 2. Pull the local display module (b) off the retaining rails (c).
- □ 3. Affix the new nameplate (Page 36) to the outside of the cover of the connection compartment (d).
- □ 4. Clip the local display module (b) into the retaining rails (c).
- □ 5. Screw the cover of the electronics compartment (a) onto the transmitter housing.

12. Commissioning the device

 I. Switch on the power supply to the device: See the section entitled "Commissioning", "Switching on the device" in the Operating Instructions of the Prowirl 72 or the Prowirl 73, as applicable.

If the device is in an Ex-rated zone, the appropriate Ex documentation and the Control Drawings also apply.

2. Key the parameters you read out beforehand into the device from the table on Page 5 (Prowirl 72) or Page 14 (Prowirl 73) (see also the section entitled "Commissioning", "Quick Setup" in the Operating Instructions of the Prowirl 72 or Prowirl 73, as applicable.

Parameterization completes conversion; the device is now ready for operation.

□ 3. Complete the form for the archives and send the information to the address printed on the form.

Caution!

Instructions for Conversion: Proline Prowirl 72 compact version to Proline Prowirl 72 remote version (non-Ex)

Proline Prowirl 73 compact version to Proline Prowirl 73 remote version (non-Ex)

Note!

See Page 3 (Prowirl 72) or Page 12 (Prowirl 73) for an overview of all possible conversions. When converting, use only the Instructions for Conversion listed in the overview for the conversion job in question.

The components required for conversion are as follows:

Units	Designation	Units	Designation
1	Connection housing, transmitter (remote version)	1	Form for archives
1	Remote connection housing	1	Instructions for Conversion
1	Connecting cable (10 m or 30 m)		

Note the following points:

- It is important to comply with the documentation specific to the meters in question in addition to these Instructions for Conversion, see Page 20:
- Installation, repair, commissioning and maintenance of the measuring equipment must be carried out by qualified, trained specialists. Conversions in Ex-rated zones, moreover, must be carried out by qualified specialists trained to work on Ex-rated devices.
- Always comply with national regulations concerning the overhaul and modification of officially approved or certified electrical devices.
- Risk of damaging electronic components (ESD protection). Static electricity can damage electronic components or impair their operability. Use an ESD-compatible workbench with a grounded worktop or make sure that you are connected to ground by means of a grounding cable (anti-static wrist strap with 1 M Ω protective resistance), as applicable.
- Ensure compliance with all safety instructions (introduced by "Warning!", "Caution!", "Note") before you commence the individual steps of the installation procedure. Document completion of each step by marking the accompanying checkbox (\Box).
- Once you have completed conversion, complete the form for the archives and send the information to the address printed on the form.
- Once conversion has been competed, the documentation for Proline Prowirl 72 or, as applicable, Proline Prowirl 73, is valid for the converted device.

1. Removing the transmitter housing (Fig. 1)

- □ 1. Screw the cover of the electronics compartment (a) off the transmitter housing.
- \Box 2. Pull the local display module (b) off the retaining rails (c).
- □ 3. Clip the left side of the local display module (b) into the right-hand retaining rail (to hold the local display module temporarily in position).
- □ 4. Slacken the screw (d) of the cover of the connection compartment (e) and open the bottom-hinged cover.
- \Box 5. Open the threaded element of the cable entry (f).
- G. Disconnect the connections of the connection terminal plugs (g). You must pull the connection terminal plugs off the I/O board (COM module) for this process.
- □ 7. Disconnect the connection to terminal (h) of the earthing cable (if fitted).
- \Box 8. Carefully pull the connecting cable out of the transmitter housing.
- \Box 9. Open the top-hinged plastic cover (i).
- $\hfill\square$ 10. Unplug the preamplifier cable (j) from the amplifier board.
- \Box 11. Remove the inner screw (k) securing the transmitter housing.
- \Box 12. Remove the outer screw (1) securing the transmitter housing.
- \Box 13. Remove the connection from the earthing terminal (m)
- □ 14. Carefully pull the transmitter housing off the housing neck (n).

Caution!

When separating the transmitter housing from the neck, take care not to damage the preamplifier cable.

2. Installing the remote connection housing (Fig. 2)

- □ 1. Unscrew the cover (a) from the remote-version connection housing (b).
- 2. Slacken the screws securing the connection board (c) and remove the connection board from the remote-version connection housing.
- 3. Route preamplifier cable (d) from below through the remote-version connection housing (b) and connect the plug of preamplifier cable (d) on connection board (c) (on the underside of the connection board).
- □ 4. Install the connection board (c) in remote-version connection housing (b).
- □ 5. Position the remote-version connection housing (b) on housing neck (e).
- \Box 6. Tighten the screw (f) securing the remote-version connection housing.
- \Box 7. Open the threaded element of the strain relief device (g).
- \Box 8. Open the threaded element of the cable entry (h).
- 9. Guide the connecting cable (connection between connection housing and transmitter) through the cable entry (h) and into the connection housing.
- □ 10. Connect the connecting cable.

Note!

See the section entitled "Wiring" \rightarrow "Connecting the remote version" in the Operating Instructions of the Prowirl 72 or Prowirl 73, as applicable, for a detailed description of the wiring.

- □ 11. Install cable grip (g), making sure that the cable shield is underneath the grip.
- \Box 12. Tighten the threaded element of the cable entry (h).
- \Box 13. Screw the cover (a) onto the remote-version connection housing (b).

- *Fig. 2: Installing the remote connection housing*
 - $a = Housing \ cover$
 - $b = Remote \ connection \ housing$
 - c = Connection board
 - $d = Preamplifier \ cable$
 - e = Housing neck
 - f = Securing screw
 - g = Cable grip
 - $h = Cable \ entry$

3. Installing the transmitter (Fig. 3)

 $\hfill\square$ 1. Install the connection housing of the transmitter.

Note!

See the section entitled "Installation" \rightarrow "Installing the transmitter remote version" in the Operating Instructions of the Prowirl 72, or Prowirl 73, as applicable, for a detailed description of the installation procedure.

- \Box 2. Open the top-hinged plastic cover (a).
- 3. From below, guide the connecting cable including earthing cable (d) through the transmitter housing and set the transmitter housing on the connection housing (e).

Note!

The end of the connecting cable including grounding cable (b) emerges from the transmitter housing underneath the holder for the electronics.

- □ 4. Connect the connecting cable (d) to the plug (b) of the amplifier board.
- □ 5. Remove the inner securing screw (c).
- □ 6. Connect the earthing cable (d) to the inner securing screw (c) and tighten the screw.
- \Box 7. Close the top-hinged plastic cover (a).
- \Box 8. Tighten the outer screw (f) securing the transmitter housing.

Fig. 3: Installing the connection housing

 $a = Plastic \ cover$

JA017_012

- b = Plug for connecting cable on measuring-amplifier board
- c = Inner securing screw for transmitter housing
- d = Connecting cable, preamplifier/measuring-amplifier board, including earthing cable
- e = Connection housing
- f = Outer securing screw for transmitter housing
- g = Earthing terminal

JA017_014

4. Connecting the connecting cable

□ 1. Connect the cable between the remote connection housing and the transmitter (remote version) to the transmitter.

Note!

See the section entitled "Wiring" \rightarrow "Connecting the remote version" in the Operating Instructions of the Prowirl 72 or Prowirl 73, as applicable, for a detailed description of the wiring.

5. Wiring the transmitter (Fig. 4, Fig. 5)

- Fig. 4: Wiring the transmitter
 - a = Threaded fastener of cover for connection compartment
 - b = Cover for connection compartment
 - $c = Cable \ entry$
 - d = Connecting terminal plug
 - e = Local display module
 - f = Retaining rails
 - g = Cover of electronics compartment
- □ 1. Screw the cover of the electronics compartment (g) off the transmitter housing.
- □ 2. Pull the local display module (e) off the retaining rails (f).
- □ 3. Clip the left side of the local display module (e) into the right-hand retaining rail (to hold the local display module temporarily in position).
- □ 4. Slacken the two screws (a) of the cover of the connection compartment (b) and open the bottom-hinged cover.
- \Box 5. Open the threaded element of the cable entry (c).
- □ 6. Guide the connecting cable through the cable entry (c) and into the connection compartment.
- \Box 7. Tighten the threaded element of the cable entry (c).
- □ 8. Pull the connection terminal plug (d) or plugs, depending on the design, off the I/O board (COM module).
- **9**. Connect the connecting cable to the connection terminal plugs (d).

- Fig. 5: Electrical connections, transmitter
 - **A** = Power supply, current output
 - B = Optional pulse input, also usable as status output
 - **C** = *Earthing clamp (relevant for remote version)*
 - **D** = PFM wiring (Pulse/Frequency Modulation)

□ 10. Reconnect the connection terminal plug or plugs (d) to the I/O board (COM module).

Note!

- The connection terminal plugs are coded, which means that they cannot be connected wrong way round.
- Check that the connecting cable is correctly routed in the transmitter housing and that there is no strain on the connections to the plugs.
- □ 11. Close the cover of the connection compartment (b) and tighten the two screws (a).
- □ 12. Clip the local display module (e) into the retaining rails (f).
- □ 13. Screw the cover of the electronics compartment (g) onto the transmitter housing.

6. Commissioning the device

 I. Switch on the power supply to the device: See the section entitled "Commissioning", "Switching on the device" in the Operating Instructions of the Prowirl 72 or the Prowirl 73, as applicable.

This completes conversion; the device is now ready for operation.

□ 2. Complete the form for the archives and send the information to the address printed on the form.

Instructions for Conversion: Proline Prowirl 72 compact version to Proline Prowirl 72 remote version (Ex-d (XP), Ex-i (IS))

Proline Prowirl 73 compact version to Proline Prowirl 73 remote version (Ex-d (XP), Ex-i (IS))

Note!

See Page 3 (Prowirl 72) or Page 12 (Prowirl 73) for an overview of all possible conversions. When converting, use only the Instructions for Conversion listed in the overview for the conversion job in question.

The components required for conversion are as follows:

Units	Designation	Units	Designation
1	Prowirl 72 transmitter including connection housing (remote version)	1	Nameplate for transmitter
1	Remote connection housing	1	Form for archives
1	Connecting cable (10 m or 30 m)	1	Instructions for Conversion

Note the following points:

- It is important to comply with the documentation specific to the meters in question in addition to these Instructions for Conversion, see Page 20:
- 🖞 Caution!

A compact version in Zone II 1 G can only be converted to a remote version for Zone II 1/2 G.

- Installation, repair, commissioning and maintenance of the measuring equipment must be carried out by qualified, trained specialists. Conversions in Ex-rated zones, moreover, must be carried out by qualified specialists trained to work on Ex-rated devices.
- Always comply with national regulations concerning the overhaul and modification of officially approved or certified electrical devices.
- Risk of damaging electronic components (ESD protection). Static electricity can damage electronic components or impair their operability. Use an ESD-compatible workbench with a grounded worktop or make sure that you are connected to ground by means of a grounding cable (anti-static wrist strap with 1 M Ω protective resistance), as applicable.
- Ensure compliance with all safety instructions (introduced by "Warning!", "Caution!", "Note") before you commence the individual steps of the installation procedure. Document completion of each step by marking the accompanying checkbox (\Box).
- Once you have completed conversion, complete the form for the archives and send the information to the address printed on the form.
- Once conversion has been competed, the documentation for Proline Prowirl 72 or, as applicable, Proline Prowirl 73, is valid for the converted device.

Caution!

- Conversion of meters compliant with the pressure equipment directive (PED 97/23/EC) is **not** permissible. Invariably, these meters have to be converted by Endress+Hauser Flowtec.
- Conversion work on meters with PROFIBUS or FOUNDATION Fieldbus communication should be performed by Endress+Hauser Service.
- Devices with FM or CSA approval must be converted by Endress+Hauser Flowtec or Endress+Hauser Service only.

1. Making a backup of the device data

(`)

Caution!

Once you have completed conversion, you need the device parameters of the Prowirl 72 or, as applicable, Prowirl 73 transmitter for commissioning. Without these values you would not be able to have the new transmitter in operation within a short space of time.

 □ 1. Read out the device parameters of the Prowirl 72. Use the table on Page 5 (Prowirl 72) or Page 14 (Prowirl 73), as applicable, and enter the values in the column on the right, "Parameters Prowirl 72 or 73"
 → "Value to be entered".

2. Entering the data on the nameplate (Figure 1)

□ 1. Enter the data on the new nameplate. You will find the data you need on the nameplate of the Prowirl 72.

Sensorrel Sensor re	evante Daten: Ievant data:			
TM:	-40+260°C other:		-200+400°C	
Materials:	CF3M (1.4404) other:	/ 316	L (1.4435)	
Gasket:	Graphite Viton		Gylon Kalrez	

Fig. 1: Example of a nameplate; the nameplate is subsequently affixed to the cover of the connection compartment.

3. Removing the transmitter housing

r h

Caution!

When converting measuring devices used in explosive atmospheres, always comply with the local regulations and safety precautions required by the owner-operator.

Ex-i (IS) version (Fig. 2)

- □ 1. Screw the cover of the electronics compartment (a) off the transmitter housing.
- \Box 2. Pull the local display module (b) off the retaining rails (c).
- □ 3. Clip the left side of the local display module (b) into the right-hand retaining rail (to hold the local display module temporarily in position).
- □ 4. Slacken the screw (d) of the cover of the connection compartment (e) and open the bottom-hinged cover.
- \Box 5. Open the threaded element of the cable entry (f).
- G. Disconnect the connections of the connection terminal plugs (g). You must pull the connection terminal plugs off the I/O board (COM module) for this process.
- □ 7. Disconnect the connection to terminal (h) of the earthing cable (if fitted).
- \Box 8. Carefully pull the connecting cable out of the transmitter housing.
- □ 9. Open the top-hinged plastic cover (i).
- \Box 10. Unplug the preamplifier cable (j) from the amplifier board.
- □ 11. Remove the inner screw (k) securing the transmitter housing.
- □ 12. Remove the outer screw (1) securing the transmitter housing.
- □ 13. Remove the connection from the earthing terminal (m)

 \Box 14. Carefully pull the transmitter housing off the housing neck (n).

Caution!

When separating the transmitter housing from the neck, take care not to damage the preamplifier cable.

- Fig. 2: Removing the transmitter housing, Ex-i (IS) version
 - a = Cover of electronics compartment
 - b = Local display module
 - c = Retaining rails
 - d = Threaded fastener of cover for connection compartment
 - *e* = *Cover for connection compartment*
 - f = Cable entry
 - g = Connecting terminal plug
 - h = Terminal for earthing cable
 - $i = Plastic \ cover$
 - j = Preamplifier-cable plug
 - k = Inner securing screw for transmitter housing
 - l = Earthing terminal
 - m = Outer securing screw for transmitter housing
 - n = Housing neck

Ex-d (XP) version (Fig. 3)

- \Box 1. Switch off the power supply to the device.
- 2. Marning!
 For safety's sake, wait at least 10 minutes before proceeding with the next step.
- **3**. Open the clamp (a) securing the cover of the connection compartment.
- □ 4. Screw the cover of the connection compartment (b) off the transmitter housing.
- □ 5. Slacken the threaded fastener of the cable duct (if installed) and of the cable entry (e).
- G. Disconnect the connections of the connection terminal plugs (c). You must pull the connection terminal plugs off the I/O board (COM module) for this process.
- □ 7. Disconnect the connection to terminal (d) of the earthing cable (if fitted).
- □ 8. Carefully pull the connecting cable out of the transmitter housing.
- □ 9. Screw the cover of the electronics compartment (f) off the transmitter housing and pull the local display module (g) off the retaining rails (h).
- 10. Clip the left side of the local display module (b) into the right-hand retaining rail (to hold the local display module temporarily in position).
- □ 11. Open the bottom-hinged plastic cover (d) and disconnect the plug of the preamplifier cable (i) from the measuring amplifier board.
- □ 12. Remove the inner screw (k) securing the transmitter housing.
- \Box 13. Remove the outer screw (1) securing the transmitter housing.
- \Box 14. Remove the connection from the earthing terminal (m)

 \Box 15. Carefully pull the transmitter housing off the housing neck.

Caution!

When separating the transmitter housing from the neck, take care not to damage the preamplifier cable.

Fig. 3: Removing the transmitter housing, Ex-d (XP) version

- *a* = *Clamp for cover of connection compartment*
- b = Cover of connection compartment
- c = Connecting terminal plug
- d = Terminal for earthing cable
- e = Cable entry
- f = Cover of electronics compartment
- g = Local display module
- h = Retaining rails
- $i = Plastic \ cover$
- j = Preamplifier-cable plug
- k = Inner securing screw for transmitter housing
- l = Outer securing screw for transmitter housing
- m = Earthing terminal
- n = Cover for connection compartment

4. Installing the connection housing (Fig. 4)

- Fig. 4: Installing the connection housing
 - $a = Housing \ cover$
 - b = Connection housing
 - c = Connection board
 - $d = Preamplifier \ cable$
 - e = Housing neck
 - $f = Securing \ screw$
 - g = Cable grip
 - h = Cable entry
- \Box 1. Unscrew the cover (a) from the connection housing (b).
- □ 2. Slacken the screws securing the connection board (c) and remove the connection board from the connection housing.
- 3. Route preamplifier cable (d) from below through the remote-version connection housing (b) and connect the plug of preamplifier cable (d) on connection board (c) (on the underside of the connection board).
- □ 4. Install the connection board (c) in remote-version connection housing (b).
- □ 5. Position the remote-version connection housing (b) on housing neck (e).
- \Box 6. Tighten the screw (f) securing the remote-version connection housing.
- \Box 7. Open the threaded element of the strain relief device (g).
- \Box 8. Open the threaded element of the cable entry (h).
- □ 9. Guide the connecting cable (connection between connection housing and transmitter) through the cable entry (h) and into the connection housing.
- \Box 10. Connect the connecting cable.

Note!

See the section entitled "Wiring" \rightarrow "Connecting the remote version" in the Operating Instructions of the Prowirl 72 or Prowirl 73, as applicable, for a detailed description of the wiring.

- □ 11. Install cable grip (g), making sure that the cable shield is underneath the grip.
- \Box 12. Tighten the threaded element of the cable entry (h).
- \Box 13. Screw the cover (a) onto the connection housing (b).

5. Installing the transmitter (remote version)

□ 1. Install the connection housing of the transmitter.

Note!

See the section entitled "Installation" \rightarrow "Installing the transmitter remote version" in the Operating Instructions of the Prowirl 72, or Prowirl 73, as applicable, for a detailed description of the installation procedure.

6. Connecting the connecting cable

□ 1. Connect the cable between the connection housing and the transmitter (remote version) to the transmitter.

Note!

012

JA017

See the section entitled "Wiring" \rightarrow "Connecting the remote version" in the Operating Instructions of the Prowirl 72 or Prowirl 73, as applicable, for a detailed description of the wiring.

7. Wiring the transmitter

- Fig. 5: Ex-i version
 - *a* = *Threaded fastener of cover for connection compartment*
 - b = Cover for connection compartment
 - c = Cable entry
 - d = Connecting terminal plug
 - e = Local display module
 - f = Retaining rails
 - g = Cover of electronics compartment
- □ 1. Screw the cover of the electronics compartment (g) off the transmitter housing.
- □ 2. Pull the local display module (e) off the retaining rails (f).
- □ 3. Clip the left side of the local display module (e) into the right-hand retaining rail (to hold the local display module temporarily in position).
- □ 4. Slacken the screw (a) of the cover of the connection compartment (b) and open the bottom-hinged cover.
- \Box 5. Open the threaded element of the cable entry (c).
- □ 6. Guide the connecting cable through the cable entry (c) and into the connection compartment.
- \Box 7. Tighten the threaded element of the cable entry (c).
- □ 8. Pull the connection terminal plug (d) or plugs, depending on the design, off the I/O board (COM module).

 \Box 9. Connect the connecting cable to the connection terminal plugs (d).

- Fig. 6: Electrical connections, transmitter
 - **A** = Power supply, current output
 - \mathbf{B} = Optional pulse input, also usable as status output
 - $\mathbf{C} = Earthing \ clamp \ (relevant \ for \ remote \ version)$
 - D = PFM wiring (Pulse/Frequency Modulation)
- □ 10. Reconnect the connection terminal plug or plugs (d) to the I/O board (COM module).

Note!

- The connection terminal plugs are coded, which means that they cannot be connected wrong way round.
- Check that the connecting cable is correctly routed in the transmitter housing and that there is no strain on the connections to the plugs.
- □ 11. Close the cover of the connection compartment (b) and tighten the screw (a).
- □ 12. Affix the new nameplate (Page 46) to the outside of the cover of the connection compartment (b).
- □ 13. Clip the local display module (e) into the retaining rails (f).
- □ 14. Screw the cover of the electronics compartment (g) onto the transmitter housing.

Ex-d (XP) version (Fig. 6 and Fig. 7)

- Fig. 7: Ex-d version
 - a = Clamp securing the cover of the connection compartment
 - b = Cover of connection compartment
 - c = Terminals
 - $d = Cable \ entry$
- \Box 1. Open the clamp (a) securing the cover of the connection compartment.
- □ 2. Screw the cover of the connection compartment (b) off the transmitter housing.
- \Box 3. Open the threaded element of the cable entry (c).
- □ 4. Guide the connecting cable through the cable entry (c) and into the connection compartment.
- \Box 5. Tighten the threaded element of the cable entry (c).
- □ 6. Pull the connection terminal plug (d) or plugs, depending on the design, off the I/O board (COM module).
- □ 7. Connect the connecting cable to the connection terminal plugs (d) (wiring diagram, see *Fig. 6*).

□ 8. Reconnect the connection terminal plug or plugs (d) to the I/O board (COM module).

Note!

- The connection terminal plugs are coded, which means that they cannot be connected wrong way round.
- Check that the connecting cable is correctly routed in the transmitter housing and that there is no strain on the connections to the plugs.
- □ 9. Screw the cover of the connection compartment (b) onto the transmitter housing.
- 10. Engage the clamp (c) to hold the cover of the connection compartment(b) in position and tighten the threaded fastener of the clamp.

8. Identifying the meter as "converted" (Fig. 3)

- □ 1. Screw the cover of the electronics compartment (f) off the transmitter housing.
- \Box 2. Pull the local display module (g) off the retaining rails (h).
- □ 3. Affix the new nameplate (Page 46) to the outside of the cover of the connection compartment (n).
- □ 4. Clip the local display module (g) into the retaining rails (h).
- □ 5. Screw the cover of the electronics compartment (f) onto the transmitter housing.

9. Commissioning the device

□ 1. Switch on the power supply to the device: See the section entitled "Commissioning", "Switching on the device" in the Operating Instructions of the Prowirl 72 or the Prowirl 73, as applicable.

If the device is in an Ex-rated zone, the appropriate Ex documentation and the Control Drawings also apply.

2. Key the parameters you read out beforehand into the device from the table on Page 5 (Prowirl 72) or Page 14 (Prowirl 73) (see also the section entitled "Commissioning", "Quick Setup" in the Operating Instructions of the Prowirl 72 or Prowirl 73, as applicable.

This completes conversion; the device is now ready for operation.

□ 3. Complete the form for the archives and send the information to the address printed on the form.

Instructions for Conversion: Proline 72 compact version to Proline Prowirl 73 compact version

Note!

See Page 12 for an overview of all possible conversions. When converting, use only the Instructions for Conversion listed in the overview for the conversion job in question.

The components required for conversion are as follows:

Units	Designation	Units	Designation
1	Prowirl 73 transmitter	4	Screws for DSC sensor
1	Preamplifier 1 DSC sensor seal (flat gasket-type sea		DSC sensor seal (flat gasket-type seal)
1	Housing neck including O-rings	1	Form for archives
4	Screws for housing neck	1	Nameplate for transmitter
1	DSC sensor	1	Instructions for Conversion

Note the following points:

- It is important to comply with the documentation specific to the meters in question in addition to these Instructions for Conversion, see Page 20:
- Installation, repair, commissioning and maintenance of the measuring equipment must be carried out by qualified, trained specialists. Conversions in Ex-rated zones, moreover, must be carried out by qualified specialists trained to work on Ex-rated devices.
- Always comply with national regulations concerning the overhaul and modification of officially approved or certified electrical devices.
- Risk of damaging electronic components (ESD protection). Static electricity can damage electronic components or impair their operability. Use an ESD-compatible workbench with a grounded worktop or make sure that you are connected to ground by means of a grounding cable (anti-static wrist strap with 1 M Ω protective resistance), as applicable.
- Ensure compliance with all safety instructions (introduced by "Warning!", "Caution!", "Note") before you commence the individual steps of the installation procedure. Document completion of each step by marking the accompanying checkbox (\Box).
- Once you have completed conversion, complete the form for the archives and send the information to the address printed on the form.
- Once conversion has been completed, the documentation for the Proline Prowirl 73 is valid for the converted device.

Caution!

- Conversion of meters compliant with the pressure equipment directive (PED 97/23/EC) is **not** permissible. Invariably, these meters have to be converted by Endress+Hauser Flowtec.
- Conversion work on meters with PROFIBUS or FOUNDATION Fieldbus communication should be performed by Endress+Hauser Service.
- Devices with FM or CSA approval must be converted by Endress+Hauser Flowtec or Endress+Hauser Service only.

1. Making a backup of the device data

Caution!

Once you have completed conversion, you need the device parameters of the Prowirl 72 transmitter for commissioning. Without these values you would not be able to have the new transmitter in operation within a short space of time.

□ 1. Read out the device parameters of the Prowirl 72. Use the table on Page 19 and enter the values in the column on the right, "Parameters Prowirl 72" → "Value to be entered". You can read the value for the basic unit MB from the flange of the Prowirl 72.

2. Entering the data on the nameplate (Figure 1)

□ 1. Enter the data on the new nameplate. You will find the data you need on the nameplate of the Prowirl 72.

Sensorrel Sensor re	levante Daten: elevant data:			
TM:	-40+260°C other:		-200+400°C	
Materials	CF3M (1.4404) other:	/ 316	L (1.4435)	
Gasket:	Graphite Viton		Gylon Kalrez	

Fig. 1: Example of a nameplate; the nameplate is subsequently affixed to the cover of the connection compartment.

3. Removing the transmitter housing

Caution!

When converting measuring devices used in explosive atmospheres, always comply with the local regulations and safety precautions required by the owner-operator.

Ex-i (IS) version (Fig. 2)

- □ 1. Screw the cover of the electronics compartment (a) off the transmitter housing.
- □ 2. Pull the local display module (b) off the retaining rails (c).
- 3. Clip the left side of the local display module (b) into the right-hand retaining rail (to hold the local display module temporarily in position).
- □ 4. Slacken the screw (d) of the cover of the connection compartment (e) and open the bottom-hinged cover.
- \Box 5. Open the threaded element of the cable entry (f).
- G. Disconnect the connections of the connection terminal plugs (g). You must pull the connection terminal plugs off the I/O board (COM module) for this process.
- □ 7. Disconnect the connection to terminal (h) of the earthing cable (if fitted).
- \Box 8. Carefully pull the connecting cable out of the transmitter housing.
- □ 9. Open the top-hinged plastic cover (i).
- \Box 10. Unplug the preamplifier cable (j) from the amplifier board.
- \Box 11. Remove the inner screw (k) securing the transmitter housing.
- □ 12. Remove the outer screw (1) securing the transmitter housing.
- \Box 13. Remove the connection from the earthing terminal (m)
- □ 14. Carefully pull the transmitter housing off the housing neck (n).

Caution!

When separating the transmitter housing from the neck, take care not to damage the preamplifier cable.

a = Cover of electronics compartment

- b = Local display module
- c = Retaining rails
- d = Threaded fastener of cover for connection compartment
- *e* = *Cover for connection compartment*
- f = Cable entry
- g = Connecting terminal plug
- h = Terminal for earthing cable
- $i = Plastic \ cover$
- j = Preamplifier-cable plug
- k = Inner securing screw for transmitter housing
- l = Earthing terminal
- m = Outer securing screw for transmitter housing
- $n = Housing \ neck$

Ex-d (XP) version (Fig. 3)

- \Box 1. Switch off the power supply to the device.
- 2. A Warning!
 For safety's sake, wait at least 10 minutes before proceeding with the next step.
- **3**. Open the clamp (a) securing the cover of the connection compartment.
- □ 4. Screw the cover of the connection compartment (b) off the transmitter housing.
- □ 5. Slacken the threaded fastener of the cable duct (if installed) and of the cable entry (e).
- G. Disconnect the connections of the connection terminal plugs (c). You must pull the connection terminal plugs off the I/O board (COM module) for this process.
- □ 7. Disconnect the connection to terminal (d) of the earthing cable (if fitted).
- \Box 8. Carefully pull the connecting cable out of the transmitter housing.
- □ 9. Screw the cover of the electronics compartment (f) off the transmitter housing and pull the local display module (g) off the retaining rails (h).
- 10. Clip the left side of the local display module (b) into the right-hand retaining rail (to hold the local display module temporarily in position).
- □ 11. Open the bottom-hinged plastic cover (d) and disconnect the plug of the preamplifier cable (i) from the measuring amplifier board.
- □ 12. Remove the inner screw (k) securing the transmitter housing.
- □ 13. Remove the outer screw (1) securing the transmitter housing.
- \Box 14. Remove the connection from the earthing terminal (m)

□ 15. Carefully pull the transmitter housing off the housing neck.

Caution!

When separating the transmitter housing from the neck, take care not to damage the preamplifier cable.

- Fig. 3: Removing the transmitter housing, Ex-d (XP) version
 - *a* = *Clamp for cover of connection compartment b* = *Cover of connection compartment*
 - c = Connecting terminal plug
 - d = Terminal for earthing cable
 - e = Cable entry
 - f = Cover of electronics compartment
 - g = Local display module
 - h = Retaining rails
 - $i = Plastic \ cover$
 - *j* = *Preamplifier-cable plug*
 - k = Inner securing screw for transmitter housing
 - l = Outer securing screw for transmitter housing
 - m = Earthing terminal
 - n = Cover for connection compartment

4. Replacing housing neck and sensor (Fig. 4)

∠!\ Warning!

Risk of fatal injury:

- The piping system must be completely free of pressure in order for the sensor to be replaced. Residual pressure acting on the piping run can cause the sensor to jump out as soon as the retaining screws are slackened.
- If the medium is toxic, explosive or flammable, the piping run in which the measuring device is installed must be flushed or purged before the sensor can be replaced.

Caution!

When converting the measuring device, replace all small items (screws, etc.) with the material supplied as part of the conversion kit.

- \Box 1. Remove the four screws (a) securing the housing neck (b).
- \Box 2. Carefully disengage the housing neck (b) from the sensor (c).
- \Box 3. Remove the four screws (d) securing the sensor.
- □ 4. Carefully remove the sensor (c) from the basic unit (e).
- □ 5. Using a suitable implement, remove the sensor seal (f) without scratching the sealing face.

 \Box 6. Use as suitable solvent to clean the sealing face (g) of the basic unit.

Caution!

- Take great care not to scratch the sealing face (g).
- The adapter bore must be perfectly clean.
- \Box 7. Place the new sensor seal (f) on the sealing face (g).
- \Box 8. Slip the new sensor (c) into the sensor bore of the basic unit (e).

Caution!

The mark (h, small recess) on the sensor (h) must point in the flow direction (arrow on the basic unit).

- □ 9. Apply a drop of a grease appropriate to the temperature range of the application to the threads and seatings of each screw. The high temperature paste HTP (50048898) is recommended.
- □ 10. Secure the sensor (c) to the basic unit (e). Conversion of Prowirl 72***-*0******** and 72***-**1********: tightening torque = 5.8Nm (4.3lbf ft), cross wise. Conversion of Prowirl 72***-**2*******: 1st step tightening torque = 10Nm (7.4lbf ft), cross wise; 2nd step tightening torque = 15Nm (11.0lbf ft), cross wise

Note!

- For DSC sensor replacement, the line needs to be completely depressurized.
- DSC Sensor replacement can only be performed by technically trained staff.
- The operator has to take appropriate precautions against injury when handling cot or hot objects. These precautionary actions have to comply with site safety and work instructions.
- The new gasket included in the conversion kit has to used for the replacement. The old gasket has to be disposed off.
- If conversion is done at other temperatures of the piping than ambient temperature, the torques should be adjusted according to the table below.
- Sensor, bolts and meter body need to be at the same temperature for conversion. Therefore first mount DSC sensor with bolts tightened slightly by hand. Then allow the DSC sensor to reach the meter body temperature prior to tightening the retaining bolts with the given torques.
- For devices according to ATEX II 1/2GD and ATEX II 1/2G, the devices have to be pressure tested after DSC sensor replacement. The pressure test has to be done at a test pressure of 1.5 times design pressure.

	Conversion of 72***-**0******* and 72***-**1*******	Conversion of 72***-**2*******			
Temp.	Torque	Torque [Nm]/[Torque Ie [Nm]/[Ibf ft]	
[CJ/[F]		Step 1	Step 2		
-200/-328	5.8/4.3	10.0/7.4	15.0/11.0		
-50/-58	5.8/4.3	10.0/7.4	15.0/11.0		
-40/-40	5.8/4.3	10.0/7.4	15.0/11.0		
20/68	5.8/4.3	10.0/7.4	15.0/11.0		
100/212	4.9/3.6	8.5/6.3	12.7/9.4		
200/392	4.6/3.4	7.9/5.8	11.9/8.8		
260/500	4.5/3.3	7.8/5.7	11.6/8.6		
300/572	4.4/3.2	7.6/5.6 11.4/8.4			
400/752	not recommended	7.0/5.2	10.5/7.7		

□ 11. Carefully slip the new housing neck (b) over the sensor (c). Make sure that the arrow on the housing neck is pointing in the direction of flow.

- 12. Tighten the four screws (a) securing the housing neck (b).
 Tightening torque = 5.8Nm (4.3lbf ft); tighten in diagonally opposite sequence in three uniform steps
- □ 13. Coat the O-ring (i) with silicone grease (the O-ring is fitted to the housing neck).

- Fig. 4: Replacing housing neck and sensor
 - a = Threaded fastener of housing neck
 - b = Housing neck
 - c = Sensor
 - d = Threaded fastener of sensor
 - e = Basic unit
 - f = Sensor seal
 - g = Sealing face of basic unit
 - h = Mark on sensor (must point in direction of flow)
 - i = O-ring of housing neck (fitted)

5. Installing the new preamplifier (Fig. 5)

□ 14. Slip the preamplifier (a) into the housing neck (b).

🔊 Note!

The housing neck has a guide to ensure that the preamplifier can be installed only in the correct position.

□ 15. Tighten the two securing screws (c) to secure the preamplifier (a).

Fig. 5: Replacing the housing neck / installing the preamplifier

- a = Preamplifier
- b = Housing neck
- c = Threaded fastener of preamplifier

6. Installing the new transmitter (Fig. 6)

- □ 1. Screw the cover of the electronics compartment (a) off the transmitter housing.
- \Box 2. Pull the local display module (b) off the retaining rails (c).
- 3. Clip the left side of the local display module (b) into the right-hand retaining rail (to hold the local display module temporarily in position).
- \Box 4. Open the top-hinged plastic cover (d).

- \Box 5. Remove the inner screw (h) securing the transmitter.
- □ 6. From below, guide the connecting cable (e) through the transmitter housing and set the transmitter housing on the housing neck (f).

Note!

JA017_009

010

IA017

The end of the connecting cable emerges from the transmitter housing underneath the holder for the electronics.

- □ 7. Tighten the inner screw (h) securing the transmitter housing.
- \Box 8. Tighten the outer screw securing the transmitter housing (see Fig.3, c).
- □ 9. Connect the connecting cable (e) to the plug (g) of the amplifier board.
- □ 10. Secure the connecting cable to the retainer below the connecting-cable plug (g).
- □ 11. Close the top-hinged plastic cover (d).
- □ 12. Affix the new nameplate (Page 51) to the outside of the cover of the connection compartment (i).

Steps 13 and 14 are required only in the case of the Ex-d (XP) versions:

- □ 13. Clip the local display module (b) into the retaining rails (c).
- 14. Screw the cover of the electronics compartment (a) onto the amplifier housing.

Fig. 6: Installing the transmitter

- a = Cover of electronics compartment
- b = Local display module
- c = Retaining rails
- $d = Plastic \ cover$
- e = Connecting cable, preamplifier/measuring-amplifier board
- $f = Housing \ neck$
- g = Plug for connecting cable on measuring-amplifier board
- h = Inner securing screw
- *i* = New nameplate on cover of connection compartment

7. Wiring the transmitter Non-Ex, Ex-i (IS) version (*Fig. 8 and Fig. 7*)

Fig. 7: Non-Ex / Ex-i (IS) version

- a = Threaded fastener of cover for connection compartment
- b = Cover for connection compartment
- c = Cable entry
- d = Connecting terminal plug
- e = Local display module
- f = Retaining rails
- g = Cover of electronics compartment
- □ 1. Slacken the screw (a) of the cover of the connection compartment (b) and open the bottom-hinged cover.
- \Box 2. Open the threaded element of the cable entry (c).
- □ 3. Guide the connecting cable through the cable entry (c) and into the connection compartment.
- \Box 4. Tighten the threaded element of the cable entry (c).
- □ 5. Pull the connection terminal plug (d) or plugs, depending on the design, off the I/O board (COM module).
- \Box 6. Connect the connecting cable to the connection terminal plugs (d).

- Fig. 8: Electrical connections, transmitter
 - **A** = Power supply, current output
 - $\mathbf{B} = Pulse$, status output (optional)
 - **C** = Earthing terminal
 - D = PFM wiring (Pulse/Frequency Modulation)
- □ 7. Reconnect the connection terminal plug or plugs (d) to the I/O board (COM module).

Note!

- The connection terminal plugs are coded, which means that they cannot be connected wrong way round.
- Check that the connecting cable is correctly routed in the transmitter housing and that there is no strain on the connections to the plugs.
- □ 8. Close the cover of the connection compartment (b) and tighten the screw (a).
- \Box 9. Clip the local display module (e) into the retaining rails (f).
- □ 10. Screw the cover of the electronics compartment (g) onto the transmitter housing.

Ex-d (XP) version (Fig. 8 and Fig. 9)

- Fig. 9: Ex-d version
 - a = Clamp securing the cover of the connection compartment
 - *b* = *Cover of connection compartment*
 - c = Terminals
 - $d = Cable \ entry$
- \Box 1. Open the clamp (a) securing the cover of the connection compartment.
- □ 2. Screw the cover of the connection compartment (b) off the transmitter housing.
- \Box 3. Open the threaded element of the cable entry (c).
- □ 4. Guide the connecting cable through the cable entry (c) and into the connection compartment.
- \Box 5. Tighten the threaded element of the cable entry (c).
- □ 6. Pull the connection terminal plug (d) or plugs, depending on the design, off the I/O board (COM module).
- □ 7. Connect the connecting cable to the connection terminal plugs (d) (wiring diagram, see *Fig. 8*).
- □ 8. Reconnect the connection terminal plug or plugs (d) to the I/O board (COM module).

Note!

- The connection terminal plugs are coded, which means that they cannot be connected wrong way round.
- Check that the connecting cable is correctly routed in the transmitter housing and that there is no strain on the connections to the plugs.
- □ 9. Screw the cover of the connection compartment (b) onto the transmitter housing.
- 10. Engage the clamp (c) to hold the cover of the connection compartment(b) in position and tighten the threaded fastener of the clamp.

8. Commissioning the device

 I. Switch on the power supply to the device: See the section entitled "Commissioning", "Switching on the device" in the Operating Instructions of the Prowirl 73.

Caution!

If the device is in an Ex-rated zone, the appropriate Ex documentation and the Control Drawings also apply.

 2. Key the parameters you read out beforehand Page 19 into the device from the table (see also the section entitled "Commissioning", "Quick Setup" in the Operating Instructions of the Prowirl 73.

Parameterization completes conversion; the device is now ready for operation.

□ 3. Complete the form for the archives and send the information to the address printed on the form.

Instructions for Conversion: Proline Prowirl 72 remote version to Proline Prowirl 73 remote version

Note!

See Page 12 for an overview of all possible conversions. When converting, use only the Instructions for Conversion listed in the overview for the conversion job in question.

The components required for conversion are as follows:

Units	Designation	Units	Designation
1	Prowirl 73 transmitter	4	Screws for DSC sensor
1	Preamplifier	1	DSC sensor seal (flat gasket-type seal)
1	Housing neck including O-rings	1	Form for archives
4	Screws for housing neck	1	Nameplate for transmitter
1	DSC sensor	1	Instructions for Conversion

Note the following points:

- It is important to comply with the documentation specific to the meters in question in addition to these Instructions for Conversion, see Page 20:
- Installation, repair, commissioning and maintenance of the measuring equipment must be carried out by qualified, trained specialists. Conversions in Ex-rated zones, moreover, must be carried out by qualified specialists trained to work on Ex-rated devices.
- Always comply with national regulations concerning the overhaul and modification of officially approved or certified electrical devices.
- Risk of damaging electronic components (ESD protection). Static electricity can damage electronic components or impair their operability. Use an ESD-compatible workbench with a grounded worktop or make sure that you are connected to ground by means of a grounding cable (anti-static wrist strap with 1 M Ω protective resistance), as applicable.
- Ensure compliance with all safety instructions (introduced by "Warning!", "Caution!", "Note") before you commence the individual steps of the installation procedure. Document completion of each step by marking the accompanying checkbox (□).
- Once you have completed conversion, complete the form for the archives and send the information to the address printed on the form.
- Once conversion has been completed, the documentation for the Proline Prowirl 73 is valid for the converted device.

Caution!

- Conversion of meters compliant with the pressure equipment directive (PED 97/23/EC) is **not** permissible. Invariably, these meters have to be converted by Endress+Hauser Flowtec.
- Conversion work on meters with PROFIBUS or FOUNDATION Fieldbus communication should be performed by Endress+Hauser Service.
- Devices with FM or CSA approval must be converted by Endress+Hauser Flowtec or Endress+Hauser Service only.

1. Making a backup of the device data

ſ

Caution!

Once you have completed conversion, you need the device parameters of the Prowirl 72 transmitter for commissioning. Without these values you would not be able to have the new transmitter in operation within a short space of time.

□ 1. Read out the device parameters of the Prowirl 72. Use the table on Page 19 and enter the values in the column on the right, "Parameters Prowirl 72" → "Value to be entered". You can read the value for the basic unit MB from the flange of the Prowirl 72.

2. Entering the data on the nameplate (Figure 1)

□ 1. Enter the data on the new nameplate. You will find the data you need on the nameplate of the Prowirl 72.

Fig. 1: Example of a nameplate; the nameplate is subsequently affixed to the cover of the connection compartment.

3. Removing the transmitter housing

۳h

Caution!

When converting measuring devices used in explosive atmospheres, always comply with the local regulations and safety precautions required by the owner-operator.

Ex-i (IS) version (Fig. 2)

- □ 1. Screw the cover of the electronics compartment (a) off the transmitter housing.
- \Box 2. Pull the local display module (b) off the retaining rails (c).
- □ 3. Clip the left side of the local display module (b) into the right-hand retaining rail (to hold the local display module temporarily in position).
- □ 4. Slacken the screw (d) of the cover of the connection compartment (e) and open the bottom-hinged cover.
- \Box 5. Open the threaded element of the cable entry (f).
- G. Disconnect the connections of the connection terminal plugs (g). You must pull the connection terminal plugs off the I/O board (COM module) for this process.
- □ 7. Disconnect the connection to terminal (h) of the earthing cable (if fitted).
- \Box 8. Carefully pull the connecting cable out of the transmitter housing.
- \Box 9. Open the top-hinged plastic cover (i).
- \Box 10. Unplug the preamplifier cable (j) from the amplifier board.
- □ 11. Remove the inner screw (k) securing the transmitter housing.
- □ 12. Remove the outer screw (1) securing the transmitter housing.
- □ 13. Remove the connection from the earthing terminal (m)

□ 14. Carefully pull the transmitter housing off the holder of the remote version (n).

Caution!

When separating the transmitter housing from the neck, take care not to damage the preamplifier cable.

Fig. 2: Removing the transmitter housing, Ex-i (IS) version

- *a* = Cover of electronics compartment
- b = Local display module
- c = Retaining rails

000

TA01

- d = Threaded fastener of cover for connection compartment
- *e* = *Cover for connection compartment*
- f = Cable entry
- g = Connecting terminal plug
- h = Terminal for earthing cable
- i = Plastic cover
- *j* = *Preamplifier-cable plug*
- k = Inner securing screw for transmitter housing
- *l* = *Earthing terminal*
- m = Outer securing screw for transmitter housing
- n = Holder of the transmitter, remote version

Ex-d (XP) version (Fig. 3)

- $\hfill\square$ 1. Switch off the power supply to the device.
- 2. A Warning!
 For safety's sake, wait at least 10 minutes before proceeding with the next step.
- \Box 3. Open the clamp (a) securing the cover of the connection compartment.
- □ 4. Screw the cover of the connection compartment (b) off the transmitter housing.
- □ 5. Slacken the threaded fastener of the cable duct (if installed) and of the cable entry (e).
- G. Disconnect the connections of the connection terminal plugs (c). You must pull the connection terminal plugs off the I/O board (COM module) for this process.
- □ 7. Disconnect the connection to terminal (d) of the earthing cable (if fitted).
- \Box 8. Carefully pull the connecting cable out of the transmitter housing.
- □ 9. Screw the cover of the electronics compartment (f) off the transmitter housing and pull the local display module (g) off the retaining rails (h).
- 10. Clip the left side of the local display module (b) into the right-hand retaining rail (to hold the local display module temporarily in position).

- 11. Open the bottom-hinged plastic cover (d) and disconnect the plug of the preamplifier cable (i) from the measuring amplifier board.
- \square 12. Remove the inner screw (k) securing the transmitter housing.
- □ 13. Remove the outer screw (l) securing the transmitter housing.
- \Box 14. Remove the connection from the earthing terminal (m)
- □ 15. Carefully pull the transmitter housing off the holder of the remote version.
 - Caution!

When separating the transmitter housing from the neck, take care not to damage the preamplifier cable.

- Fig. 3: Removing the transmitter housing, Ex-d (XP) version
 - a = Clamp for cover of connection compartment
 - b = Cover of connection compartment
 - c = Connecting terminal plug
 - d = Terminal for earthing cable
 - $e = Cable \ entry$
 - f = Cover of electronics compartment
 - g = Local display module
 - h = Retaining rails
 - $i = Plastic \ cover$
 - j = Preamplifier-cable plug
 - k = Inner securing screw for transmitter housing
 - l = Outer securing screw for transmitter housing
 - m = Earthing terminal
 - n = Cover for connection compartment

4. Installing the new transmitter (Fig. 4)

- □ 1. Screw the cover of the electronics compartment (a) off the transmitter housing.
- \Box 2. Pull the local display module (b) off the retaining rails (c).
- 3. Clip the left side of the local display module (b) into the right-hand retaining rail (to hold the local display module temporarily in position).
 - 4. Open the top-hinged plastic cover (d).
- \Box 5. Remove the inner screw (h) securing the transmitter.

□ 6. From below, guide the connecting cable (e) through the transmitter housing and set the transmitter housing on the holder, remote version (f).

Note!

The end of the connecting cable emerges from the transmitter housing underneath the holder for the electronics.

- □ 7. Tighten the inner screw (h) securing the transmitter housing.
- \square 8. Tighten the outer screw securing the transmitter housing (see *Fig. 3*, c).
- \Box 9. Connect the connecting cable (e) to the plug (g) of the amplifier board.
- □ 10. Secure the connecting cable to the retainer below the connecting-cable plug (g).
- □ 11. Close the top-hinged plastic cover (d).
- □ 12. Affix the new nameplate (Page 56) to the outside of the cover of the connection compartment (i).

Steps 13 and 14 are required only in the case of the Ex-d (XP) versions:

- □ 13. Clip the local display module (b) into the retaining rails (c).
- 14. Screw the cover of the electronics compartment (a) onto the amplifier housing.

Fig. 4: Installing the transmitter

- a = Cover of electronics compartment
- b = Local display module
- c = Retaining rails
- $d = Plastic \ cover$
- *e* = *Connecting cable, preamplifier/measuring-amplifier board*
- f = Holder of the transmitter, remote version
- g = Plug for connecting cable on measuring-amplifier board
- h = Inner securing screw
- *i* = New nameplate on cover of connection compartment

JA017_018

5. Wiring the transmitter

Non-Ex, Ex-i (IS) version (Fig. 5 and Fig. 6)

Fig. 5: Non-Ex / Ex-i (IS) version

- a = Threaded fastener of cover for connection compartment
- b = Cover for connection compartment
- c = Cable entry
- d = Connecting terminal plug
- e = Local display module
- f = Retaining rails
- g = Cover of electronics compartment
- □ 1. Slacken the screw (a) of the cover of the connection compartment (b) and open the bottom-hinged cover.
- \Box 2. Open the threaded element of the cable entry (c).
- □ 3. Guide the connecting cable through the cable entry (c) and into the connection compartment.
- \Box 4. Tighten the threaded element of the cable entry (c).
- □ 5. Pull the connection terminal plug (d) or plugs, depending on the design, off the I/O board (COM module).
- \Box 6. Connect the connecting cable to the connection terminal plugs (d).

- Fig. 6: Electrical connections, transmitter
 - **A** = Power supply, current output
 - B = Pulse, status output (optional)
 - **C** = Earthing terminal
 - D = PFM wiring (Pulse/Frequency Modulation)
- □ 7. Reconnect the connection terminal plug or plugs (d) to the I/O board (COM module).

Note!

- The connection terminal plugs are coded, which means that they cannot be connected wrong way round.
- Check that the connecting cable is correctly routed in the transmitter housing and that there is no strain on the connections to the plugs.
- □ 8. Close the cover of the connection compartment (b) and tighten the screw (a).
- □ 9. Clip the local display module (e) into the retaining rails (f).
- □ 10. Screw the cover of the electronics compartment (g) onto the transmitter housing.

Ex-d (XP) version (Fig. 6 and Fig. 7)

- Fig. 7: Ex-d version
 - a = Clamp securing the cover of the connection compartment
 - *b* = *Cover of connection compartment*
 - c = Terminals
 - $d = Cable \ entry$
- □ 1. Open the clamp (a) securing the cover of the connection compartment.
- □ 2. Screw the cover of the connection compartment (b) off the transmitter housing.
- □ 3. Open the threaded element of the cable entry (c).
- □ 4. Guide the connecting cable through the cable entry (c) and into the connection compartment.
- □ 5. Tighten the threaded element of the cable entry (c).
- □ 6. Pull the connection terminal plug (d) or plugs, depending on the design, off the I/O board (COM module).
- □ 7. Connect the connecting cable to the connection terminal plugs (d) (wiring diagram, see *Fig. 6*).
- □ 8. Reconnect the connection terminal plug or plugs (d) to the I/O board (COM module).

Note!

- The connection terminal plugs are coded, which means that they cannot be connected wrong way round.
- Check that the connecting cable is correctly routed in the transmitter housing and that there is no strain on the connections to the plugs.
- □ 9. Screw the cover of the connection compartment (b) onto the transmitter housing.
- 10. Engage the clamp (c) to hold the cover of the connection compartment(b) in position and tighten the threaded fastener of the clamp.

6. Installing the remote connection housing (Fig. 4)

- □ 1. Unscrew the cover (a) from the remote-version connection housing (b).
- □ 2. Slacken cable grip (g).
- □ 3. Slacken cable entry (h).
- \Box 4. Remove the screws of the connection board (c).
- □ 5. Raise the connection board slightly (the plug of the preamplifier cable on the underside of the connection board must be visible). Guide the connecting cable through the cable entry (h) to obtain enough play.
- □ 6. Disconnect the plug of the preamplifier cable (d) from the connection board (c) (on the underside of the connection board).
- \Box 7. Remove the screw (f) securing the remote-version connection housing.

□ 8. Pull the remote-version transmitter housing (b) off the housing neck (e).

Fig. 8: Installing the remote connection housing

- a = Housing cover
- $b = Remote \ connection \ housing$
- c = Connection board
- $d = Preamplifier \ cable$
- e = Housing neck
- $f = Securing \ screw$
- g = Cable grip
- h = Cable entry

7. Replacing housing neck and sensor (Fig. 9)

Warning!

Risk of fatal injury:

- The piping system must be completely free of pressure in order for the sensor to be replaced. Residual pressure acting on the piping run can cause the sensor to jump out as soon as the retaining screws are slackened.
- If the medium is toxic, explosive or flammable, the piping run in which the measuring device is installed must be flushed or purged before the sensor can be replaced.

Caution!

When converting the measuring device, replace all small items (screws, etc.) with the material supplied as part of the conversion kit.

- $\hfill\square$ 1. Remove the four screws (a) securing the housing neck (b).
- \Box 2. Carefully disengage the housing neck (b) from the sensor (c).
- \Box 3. Remove the four screws (d) securing the sensor.
- \Box 4. Carefully remove the sensor (c) from the basic unit (e).
- □ 5. Using a suitable implement, remove the sensor seal (f) without scratching the sealing face.
- \Box 6. Use as suitable solvent to clean the sealing face (g) of the basic unit.
 - Caution!
 - Take great care not to scratch the sealing face (g).
 - The adapter bore must be perfectly clean.
- \Box 7. Place the new sensor seal (f) on the sealing face (g).

 \Box 8. Slip the new sensor (c) into the sensor bore of the basic unit (e).

Caution!

The mark (h, small recess) on the sensor (h) must point in the flow direction (arrow on the basic unit).

- □ 9. Apply a drop of a grease appropriate to the temperature range of the application to the threads and seatings of each screw. The high temperature paste HTP (50048898) is recommended.
- □ 10. Secure the sensor (c) to the basic unit (e). Conversion of Prowirl 72***_**0******** and 72***_ **1********: tightening torque = 5.8Nm (4.3lbf ft), cross wise. Conversion of Prowirl 72***_**2*******: 1st step tightening torque = 10Nm (7.4lbf ft), cross wise; 2nd step tightening torque = 15Nm (11.0lbf ft), cross wise

Note!

JA017_012

- For DSC sensor replacement, the line needs to be completely depressurized.
- DSC Sensor replacement can only be performed by technically trained staff.
- The operator has to take appropriate precautions against injury when handling cot or hot objects. These precautionary actions have to comply with site safety and work instructions.
- The new gasket included in the conversion kit has to used for the replacement. The old gasket has to be disposed off.
- If conversion is done at other temperatures of the piping than ambient temperature, the torques should be adjusted according to the table below.
- Sensor, bolts and meter body need to be at the same temperature for conversion. Therefore first mount DSC sensor with bolts tightened slightly by hand. Then allow the DSC sensor to reach the meter body temperature prior to tightening the retaining bolts with the given torques.
- For devices according to ATEX II 1/2GD and ATEX II 1/2G, the devices have to be pressure tested after DSC sensor replacement. The pressure test has to be done at a test pressure of 1.5 times design pressure.

	Conversion of 72***-**0******** and 72***-**1*******	Conversion of 72***-**2********		
Temp.	Torque	Torque [Nm]/[Ibf ft]		
[Cy[F]		Step 1	Step 2	
-200/-328	5.8/4.3	10.0/7.4	15.0/11.0	
-50/-58	5.8/4.3	10.0/7.4	15.0/11.0	
-40/-40	5.8/4.3	10.0/7.4	15.0/11.0	
20/68	5.8/4.3	10.0/7.4	15.0/11.0	
100/212	4.9/3.6	8.5/6.3	12.7/9.4	
200/392	4.6/3.4	7.9/5.8	11.9/8.8	
260/500	4.5/3.3	7.8/5.7	11.6/8.6	
300/572	4.4/3.2	7.6/5.6 11.4/8.4		
400/752	not recommended	7.0/5.2	10.5/7.7	

- 11. Carefully slip the new housing neck (b) over the sensor (c). Make sure that the arrow on the housing neck is pointing in the direction of flow.
- 12. Tighten the four screws (a) securing the housing neck (b).
 Tightening torque = 5.8Nm (4.3lbf ft); tighten in diagonally opposite sequence in three uniform steps

13. Coat the O-ring (i) with silicone grease (the O-ring is fitted to the housing neck).

- Fig. 9: Replacing housing neck and sensor
 - a = Threaded fastener of housing neck
 - b = Housing neck
 - c = Sensor
 - d = Threaded fastener of sensor
 - e = Basic unit
 - f = Sensor seal
 - g = Sealing face of basic unit
 - h = Mark on sensor (must point in direction of flow)
 - i = O-ring of housing neck (fitted)

8. Installing the new preamplifier (Fig. 10)

 \Box 1. Slip the preamplifier (a) into the housing neck (b).

Note!

The housing neck has a guide to ensure that the preamplifier can be installed only in the correct position.

□ 2. Tighten the two securing screws (c) to secure the preamplifier (a).

- Fig. 10: Replacing the housing neck / installing the preamplifier
 - a = Preamplifier
 - $b = Housing \ neck$
 - c = Threaded fastener of preamplifier

9. Installing the remote connection housing (Fig. 8)

- 1. Route preamplifier cable (d) from below through the remote-version connection housing (b) and connect the plug of preamplifier cable (d) on connection board (c) (on the underside of the connection board).
- 2. Install the connection board (c) in remote-version connection housing (b).
- □ 3. Position the remote-version connection housing (b) on housing neck (e).
- \Box 4. Tighten the screw (f) securing the remote-version connection housing.
- $\hfill\square$ 5. Tighten the threaded element of the cable grip (g).

- \Box 6. Tighten the threaded element of the cable entry (h).
- \Box 7. Screw the cover (a) onto the connection housing (b).

10. Commissioning the device

 I. Switch on the power supply to the device: See the section entitled "Commissioning", "Switching on the device" in the Operating Instructions of the Prowirl 73.

Caution!

JA017 009

JA017_010

If the device is in an Ex-rated zone, the appropriate Ex documentation and the Control Drawings also apply.

 2. Key the parameters you read out beforehand Page 19 into the device from the table (see also the section entitled "Commissioning", "Quick Setup" in the Operating Instructions of the Prowirl 73.

Parameterization completes conversion; the device is now ready for operation.

□ 3. Complete the form for the archives and send the information to the address printed on the form.

www.endress.com/worldwide

People for Process Automation

UA00017D/06/EN/01.11 71128282 FM+SGML 6.0