Operating Instructions

Model OUM960 UV Analyzer/
Model OUSAF44 UV Inline Sensor

Analyzer/Sensor to measure UV Spectral Absorbance
Table of Contents

1. **SAFETY INSTRUCTIONS** ... 5
 1.1 **DESIGNATED USE** .. 5
 1.2 **INSTALLATION, START-UP AND OPERATION** .. 5
 1.3 **OPERATIONAL SAFETY** .. 5
 1.4 **RETURN** .. 6

2. **GENERAL INFORMATION** .. 7
 2.1 **HOW THE MODEL 960 UV ANALYZER WORKS** ... 7
 2.2 **CONCENTRATION AND ABSORBANCE UNITS** ... 7
 2.3 **EASY INTERFACING** ... 7

3. **INSTALLATION** .. 9
 3.1 **MODEL OUM960 ANALYZER INSTALLATION** .. 9
 3.2 **MODEL OUM960 CABLES AND Wiring** ... 10
 3.3 **DC INPUT POWER OPTION** ... 11
 3.4 **MODEL OUSA44 SENSOR INSTALLATION** .. 12
 3.5 **CABLE OUK40 STRUCTURE AND TERMINATION OF MEASUREMENT CABLE** .. 13
 3.6 **POST-CONNECTION CHECK** ... 14

4. **OPERATION** .. 15
 4.1 **QUICK OPERATION GUIDE** .. 15
 4.2 **DISPLAY AND OPERATING ELEMENTS** ... 15
 4.2.1 **Operating Elements** ... 15
 4.2.2 **Operation Legend** ... 16
 4.3 **LOCAL OPERATION** .. 16
 4.3.1 **Measuring Mode** .. 16
 4.3.2 **Configuration Mode** .. 18
 4.4 **REMOTE OPERATION** ... 19

5. **COMMISSIONING** .. 20
 5.1 **FUNCTION CHECK** ... 20
 5.2 **SWITCHING ON** .. 20
 5.3 **ANALYZER CONFIGURATION AND OPERATION** .. 21
 5.3.1 **Factory Default Setting** .. 22
 5.3.2 **Sensor Calibration** .. 22
 5.3.2.1 **Liquid Calibration Procedure** .. 22
 5.3.2.2 **Easycal™ Set up and Calibration** ... 24
 5.3.3 **Change Pathlength Setting** ... 27
 5.3.4 **Setup Output Span** .. 27
 5.3.5 **Output Relay Set Point and Configuration** ... 28
 5.3.6 **Current Output Calibration** .. 30
 5.3.7 **Date and Time Setting** ... 30
 5.3.8 **Configuration and Use Digital Input** ... 31
 5.3.9 **Process Control** .. 32
 5.3.9.1 **Access of Process Control** .. 32
 5.3.9.2 **Baseline (AutoZero)** ... 32
 5.3.9.3 **Optical Zero** .. 33
 5.3.9.4 **Lamp Switch** .. 33
 5.3.9.5 **Optical Check** ... 33
 5.3.9.6 **Password Protection** .. 35
Model OUM960 with OUSAF 44 Inline Sensor

5.3.9.7 Process Value Correlation ... 36

6. MAINTENANCE .. 39

6.1 MAINTENANCE OUTLINE... 39
6.2 MERCURY LAMP REPLACEMENT FOR OUSAF44 ... 40
6.3 OUSAF44 MEASUREMENT DETECTOR/FILTER REPLACEMENT... 42
6.4 MEASUREMENT FILTER REPLACEMENT (EASYCAL™ ASSEMBLY) ... 43
6.5 MEASUREMENT FILTER REPLACEMENT (STANDARD AND CAL ROD ASSEMBLIES) 44
6.6 SENSOR WAVELENGTH CHANGE ... 45
6.7 SENSOR WINDOW AND GASKET REPLACEMENT .. 45
6.8 SENSORS WITHOUT PRECISION OPTICAL PATH LENGTH ADJUSTER OPTION 46
6.9 SENSORS WITH PRECISION OPTICAL PATH LENGTH ADJUSTER OPTION ... 47

7. REPLACEMENT PARTS LIST .. 51

7.1 MODEL OUM960 UV ANALYZER .. 51
7.2 MODEL OUSAF44 UV INLINE SENSOR/OUA260 FLOW CELL ... 51

8. TECHNICAL INFORMATION ... 52

8.1 UV ANALYZER OUM960 .. 52
8.1.1 Input ... 52
8.1.2 Output .. 52
8.1.3 Power Supply ... 52
8.1.4 Performance ... 53
8.1.5 Environment ... 53
8.1.6 Mechanical Construction .. 53
8.2 UV ABSORPTION SENSOR OUSAF44 ... 53
8.2.1 Input and Output ... 53
8.2.2 Mechanical Construction .. 53
8.2.3 Environment ... 55
8.2.4 Power Supply ... 55
8.2.5 Optical Specifications .. 55

9. ORDERING INFORMATION ... 56

9.1 UV ANALYZER OUM960 .. 56
9.2 UV ABSORPTION SENSOR OUSAF44 ... 57
9.3 MODEL OUA260 FLOW CELL .. 58
9.4 MODEL OUK40 UV SENSOR CABLE SET .. 59
1. Safety Instructions

1.1 Designated Use

Integra Model OUM960 is an analyzer for determining the UV absorbance of a liquid medium.

The analyzer is particularly suited for use in the following areas:

- Bio-Technology industry
- Waste water processing
- Chemical processing industry
- Food industry
- Pharmaceutical industry

Any other use than the one described here compromises the safety of persons and the entire measuring system and is, therefore, not permitted. The manufacturer is not liable for damage caused by improper or non-designated use.

1.2 Installation, Start-Up and Operation

Please note the following items:

- Installation, electrical connection, start-up, operation and maintenance of the measuring system must only be carried out by trained technical personnel. The technical personnel must be authorized for the specified activities by the system operator.
- Technical personnel must have read and understood these Operating Instructions and must adhere to them.
- Before commissioning the entire measuring point, check all the connections for correctness. Ensure that electrical cables and hose connections are not damaged.
- Do not operate damaged products and secure them against unintentional commissioning. Mark the damaged product as being defective.
- Measuring point faults may only be rectified by authorized and specially trained personnel.
- If faults can not be rectified, the products must be taken out of service and secured against unintentional commissioning.
- Repairs not described in these Operating Instructions may only be carried out at the manufacturers or by the service organization.

1.3 Operational Safety

Relevant regulations and standards have been met. As the user, you are responsible for complying with the following safety conditions:

- Installation instructions
- Local prevailing standards and regulations.

EMC

This instrument has been tested for electromagnetic compatibility in industrial use according to applicable standards.

Protection against interference as specified above is valid only for an instrument connected according to the instructions in these Operating Instructions.
1.4 Return

If the device requires repair, please contact your Endress+Hauser representative. Please use the original packaging, if possible.

Notes on safety icons and symbols

Safety icons

- **Warning!**
 This symbol alerts you to hazards. They can cause serious damage to the instrument or to persons if ignored.

- **Caution!**
 This symbol alerts you to possible faults which could arise from incorrect operation. They could cause damage to the instrument if ignored.

- **Note!**
 This symbol indicates important items of information.

Electrical symbols

- **Direct Current (DC)**
 A terminal at which DC is applied or through which DC flows.

- **Alternating Current (AC)**
 A terminal at which (sine-form) AC is applied or through which AC flows.

- **Ground connecting**
 A terminal is already grounded using a grounding system.

- **Protective earth terminal**
 A terminal which must be grounded before other connections may be set up.

- **Alarm relay**

- **Input**

- **Output**
2. General Information

The Model OUM960 UV analyzer is used in conjunction with a Model OUSAF44 sensor to measure the spectral absorbance of process liquid in the UV region of the electromagnetic spectrum.

Dependent upon the optical pathlength of the connected sensor, the instrument can measure up to 50 Optical Density (OD) units.

The Model OUM960 UV analyzer is manufactured from state of the art digital electronics. Plant interface is through quick disconnect screw terminals on the back of the module. The user interface is comprised of a 6-button tactile feel keypad and 4 x 20 character alphanumeric LCD display.

2.1 How the Model 960 UV Analyzer Works

The Model OUSAF44 sensor generates two photocurrent (nA) detector signals based upon the amount of UV energy present at its lamp source (reference) and measurement point internally. The Model OUM960 unit computes the logarithmic ratio of these two signals and determines the absorbance of the liquid passing through the sensor. The absorbance value is expressed in optical density units (OD) and is displayed on the front panel. Two galvanic isolated analog current outputs, proportional to the OD reading, are simultaneously transmitted for connection to other instrumentation and recording devices.

2.2 Concentration and Absorbance Units

The concentration of an optically absorbing material in a mixture can be determined since it is related to the amount of light absorbed from a beam of light passing through it. The absorbance of a substance is directly proportional to the concentration of the material that causes the absorption. The Lambert-Beer Law describes this relationship of absorbance (A) to concentration. Essentially, the amount of radiation transmitted through the absorbing material decreases logarithmically with its increasing concentration.

\[
A = \log \frac{I_r}{I_o} = \log \frac{Io}{Ir} \quad \text{and} \quad T = \frac{Ir}{Io}
\]

The above assumes that the optical pathlength remains constant. The optical density (OD) however, is defined as Absorption per unit length. Normalizing to an optical pathlength of 1 cm, it follows that:

\[
OD = \frac{1}{L} (A)
\]

Where

- OD = Optical Density
- A = Absorbance
- L = pathlength in cm

2.3 Easy Interfacing

The Model OUM960 UV analyzer incorporates a front panel display and two analog current output signals. The display on the front panel is an alphanumeric 4 x 20 character LCD. The display may be configured for process variable or analog current output measurements. Optical Density (OD) readings are normalized to a 1 cm pathlength.

There are two analog current outputs from the unit. The range of each can be independently set to be any range within the measurement range of the instrument. One output is configured to operate with measurement baseline shift commands, while the other tracks full scale of the instrument.
The analog current outputs (4-20mA) will operate with loads up to 750 ohms. These outputs are galvanically isolated and conform to NAMUR Standard\(^1\).

Model OUM960 is supplied as standard with four digital inputs and three digital output relays.

The digital inputs can be configured to perform a variety of functions such as baseline and sensor lamp off/on.

The outputs can be connected to a PLC for inclusion in a control scheme, for simple valve operation or for local indication (alarms) and annunciation. Alarm status indication is provided on the front panel display.

All digital inputs are optically isolated.

\(^1\) NAMUR Standard Limit Detection when enabled is set to ERROR if the signal level is above 21 mA or below 3.6 mA for more than 4 seconds. The ERROR status is cleared when the signal returns to the normal 4-20 mA range.
3. Installation

3.1 Model OUM960 Analyzer Installation

Before starting installation, inspect the analyzer, sensor, and supplied cable set for any signs of shipping damage. Report any visual damage or discrepancies to Endress+Hauser Conducta and the Shipper immediately.

The Model OUM960 Analyzer is a ¼ DIN enclosure which can be installed in a variety of panels, wall or bench top housings. Refer to figure 3.1 for mounting dimensions. Mount or install the Analyzer into an enclosure or area that is not subject to excessive vibration or shock and will protect the instrument from materials such as water and chemicals. Allow enough clearance behind it for cable access.

Figure 3.1: Model OUM960 Analyzer Mounting
3.2 Model OUM960 Cables and Wiring

All wiring terminals are located on the back panel of the Model OUM960. The analyzer/sensor interconnection cables supplied with the system have all been pre-terminated and labeled for ease of installation. The Model OUM960 has two (2) analog current outputs of 4 to 20mA. Both are capable of driving loads up to 750 ohms.

In addition to the analog outputs, three (3) galvanic isolated digital outputs (N.O.) are available. These outputs are rated for both AC and DC voltages up to 280 volts at 125mA. These outputs are intended for dry contact or pilot applications.

![Wire Terminal Preparations](image)

Cables installed for signal connection (i.e. analog outputs, lamp fail output) should be shielded twisted pairs.

Warning!

When routing the cables, separate signal cables from power wiring!

Caution!

Use dry contact only when connect digital input to analyzer!

Refer Figure 3.3 for wiring connection.
3.3 DC Input Power Option

For instruments supplied for 24VDC operation, only the power input connection is changed. Figure 3.4 shows the connection detail for a 24VDC unit.
3.4 Model OUSAF44 Sensor Installation

Sensors can be installed either directly in a process line or in a by-pass line. They can be mounted either vertically or horizontally. If mounted horizontally, the sensor lamp and detector housings must be horizontal. This will insure that the optical window surfaces are in a vertical position, which will help prevent build up on the window surfaces. The sensor should be located upstream of pressure regulators. Operating sensors under pressure will help to avoid the possibility of air or gas bubble evolution, which can cause measurement noise and error.

When installing, allow adequate space for the connection of cables at the ends of the lamp and detector housings. Access to these areas is also important for connection/disconnection purposes. Sensor bodies should be supported when in line and care should be taken to ensure they are protected against damage caused by external forces such as carts on adjacent walkways.

Figure 3.5: Recommended Orientation for Sensor Installation

Figure 3.6: Typical OUSAF44/45/46 Sensor With Cables Connected.
3.5 Cable OUK40 Structure and Termination of Measurement Cable

Figure 3.7: OUSAF44 Cable at Lamp Side

Figure 3.8: OUSAF44 Cable at Detector Side
3.6 Post-Connection Check

After wiring up the electrical connection, carry out the following checks:

<table>
<thead>
<tr>
<th>Device Status and Specifications</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the analyzer or the cable externally damaged?</td>
<td>Visual inspection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical connection Remarks</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are the installed cables strain-relieved?</td>
<td></td>
</tr>
<tr>
<td>No loops and cross-overs in the cable run?</td>
<td></td>
</tr>
<tr>
<td>Are the signal cables correctly connected according to the wiring diagram?</td>
<td></td>
</tr>
<tr>
<td>Are all screw terminals tightened?</td>
<td></td>
</tr>
<tr>
<td>Are all cable entries installed, tightened and sealed?</td>
<td></td>
</tr>
<tr>
<td>Are the PE distributor rails grounded (if present)? Grounding at place of installation</td>
<td>Grounding at place of installation</td>
</tr>
</tbody>
</table>

Caution!

Improper grounding will lead to unreliable measurement result!
4. **Operation**

4.1 **Quick Operation Guide**

User has the following ways of operating the analyzer:

- On site via the keypad
- Via the digital input interface to perform process control functions remotely.

4.2 **Display and Operating Elements**

4.2.1 **Operating Elements**

![Operating Controls](image)

1. LED for lamp warning functions and limit relay status.
2. Menu/ESC key serves two functions. Pressing Menu/ESC will always exit out of a screen and will not save any changes entered. Pressing Menu/ESC from the main PV\(^i\) or Output screen will open the Sub-Menu screen.
3. Ack/ENT key accepts changes in a screen and continue forward through the screen.
4. 4 keys navigate the user through the menus and screens.
5. LC display for displaying the measured values and configuration data LED.

\(^i\) PV is the Process Value for PV1 and PV2 and corresponds to Output 1 and Output 2 respectively.
4.2.2 Operation Legend

In this manual, the following operation legend will be used when describing operation procedure.

![Operation Legend](image)

Enter/Acknowledge key

Escape/Menu key

Left or Right key

Up or Down key

Figure 4.2: Operation Legend for Operation Instruction

4.3 Local Operation

4.3.1 Measuring Mode

The analyzer normally operates in measuring mode. Here, the relays and alarm LED are triggered by the analyzer according to process status. The analyzer will take configurable digital input to trigger certain function like BaseLine Zero\(^{iii}\), Optical Zero\(^{iv}\) etc...

During the measuring mode, the LCD screen will display as figure 4.3. The process value, unit and analyzer label will be displayed permanently. BaseLine, Alarm and Lamp Status will be display when conditions are met.

![LCD Display](image)

Figure 4.3: LCD display on measuring mode

\(^{iii}\) **BaseLine Zero** when enabled offsets the PV to zero. This often used to subtract background absorbance prior to initiating a process.

\(^{iv}\) **Optical Zero** is established during calibration and the set with a non-absorbing liquid in the flow cell, i.e. de-ionized water.
Table 4.1 shows the status display description and display condition.

<table>
<thead>
<tr>
<th>Status Area Name</th>
<th>Displayed symbol</th>
<th>Description and Display criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzer Label</td>
<td>“xxxxxxxxxxxx”</td>
<td>Editable up to 12 characters for user analyzer identification.</td>
</tr>
<tr>
<td>Process Unit</td>
<td>“OD”</td>
<td>Display “OD” under normal condition,</td>
</tr>
<tr>
<td></td>
<td>“xxxxxx”</td>
<td>Displays user configured engineering unit if PV correlation function is activated.</td>
</tr>
<tr>
<td>Over Range Symbol</td>
<td>“OVER”</td>
<td>Displays if measurable range is reached.</td>
</tr>
<tr>
<td>BaseLine Status</td>
<td>“BL OFF”</td>
<td>Displays if BaseLine is not activated.</td>
</tr>
<tr>
<td></td>
<td>“BL ON”</td>
<td>Displays if BaseLine function is activated.</td>
</tr>
<tr>
<td></td>
<td>“BL SFT”</td>
<td>Displays if BaseLine and BaseLine Shift function are both activated.</td>
</tr>
<tr>
<td>Alarm</td>
<td>“AL x”</td>
<td>Displays if corresponding relays (1, 2, or both) are triggered.</td>
</tr>
<tr>
<td>Lamp Status</td>
<td>“LAMP LOW”</td>
<td>Flash if reference voltage is lower than 80% of initial value.</td>
</tr>
<tr>
<td></td>
<td>“LAMP FAIL”</td>
<td>Displays if lamp reference signal is lost.</td>
</tr>
<tr>
<td></td>
<td>“LAMP OFF”</td>
<td>Displays if lamp is turned off.</td>
</tr>
<tr>
<td>Cable Status</td>
<td>“CABLE FAULT”</td>
<td>Displays if lamp or signal cable has a faulty connection.</td>
</tr>
</tbody>
</table>

Table 4.1: Operation screen under measuring mode

Figure 4.4: Operations under Measuring Mode

Under measuring mode, press button will let you enter the process control screen, where user can operate process control routine. The detail of process control function will be listed in Chapter 6.
4.3.2 Configuration Mode

The configuration and calibration functions are arranged as function groups.

- Use \(\text{Menu} \rightarrow\) key to enter the function group menu from measurement screen.
- Use \(\uparrow \downarrow \rightarrow\) arrow key to select the group from process set-up, maintenance, or system data.
- Use \(\text{Ack} \rightarrow\) to confirm the change and input the value.
- If a modified setting is confirmed with \(\text{ESC}\), the old setting is retained.

![Diagram of configuration structure](image)

Figure 4.5: Diagram of configuration structure

Input data

During the system configuration and set up procedure, user will need to input the data into the screen.

In the data input screen

- Use \(\leftarrow \rightarrow\) to move the cursor to select the digit to edit.
- To change the decimal point of the input data, place the cursor on decimal point, use \(\uparrow \downarrow \rightarrow\) to move the decimal point to the left or right.

![Decimal Point Position Placement](image)

Figure 4.6: Decimal Point Position Placement
4.4 Remote Operation

Remote operation function will provide user the ability to use off site dry contact to perform the process control. Short input channel pin to COMMON pin will trigger the input the channel.

Refer section 5.3.8 to configure and use digital input function for remote control.

<table>
<thead>
<tr>
<th>Digital Input #</th>
<th>Description and Display criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lamp On/Off</td>
</tr>
<tr>
<td>2</td>
<td>Enable BaseLine function</td>
</tr>
<tr>
<td>3</td>
<td>Update BaseLine value</td>
</tr>
<tr>
<td>4</td>
<td>Optical Zero</td>
</tr>
<tr>
<td></td>
<td>Hold current process measurement (both display and analog output)</td>
</tr>
</tbody>
</table>

Table 4.2: Digital Input Functions

![Typical Digital Input Wiring Diagram](image-url)

Figure 4.7: Typical Digital Input Wiring Diagram
5. Commissioning

5.1 Function Check

Warning!
- Check all connections for correctness.
- Make sure that the supply voltage is identical to the voltage written on the technical information!

5.2 Switching On

Familiarize yourself with the operation of the analyzer before it is first switched on. Please refer in particular to the "Safety Instructions" and "Operation" sections. After power-up, the device performs a diagnosis for 30 seconds and then goes to the measuring mode.

Lamp Initial Set-Up

The first time the analyzer is turned on with a new UV lamp, a “LAMP LOW” symbol will be shown on the display screen. The front LED will be flashing and lamp alarm relay will be toggled. To remove this warning message, the lamp status has to be initialized from the software. The lamp low indicator shows as follows:

![Image of Integra with Lamp Low symbol and Alarm LED flashing]
Figure 5.1: Lamp status during start-up
Commissioning

Reset New UV Lamp

<table>
<thead>
<tr>
<th>PROCESS SET-UP</th>
<th>MAINTENANCE</th>
<th>SYSTEM DATA</th>
<th>ESC/EXIT</th>
<th>ENTER/SELECT</th>
</tr>
</thead>
</table>

Press \(\text{Menu} \) \(\text{ESC} \), enter function group selection menu. Move the cursor to MAINTENANCE and press \(\text{Ack} \) \(\text{ENT} \) to enter.

<table>
<thead>
<tr>
<th>MAINT: LAMP REPLACE</th>
<th>LAMP HOURS XX.X</th>
<th>SEE MANUAL</th>
<th>ESC/EXIT</th>
<th>ENTER/SELECT</th>
</tr>
</thead>
</table>

Press \(\text{Ack} \) \(\text{ENT} \) to navigate to LAMP REPLACE, and press \(\text{Ack} \) \(\text{ENT} \).

<table>
<thead>
<tr>
<th>REF VOLTAGE X.XXX</th>
<th>TIME LEFT 30:00 MIN</th>
<th>ESC/EXIT</th>
<th>ENTER/START</th>
</tr>
</thead>
</table>

The current lamp voltage will be displayed on the right upper corner. The timer will start counting down once the \(\text{Ack} \) \(\text{ENT} \) is pressed to warm up the lamp.

<table>
<thead>
<tr>
<th>REF VOLTAGE X.XXX</th>
<th>LAMP TIME XX HR</th>
<th>LOW VOLTAGE X.XXX</th>
<th>ESC/EXIT</th>
</tr>
</thead>
</table>

Wait 30 minutes until the timer goes to 0:00

The current lamp voltage will be displayed in the first line and lamp low threshold voltage will be calculated and display on the third line.

Press \(\text{Ack} \) \(\text{ENT} \) to accept the setting and use \(\text{Menu} \) \(\text{ESC} \) to go back to measurement screen. The LED and lamp alarm relay will be reset.

5.3 Analyzer Configuration and Operation

After power-up and lamp setting, you must verify analyzer configuration settings which are required for correct measurement.

The analyzer/sensor will be Plug & Play if system was ordered together as a complete solution!

If OUM960 UV analyzer ordered with OUSAF44 UV sensor and OUK40 cable from Endress+Hauser, the factory will perform:

- New lamp set up
- Pathlength adjustment in analyzer according to sensor order
- Calibrate analyzer with LiquidCal or EasyCal™ (if ordered)

If application data has been given, factory will perform optical density to engineering unit correlation and deliver correlation data with analyzer. Span and relay setting also can be performed in factory if requested.

If analyzer ordered separately, the factory default setting will be loaded into the analyzer when analyzer is delivered.
5.3.1 Factory Default Setting

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Factory Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Unit</td>
<td>OD</td>
</tr>
<tr>
<td>Measurement Pathlength</td>
<td>10mm</td>
</tr>
<tr>
<td>Output Span 1</td>
<td>2.0000 OD</td>
</tr>
<tr>
<td>Output Span 2</td>
<td>2.0000 OD</td>
</tr>
<tr>
<td>Relay 1 Set Point/Status</td>
<td>1.0000 OD/ Disabled</td>
</tr>
<tr>
<td>Relay 2 Set Point/Status</td>
<td>1.0000 OD/ Disabled</td>
</tr>
<tr>
<td>Process Value Correlation</td>
<td>Off (Curve #0)</td>
</tr>
<tr>
<td>BaseLine</td>
<td>Disabled</td>
</tr>
<tr>
<td>Password</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Table 5.1: Factory Default Setting

5.3.2 Sensor Calibration

Model 960 analyzer supports 2 different calibration procedures: Liquid Calibration and Easycal™.

5.3.2.1 Liquid Calibration Procedure

A liquid solution of a known optical density (at the wavelength of the sensor) must be used for instrument calibration. The following procedure is used in factory when Easycal™ option is not ordered. Calibration liquid can be chosen by user in field depending on application.

Potassium Dichromate (K₂Cr₂O₇) is most often used as an optical standard for calibration of UV analyzers. A solution consisting of 182ml of 0.1N K₂Cr₂O₇, diluted with DI water to a 1L volume, has an absorbance of approximately 10 OD at 280 nm. Successive dilution will provide a series of calibration solutions for sensor calibration at more than one point.

D-Tryptophan is a common protein used for optical calibration of UV analyzers at 280nm. A solution can be made consisting of 1.000 grams of Tryptophan and 200ml of de-ionized water placed in to the beaker and heated on a magnetic stirrer. As the Tryptophan dissolves add de-ionized water to a volume of about 450ml. The Tryptophan dissolves slowly. Continue the stirring, maintaining a temperature of about 30°C until the Tryptophan is completely in solution. Transfer this solution into a 1000ml volumetric flask and dilute with de-ionized water to a final volume of 1000ml. This is a concentration of 1000ppm D-Tryptophan in water and is used as the basic standard or mother solution from which successive dilutions can be prepared. A solution diluted to 100ppm is about 2.6 OD at 280nm.

When preparing solutions, it is very important to measure the optical absorbance of every solution prepared (at the wavelength of the sensor) on a certified laboratory spectrophotometer.

The Liquid Calibration screen appears only if an Easycal™ system is not installed and configured in the System Data section.
Liquid Calibration Procedure

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINT:SENSOR CAL</td>
<td>Enter MAINTENANCE sub-menu to access SENSOR CAL function. Press ‹ ENT › to ent.</td>
</tr>
<tr>
<td>LIQUID CAL SIMULATOR DEFAULT OD</td>
<td>Use ‹ ENT › to select LIQUID CAL, Press ‹ ENT › to enter liquid calibration process.</td>
</tr>
<tr>
<td>LIQUID CAL PV: 0.000 OD ZERO SOL IN CELL</td>
<td>Fill the sensor with a zero fluid. Press ‹ ENT › to record zero point.</td>
</tr>
<tr>
<td>LIQUID STD VALUE FROM: x.xxx OD TO: x.xxx OD</td>
<td>Enter the value of the standard solution being used to calibrate the system. The solution should be approximately ½ of the full range of the system. Press ‹ ENT › to continue.</td>
</tr>
<tr>
<td>LIQUID CAL PV: x.xxx OD LIQUID STD IN CELL</td>
<td>Fill the sensor with the standard calibrating solution. Wait until OD reading increase and stabilize. Press ‹ ENT › to record the data.</td>
</tr>
<tr>
<td>REF ROD CAL PV: 0.000 OD ZERO SOL IN CELL</td>
<td>Remove the calibration solution, and rinse repeatedly with a zero solution. OD reading should decrease and stabilize. Press ‹ ENT › to proceed.</td>
</tr>
<tr>
<td>REF ROD CAL PV: x.xxx OD INSERT REF ROD</td>
<td>Remove the cover screw on the measurement detector and install the reference rod. Press ‹ ENT › to proceed.</td>
</tr>
<tr>
<td>LIQUID CAL CONFIRM LIQUID X.xxx OD REF ROD X.xxx OD</td>
<td>Remove the reference rod and install the cover screw on the measurement detector. Press ‹ ENT › to proceed. The unit records the values of the calibration solution and ref rod value and displays these values. The standard solution is used for calibration, while the ref rod is for checking calibration. Press ‹ ENT › to accept these values.</td>
</tr>
</tbody>
</table>
5.3.2.2 Easycal™ Set up and Calibration

All OUSAF44 sensors can be fitted with the optional Easycal™ Liquid-Free NIST Traceable Calibration System to allow fast and precise calibration of the UV system. This option is available in new systems and as a retrofit item for existing units in the field. Check accessories chapter 7 for retrofit item ordering information.

Each Easycal™ unit contains two traceable filters - a nominal 0.5 AU and 1 AU (Absorbance Unit) - which are placed into the optical measurement path of the instrument either separately or together. These filters are scanned with a traceable source and their actual absorbance at individual (measurement) wavelengths is ascertained.

The Easycal™ system allows traceable calibration without using liquid standards. It is very important to refer to the actual values of the Easycal™ optical filters as noted on the Calibration Certificate supplied with the unit. These absorbance values should be entered into the Model OUM960 as part of the configuration setup. The Easycal™ screen appears only if it is installed and configured in the System Data section.

![End View of EasyCal™ Housing](image-url)

Figure 5.2: Easycal™ Housing and Controls
<table>
<thead>
<tr>
<th>EasyCal™ Installation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS DATA: EASYCAL</td>
<td>Enter SYSTEM DATA sub-menu to access CHANGE EASYCAL CNFG function. Press ENT to continue.</td>
</tr>
<tr>
<td>INSTALLED NO</td>
<td>Use ** ENT** to select [YES] or [NO] to decide if the Easycal™ is installed. To install, select [YES] and confirm.</td>
</tr>
<tr>
<td>ESC/EXIT</td>
<td>This screen displays the present NIST Filter Absorbance values and the re-certification date. Press ENT to change the date and filter values starting with the next screen.</td>
</tr>
<tr>
<td>CHANGE DUE DATE</td>
<td>Move cursor to edit the day, month and year. Save data and move to next step.</td>
</tr>
<tr>
<td>FROM: MM/DD/YY</td>
<td>Refer NIST filter high absorption value listed on NIST filter certificate delivered with Easycal™. The value should be close to 1.0000 AU. Press ENT to continue and use the same procedure to input the low filter absorption value, close to 0.5000 AU.</td>
</tr>
<tr>
<td>TO: MM/DD/YY</td>
<td>After put in both filter data use ENT to confirm the setting. Easycal™ data installation is finished.</td>
</tr>
</tbody>
</table>
Easycal Calibration Procedure

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINT: SENSOR CAL</td>
<td>Enter MAINTENANCE sub-menu to access SENSOR CAL function. Press to change. If Easycal has been installed, analyzer will automatically enter Easycal™ procedure.</td>
</tr>
<tr>
<td>EASYCAL FILTER DATA</td>
<td>Both high and low NIST filters absorption value will be displayed in this screen. User set certificate due date is displayed also. Press after review the data.</td>
</tr>
<tr>
<td>EASYCAL CALIBRATE 0.000 A</td>
<td>Assure both high and low filters are in OUT position. Press to record zero point.</td>
</tr>
<tr>
<td>EASYCAL CALIBRATE X.XXX A</td>
<td>Move HI filter adjustment screw to IN position. Press to record high filter value.</td>
</tr>
<tr>
<td>EASYCAL CALIBRATE X.XXX A</td>
<td>Move LO filter adjustment screw to IN position. Press to record HI+LO value.</td>
</tr>
<tr>
<td>EASYCAL CALIBRATE X.XXX A</td>
<td>Move HI filter adjustment screw to OUT position. Press to record low filter value and perform calibration calculation.</td>
</tr>
<tr>
<td>LO X.XXX A XX.X %</td>
<td>The screen then displays the low, high and high+low readings and % deviation from the certified value of each value. Review the deviation level and press to accept the calibration result.</td>
</tr>
<tr>
<td>HI X.XXX A XX.X %</td>
<td></td>
</tr>
<tr>
<td>HI+LO X.XXX A XX.X %</td>
<td></td>
</tr>
</tbody>
</table>
5.3.3 Change Pathlength Setting

If sensor pathlength needs to be changed by user, the corresponding change will need to be performed to OUM960 analyzer also. Refer to Chapter 6 Sensor and Analyzer Maintenance to perform sensor pathlength adjustment. This section only covers corresponding analyzer setting to match the measurement result.

<table>
<thead>
<tr>
<th>Pathlength Setting</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS DATA : PATHLENGTH</td>
<td>Enter SYSTEM DATA sub-menu to access PATHLENGTH function. Press ENT to continue.</td>
</tr>
<tr>
<td>FROM : 10.0 MM</td>
<td>The FROM value is the present pathlength Value. Use ↑ to position the cursor and ↓ to select wanted digit. Repeat for each digit position. When new pathlength has been selected, press Ack ENT to confirm the change.</td>
</tr>
<tr>
<td>TO : XX.X MM</td>
<td>The SYS DATA: PATHLENGTH is displayed together with the new values for pathlength and OD MIN/MAX.</td>
</tr>
<tr>
<td>OD MIN/MAX 0.1/2.5</td>
<td></td>
</tr>
<tr>
<td>ESC/EXIT ENT/CHANGE</td>
<td></td>
</tr>
</tbody>
</table>

5.3.4 Setup Output Span

The 4~20mA span setting will provide user capability to achieve maximum resolution for preferred measurement range.

<table>
<thead>
<tr>
<th>Change 4~20mA Output Span</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SETUP : OUTPUT SPANS</td>
<td>Enter PROCESS SET-UP sub-menu to access OUTPUT SPANS function. Use ↑ to move the cursor to O1 and press ENT to select.</td>
</tr>
<tr>
<td>O1</td>
<td></td>
</tr>
<tr>
<td>± XX.X %</td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td></td>
</tr>
<tr>
<td>± XX.X %</td>
<td></td>
</tr>
<tr>
<td>ESC/EXIT ENT/SELECT</td>
<td>This screen will display the current output span MIN/MAX span based on pathlength or process value correlation setting. Press ENT to change the span.</td>
</tr>
<tr>
<td>O1 SPAN XX.X UNITS</td>
<td></td>
</tr>
<tr>
<td>MAX : XX.X OD</td>
<td></td>
</tr>
<tr>
<td>MIN : XX.X OD</td>
<td></td>
</tr>
<tr>
<td>ESC/EXIT ENT/CHANGE</td>
<td></td>
</tr>
<tr>
<td>CHANGE O1 SPAN</td>
<td>In this screen the current value for span is the FROM value. Position the cursor as done previously and select the number for that position. Repeat as needed for each digit position. When the new span has been entered, press Ack ENT and confirm the sanity check to accept.</td>
</tr>
<tr>
<td>FROM : XXXX OD</td>
<td></td>
</tr>
<tr>
<td>TO : XXXX OD</td>
<td></td>
</tr>
<tr>
<td>ESC/EXIT ENT/CHANGE</td>
<td></td>
</tr>
</tbody>
</table>

Use same procedure above to change Channel 2 output span.
5.3.5 Output Relay Set Point and Configuration

Change Output Relay Set Point

Enter PROCESS SET-UP sub-menu to access OUTPUT SPANS function.

Use \(\downarrow \) to move the cursor to ALx and press \(\text{Ack} \) to select.

In this screen the current value for span is the FROM value. Position the cursor as done previously and select the number for that position. Repeat as needed for each digit position. When the new relay set point has been entered, press \(\text{Ack} \) and confirm the sanity check to accept.

Configure Output Relays

The Alarm Setup screen allows configuration of PV, Hi/Lo/Off, and NO/NC operation. \(\downarrow \) is used to select the parameter and \(\leftarrow \rightarrow \) is used to change the state. Press \(\text{Ack} \) to continue.

<table>
<thead>
<tr>
<th>Functions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger Condition</td>
<td>HIGH Triggered if process value higher than set point.</td>
</tr>
<tr>
<td></td>
<td>LOW Triggered if process value higher than set point.</td>
</tr>
<tr>
<td></td>
<td>OFF Relay disabled</td>
</tr>
<tr>
<td>Input Mapping</td>
<td>PV1 Process value #1</td>
</tr>
<tr>
<td></td>
<td>PV2 Process value #2</td>
</tr>
<tr>
<td>Relay Operation Mode</td>
<td>NO Normally open</td>
</tr>
<tr>
<td></td>
<td>NC Normally close</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>Set relay hysteresis</td>
</tr>
<tr>
<td>Delay</td>
<td>Delay trigger timer (Sec)</td>
</tr>
</tbody>
</table>

Table 5.2: Output Relay Configuration
<table>
<thead>
<tr>
<th>Configure Output Relay</th>
<th>Enter from MAINTENANCE sub-menu. Scroll to the ALARM CONFIG screen. Use to select the ALx line. Press to select and confirm.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configure Output Relay</th>
<th>The ‘ALARM 1 SETUP’ screen will appear. Select the SOURCE option, PV1 or PV2.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configure Output Relay</th>
<th>Next with select the CONFIG option. Use to select OFF, HIGH and LOW.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configure Output Relay</th>
<th>Press to scroll down to ALARM 1 SETUP STATE screen. selects either normally open (N/O) or normally closed (N/C) alarm state of the relay contacts. Select the N/O option and press to accept and confirm.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configure Output Relay</th>
<th>The CHANGE ALARM 1 DELAY is next displayed. Set the needed delay. Delay time unit is second. Press to accept and confirm.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configure Output Relay</th>
<th>The CHANGE ALARM 1 HYSTS option controls the alarm hysteresis. If the alarm set point is set 1.00 OD and the hysteresis is 0.100 OD, an alarm condition exists at 1.00 OD and will stay in alarm until the PV is 0.90 OD or less. Hysteresis can be called the deadband between an alarm on and off condition. Set the hysteresis to 0.100 OD and press to accept and confirm.</th>
</tr>
</thead>
</table>
5.3.6 Current Output Calibration

This function calibrates 4–20mA current output to assure the measurement accuracy.

<table>
<thead>
<tr>
<th>Calibrate 4–20mA Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINT: OUTPUT CAL</td>
</tr>
<tr>
<td>x OUTPUT 1</td>
</tr>
<tr>
<td>OUTPUT 2</td>
</tr>
<tr>
<td>ESC/EXIT ENT/SELECT</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Enter MAINTENANCE Sub-Menu to access OUTPUT CAL function. Move cursor to OUTPUT 1 and press (\text{Ent}) to select this channel.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>OUTPUT 1 CAL +/− 2%</td>
</tr>
<tr>
<td>x 4MA TRIM</td>
</tr>
<tr>
<td>20MA TRIM</td>
</tr>
<tr>
<td>ESC/EXIT ENT/ACCEPT</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Move the cursor up and down to select the value need to be trimmed. Use (\text{Ent}) to trim 4mA or 20mA. The trimming resolution is 1% per step. Press (\text{Ack}) to accept and confirm the trimming.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Follow same procedure to trim OUTPUT 2.</td>
</tr>
</tbody>
</table>

5.3.7 Date and Time Setting

<table>
<thead>
<tr>
<th>Set Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINT: SET CLOCK</td>
</tr>
<tr>
<td>x CUR DATE MM/DD/YY</td>
</tr>
<tr>
<td>CUR TIME HH/MM/SS</td>
</tr>
<tr>
<td>ESC/EXIT ENT/SELECT</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Enter MAINTENANCE sub-menu to access SET CLOCK function. Use (\text{Ent}) to select the CUR DATE line.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CHANGE DATE FROM: MM/DD/YY</td>
</tr>
<tr>
<td>TO: MM/DD/YY</td>
</tr>
<tr>
<td>ESC/EXIT ENT/CHANGE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Press (\text{Ent}) to select the DATE option and then the CHANGE DATE Screen is displayed with the current date. Use (\text{Ent}) to position the cursor and (\text{Ent}) to change the mm/dd/yy numbers. When the wanted date is entered, press (\text{Ack}) to accept and confirm.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CHANGE TIME FROM: HH/MM/SS</td>
</tr>
<tr>
<td>TO: HH/MM/SS</td>
</tr>
<tr>
<td>ESC/EXIT ENT/CHANGE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Press (\text{Ent}) to select the TIME option and then the CHANGE TIME Screen is displayed with the current time. Use (\text{Ent}) to position the cursor and (\text{Ent}) to change the hh/mm/ss numbers. When the wanted time is entered, press (\text{Ack}) to accept and confirm.</td>
</tr>
</tbody>
</table>
5.3.8 Configuration and Use Digital Input

<table>
<thead>
<tr>
<th>Configure Digital Input</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINT: DIGITAL IN x</td>
<td>Enter MAINTENANCE sub-menu to access DIGITAL IN function. Press Ack to continue.</td>
</tr>
<tr>
<td>DISABLE</td>
<td></td>
</tr>
<tr>
<td>ESC / EXIT ENT / SELECT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHG DIGITAL IN CFG x</th>
<th>The following screen displays the current configuration of the external digital inputs. Use the < to scroll through the DISABLE and STANDARD CONFIG When disabled the external digital inputs are inoperative.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISABLE</td>
<td></td>
</tr>
<tr>
<td>ESC / EXIT ENT / SELECT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHG DIGITAL IN CFG x #4 OPTICAL ZERO x</th>
<th>When in STANDARD CONFIG, the digital inputs are configured as;</th>
</tr>
</thead>
</table>
| **STANDARD CONFIG** | 1 Lamp On-Off
2 Baseline On-Off
3 Baseline Update
4 Hold/Optical Zero |
| **ESC / EXIT ENT / SELECT** | Digital Input #4 can be set as Optical Zero function if wanted. Press **Ack** to accept and confirm. |

5.3.9 Process Control

From main measurement screen, press \(\rightarrow \rightarrow \) to enter process control screen.

<table>
<thead>
<tr>
<th>Functions</th>
<th>Status</th>
<th>Description</th>
<th>Remote Trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaseLine</td>
<td>ON</td>
<td>Enable baseline</td>
<td>Digital Input 2</td>
</tr>
<tr>
<td></td>
<td>UPDATE</td>
<td>Update baseline value</td>
<td>Digital Input 3</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>Disable baseline</td>
<td>Digital Input 2</td>
</tr>
<tr>
<td>Lamp Switch</td>
<td>ON</td>
<td>Turn on lamp</td>
<td>Digital Input 1</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>Turn off lamp</td>
<td>Digital Input 1</td>
</tr>
<tr>
<td>Optical Zero</td>
<td>-</td>
<td>Make current measurement at 0.</td>
<td>Digital Input 4</td>
</tr>
<tr>
<td>Optical Check</td>
<td>-</td>
<td>Start sensor check</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 5.3: Process Control Functions

5.3.9.1 Access of Process Control

The authorization to access the process control functions can be configured in OUM960 analyzer. The access control is password protected. See 5.3.9.6 for password protection.

Configure Process Control Access

Enter SYSTEM DATA sub-menu to access ACCESS function. Press \(\rightarrow \rightarrow \) to continue.

Select the option to configure.
Note: The Response is in brackets []. With bracketed responses use \(\leftarrow \rightarrow \) for changes. Select ‘YES’ for each option. There are 4 options to configure. When all changes are made, press \(\rightarrow \rightarrow \) to accept and confirm the entries and return to top screen.

5.3.9.2 Baseline (AutoZero)

To operate the baseline function, the Process Control Screen must be assigned as an authority for the user. If assigned the authority, use \(\rightarrow \rightarrow \) to open the Process Control Screen. Use \(\leftarrow \rightarrow \) to select baseline and select as follows: To initiate a new baseline use “On”, to remove an existing baseline use “Off”. To change an existing baseline setting to a new setting use “Update”. If the baseline was previously “On” when a power interruption occurred, the analyzer will retain its last saved baseline setting and return to that setting when power is restored, and the analyzer and the baseline control will remain “On”. Baseline function replaced the AutoZero function in the 600 series analyzer.

If a Baseline Shift value has been entered, activating the baseline shift will cause the 4~20mA output channel 2 to “Shift” to the entered % value. Both PV display would indicate “0” The PV screen will also indicate BL SFT in lieu of BL ON when a shift value has been entered (>0%).
5.3.9.3 Optical Zero

Optical Zero is a function to provide an overall zero to offset the initial background optical noise in OUSAF44 UV sensor. User can also use optical zero to setup the process zero (e.g. DI water optical density etc.).

5.3.9.4 Lamp Switch

Use this function to switch lamp on and off.

Note!
Lamp alarm relay status will be affected.

5.3.9.5 Optical Check

Use Cal Rod to check Calibration Reference Rod and Cal Rod Check

A Calibration Reference Rod is supplied with each standard sensor (a sensor without EasyCal™) to allow calibration "Check" of the instrument without requiring the use of calibration solutions. The Reference Rod screws into the detector housing of the sensor, providing partial blockage of the sensor light path and therefore simulating absorbance in the optical chain. The cross-sectional view of an OUSAF44 measurement detector shown below illustrates the placement and the blocking effect that the Reference Rod has in relationship to the sensor's detector. This partial blockage of light to the detector provides an effective, stable and repeatable checking technique.
When used in conjunction with an initial liquid standard calibration procedure, the reference Rod can be deemed a secondary standard for routine system checking. Calibration can be traced to the controlled standard used to verify the original calibration solutions and can therefore satisfy validation procedures. During initial calibration of a sensor/analyzer pair, liquid standards must be used to calibrate the full-scale response of the system. After calibration, by filling the sensor with water and ensuring the analyzer reads zero, a value for the reference rod can be obtained by inserting the Reference Rod into the sensor detector housing and noting the analyzer display reading. At any time in the future, reinserting the reference rod and checking that the analyzer reads the same with the sensor filled with water can check the analyzer calibration.

Note!
All analyzers must be re-calibrated with liquid standards if there are any changes made to the optical chain, including replacement of seals or lamp.

When not being used, the Reference Rod access hole is plugged with a gasket and stainless steel screw to maintain the environmental integrity of the detector housing.

All Model OUM960 UV analyzers with standard OUSAF44 sensors (without EasyCal™ option) are calibrated at the factory using liquid standards. Please refer to the Test Sheet accompanying your instrument for the factory determined reference rod value.
5.3.9.6 Password Protection

OUM960 support the password function to protect the analyzer from unauthorized operation.

![Diagram of Password Protection](image)

Figure 5.5: Password protection level

<table>
<thead>
<tr>
<th>Password Protection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Enter SYSTEM DATA sub-menu to access PASSWORD function. Press **</td>
<td>Enter SYSTEM DATA sub-menu to access PASSWORD function. Press ** to continue.</td>
</tr>
<tr>
<td>When in the ENTER OLD PASSWORD screen, the CURSOR highlights the</td>
<td>When in the ENTER OLD PASSWORD screen, the CURSOR highlights the left digit position. Use the ** to wanted digit position. Use ** to scroll thru 0-9 for each digit position. Move the cursor to the desired digit and enter a number. When the old password number has been entered, press ** to accept.</td>
</tr>
<tr>
<td>Note: When “0000” is set a password, the password protection mode is disabled.</td>
<td>Note: When “0000” is set a password, the password protection mode is disabled.</td>
</tr>
<tr>
<td>When in the ENTER NEW PASSWORD screen, the CURSOR highlights the</td>
<td>When in the ENTER NEW PASSWORD screen, the CURSOR highlights the left digit position. Use the ** to wanted digit position. The ** scrolls thru 0-9 for each digit position. Move the cursor to the desired digit and enter a number. Repeat as wanted for each cursor position. Any password number up to 4 digits can be entered. When the password number has been selected, press ** twice to accept. The Password for MENU access is now the number entered.</td>
</tr>
</tbody>
</table>
5.3.9.7 Process Value Correlation

In the OUM960 analyzer software, the user can define and store 3 linearization tables to correlate the optical density measurement to specified process parameter measurement. Each table supports up to 16 points of measurement value. User can switch correlation curves to fit different applications.

Caution!
The overall course of the curve must be continuously rising. Horizontal or vertical segments or a zigzagging of the curve are not permitted.

Data points may be entered into the linearization table randomly; the software performs sorting automatically as needed. It is possible to increase accuracy in a certain segment of a linearization table later. To do so it is not necessary to enter all data points again, but to enter only additional data points.

```
<table>
<thead>
<tr>
<th>Process Value Correlation Set Up</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SETUP: PV CORRELATE</strong></td>
<td>Enter PROCESS SET-UP sub-menu to access PV CORRELATE function. Press Enter to continue.</td>
</tr>
<tr>
<td>PV1: X.XXX OD</td>
<td>The next screen asks which curve (1-3) you want to edit and store the correlation table. Scroll with Arrows to select curve number. Press Enter to continue.</td>
</tr>
<tr>
<td>PV2: X.XXX OD</td>
<td>If the original sample value is not put in yet. Select SAMPLE IN CELL? By scrolling with Arrows to select. Press Enter to continue.</td>
</tr>
<tr>
<td>ESC/EXIT ENT/CHANGE</td>
<td>The next screen asks if process sample is in the cell and displays measurement value. If this value is within the Min/Max acceptable press Enter to read and store.</td>
</tr>
<tr>
<td><strong>SAMPLE IN CELL?</strong></td>
<td>The next screen asks if another sample is to be measured. Press Enter to read another sample, press Exit if finished all samples.</td>
</tr>
<tr>
<td>SAMPLE EDIT?</td>
<td>Confirm the number of point to build correlation curve and press Enter to store original sample data.</td>
</tr>
<tr>
<td>MANUAL ENTRY</td>
<td><strong>CURVE #X</strong></td>
</tr>
<tr>
<td>ESC/EXIT ENT/SELECT</td>
<td><strong>ANOTHER SAMPLE?</strong></td>
</tr>
<tr>
<td><strong>PV: X.XXX OD</strong></td>
<td><strong>ESC/EXIT ENT/YES</strong></td>
</tr>
<tr>
<td><strong>CURVE #X</strong></td>
<td><strong>ESC/EXIT ENT/ACCEPT</strong></td>
</tr>
<tr>
<td><strong>SAMPLE #X IN CELL</strong></td>
<td></td>
</tr>
<tr>
<td><strong>ESC/EXIT ENT/READ</strong></td>
<td></td>
</tr>
<tr>
<td><strong>CURVE #X (XX POINTS)</strong></td>
<td></td>
</tr>
<tr>
<td><strong>SAVE DATA</strong></td>
<td></td>
</tr>
<tr>
<td><strong>ESC/EXIT ENT/ACCEPT</strong></td>
<td></td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE IN CELL?</td>
<td>SAMPLE EDIT is used to put in the target correlation value and unit. Press <code>ENT</code> to continue to put in data.</td>
</tr>
<tr>
<td>CHANGE OD #X</td>
<td>The next screen asks if the user would like to change the original sample point OD value. If this value needs to be changed, use <code>▲</code> and <code>▼</code> to change value. Press <code>ENT</code> to continue.</td>
</tr>
<tr>
<td>ENTER USER VALUE #XX</td>
<td>The next screen is for entry of target correlation values that can be assigned to the original correlated measured value. i.e. 1.32 measured units to 9999.9 units. The FROM value is the last entered value on the ‘ENTER USER VALUE’ screen. Enter the new value using <code>▲</code> and <code>▼</code> to position the cursor and select the number for each required position. If a different position is required for the decimal point, do this first. Press <code>ENT</code> twice to change and accept.</td>
</tr>
<tr>
<td>ENTER UNITS</td>
<td>When all the sample points have been edited, the Change Units screen is next. The engineering unit can be entered is limited to 6 alpha-numeric characters. i.e. gr/l, %, mg/l, cel/cc, etc.). Press <code>ENT</code> twice to change and accept entry.</td>
</tr>
<tr>
<td>CURVE #x (x POINTS)</td>
<td>The Max/Min values are calculated for entered values and units. These values are the new limits for output span and relay setting and the displayed Process Display PV value and units.</td>
</tr>
</tbody>
</table>
Note!
If the OD to correlation unit table is predefined and does not need liquid sampling, use MANUAL EDIT option to enter the table to analyzer. The procedure is similar to SAMPLE EDIT.

<table>
<thead>
<tr>
<th>Switch Correlation Curves</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SET UP: RUN CAL CURVE</td>
<td>CAL CRVVE #X</td>
</tr>
<tr>
<td>ESC/EXIT ENT/CHANGE</td>
<td>Enter PROCESS SET-UP sub-menu to access RUN CAL CURVE function. Press to continue.</td>
</tr>
</tbody>
</table>

CHANGE CAL CURVE	**FROM: X**
TO: X	**ESC/EXIT ENT/CHANGE**
Note:	The next screen asks which curve (0-3) you want to execute. Curve #0 is the default OD measurement. Curves 1-3 are user defined. Scroll with to select curve number. Press to select and confirm.
Note:	Entering a curve with Process Correlate will automatically set it as the current active curve.
6. Maintenance

6.1 Maintenance Outline

Once the unit is in operation, there is no requirement to access the interior of the Model OUM960 UV analyzer housing for normal day-to-day operation and calibration.

Certain maintenance procedures need to be performed for OUSAF44 sensor. The service and maintenance interval time is application dependent.

Note!
Check list of maintenance!

- Lamp Replacement
- O-Ring Replacement
- Filter (NIST) Replacement
- Pathlength Adjustment
- Sensor window and gasket replacement

Caution!
The procedures described in this section should only be carried out by qualified maintenance staff.

Model OUSAF44 sensors contain sensitive optical components and should be handled carefully. Particular care must be taken to prevent contamination of these components.

Caution!
Clean all optical components with a suitable lint free lens cleaning tissue and ethanol.

Figure 6.1: Cross-Sectional View of a Typical OUSAF44 UV Sensor
6.2 Mercury Lamp Replacement for OUSAF44

Caution!
Whenever maintenance is performed on the sensor, remove all cables and power to the sensor. Never view the mercury lamp when powered directly without proper eye protection.

To replace the mercury lamp, proceed as follows (Refer to Figure 6.3: Illustrative lamp replacement procedure):

1. Remove the lamp housing from the sensor by unscrewing the housing CCW.
2. Remove the lamp assembly from the housing by unscrewing the lamp assembly CCW. If tight, use the cable connector body flange as a “nut” to gain access.
3. Allow the lamp to cool. Loosen and remove the lamp retaining set-screw.
4. Grip the lamp body in the gap between the lamp power supply and the mirrored reflector. Push the lamp towards the reflector until the lamp is free of the socket. Grip the glass section of the lamp from the end and remove it through the reflector.
5. With the lamp removed, inspect the lamp assembly for any cable fraying or reflector damage. When cleaning any of the optical surfaces use ethanol and soft, lint free tissue.

Caution!
Clean the new lamp and the mirror with ethanol and lens tissue. After cleaning, do not touch these optical surfaces. When handling the lamp, use lens tissue or wear talc-free latex gloves.

6. The lamp is replaced by inserting it through the reflector and mating it to its socket. Make certain that the lamp pins are in line with the socket connectors. Gently insert the lamp into the socket making sure that it seats completely.
7. After the lamp has been replaced, reinsert the lamp retaining set screw. This screw is just to hold the lamp in place, do not over tighten as the lamp could be damaged or broken.
8. The complete lamp and power supply assembly is now refitted into the lamp housing and onto the sensor.

Figure 6.2: UV Plug-in Lamp OUSAF44/46 Versions
Step 1
Removing lamp assembly from sensor
Unscrew CCW

Step 2
Removing lamp from lamp housing

Step 3
Remove Lamp Set Screw

Step 4
Grasp Lamp from each side of body remove lamp from holder.

Step 5
Remove and replace 'O' Ring

Step 6
With lamp power pin inline with lamp socket, insert lamp as shown until lamp seat in socket. **DO NOT FORCE LAMP**

Step 7
Replace set screw. Do not overtighten

Step 8
Replacing lamp assembly into lamp housing

Step 9
Replacing lamp assembly onto sensor

12 VDC/AC Lamp Power Supply

Figure 6.3: Illustrative Standard Lamp Replacement Procedure
6.3 OUSAF44 Measurement Detector/Filter Replacement

The measurement filter is replaced using the following procedure (refer to figure 6.4 for a view of the assembly):

1. Remove the measurement detector housing from the sensor.
2. Loosen and remove the 4 screws holding the measurement detector back plate onto the back of the measurement detector housing. Take care to retain all screws, washers and the sealing “O” ring.
3. Withdraw the back plate assembly from the housing.
4. Remove the 2 black anodized screws holding the detector assembly to the back plate and carefully separate, protecting the interconnecting connecting cable.
5. Remove the 2 screws holding the detector PCB to the back of the filter holder and separate.
6. Remove the two setscrews holding the filters into the holder; turn the filter holder over and drop the filters into your hand.
7. Fit the new filters into the detector/filter holder taking care to ensure that they are installed “shiny” or “mirrored” side towards the light source and that the correct wavelength value is installed in the correct side. Lightly tighten the retaining setscrews.
8. Clean the detector faces and the filter faces with ethanol and lens tissue. Check and clean all other components as necessary. Install the detector PCB making sure that the wavelength to channel orientation it is correct.
9. Re-assemble the detector housing in the reverse order, ensuring that the orientation of the detectors is correct to allow use of the reference rod and that all O-Ring seals are correctly fitted and seated.
10. Replace the measurement detector housing onto the sensor.
11. Calibration of the connected analyzers is required after detector replacement.
6.4 Measurement Filter Replacement (Easycal™ Assembly)

The measurement filter is replaced using the following procedure (refer to figure 6.5 for the exploded-view of the assembly):

1. Remove the Detector Assembly from the flow cell.
2. Un-screw the back-plate assembly from the detector housing as shown. If tight, use the cable connector body flange as a “nut” to gain access.
3. Remove the four (4) screws form the detector connector and remove the detector as show and remove the detector.
4. Loosen the measurement filter retaining set screw and with the assembly held vertically, softly tap the assembly until the filter falls out.
5. With the assembly still in the vertical position, insert the new filter until it is seated. Lightly tighten the filter retaining set screw to hold the filter in place. DO NOT OVER TIGHTEN AS FILTER DAMAGE WILL RESULT.
6. Insert the measurement detector assembly and secure with 3 x M3-08 screws and washers.
7. Using a fourth M3-08 screw, attach the connector dust cover to the connector flange and Easycal™ back plate assembly.
8. Refit the detector housing to the assembly.
6.5 Measurement Filter Replacement (Standard and Cal Rod Assemblies)

The measurement filter is replaced using the following procedure (refer to figure 6.5 for a cross sectional view of the assembly):

1. Unscrew and remove the outside casing from the EasyCal™ Measurement Detector Housing Assembly. If tight, use the cable connector body flange as a “nut” to gain access.
2. Loosen measurement filter retaining set-screw.
3. Insert measurement filter, mirror side first, into the housing and locate in the filter retaining plate.
4. Tighten the measurement filter retaining set-screw snug against the filter and ensure the filter is held in place.
5. Insert the measurement detector assembly and secure with 3 x M3-08 screws and washers.
6. Using a fourth M3-08 screw, attach the connector dust cover to the connector flange and EasyCal™ back plate assembly.
7. Refit the detector housing to the assembly.
6.6 **Sensor Wavelength Change**

Should it be required to change the operating wavelength of the sensor, both the measurement and reference filters must be changed. When changing filter wavelength, follow the same procedures as describe above.

6.7 **Sensor Window and Gasket Replacement**

Sensor optical pathlength is established by the window type(s) used. Each analyzer-sensor pair is configured for a given pathlength. Windows must be replaced with the same type to maintain pathlength. The illustration below is a typical flowcell assembly. Figure the available window types and possible pathlengths for sensors up to 2” line sizes.

Replacement of windows or window seals, changing window spacing or other maintenance requiring the disassembly of the sensor uses the following procedure:

Note:
To replace and/or change the windows and seals, the sensor must be removed from the process line.
6.8 Sensors without Precision Optical Pathlength Adjuster Option

1. Remove the lamp and the detector housings from the sensor body.
2. Remove the 4 socket head screws from each window retaining ring and remove the rings. Be careful to loosen the screws evenly and alternately around the window retaining ring. If the window is ‘stuck’, apply Acetone to the window seal area and let soak for several minutes. This may assist in freeing the windows from the seals.
3. Gently push/ease the windows out of the sensor.
4. Inspect the window area and clean as necessary. Inspect the windows for any signs of abrasive wear or chipping. If any is apparent, replace the windows. Discard the ‘O’ rings and replace with new ones of the same material type. Re-assemble the sensor in the reverse order, taking care to cross-tighten the window retaining ring screws evenly to prevent uneven seating. If the sensor pathlength has been changed, the analyzer module must be configured to reflect the new pathlength. After every re-assembly of an OUSAF44 sensor, it is necessary to carry out a liquid or Easycal™ calibration with its associated analyzer.

Note!
Upon re-assembly, insure that the lamp assembly is mounted on to the side of the flow cell with the “shorter” length of the two windows.

5. Remove the lamp and the detector housings from the sensor body.
6. Remove the 4 socket head screws from each window retaining ring and remove the rings. Be careful to loosen the screws evenly and alternately around the window retaining ring. If the window is ‘stuck’, apply Acetone to the window seal area and let soak for several minutes. This may assist in freeing the windows from the seals.
7. Gently push/ease the windows out of the sensor.
8. Inspect the window area and clean as necessary. Inspect the windows for any signs of abrasive wear or chipping. If any is apparent, replace the windows. Discard the ‘O’ rings and replace with new ones of the same material type. Re-assemble the sensor in the reverse order, taking care to cross-tighten the window retaining ring screws evenly to prevent uneven seating. If the sensor pathlength has been changed, the analyzer module must be configured to reflect the new pathlength. After every re-assembly of an OUSAF44 sensor, it is necessary to carry out a liquid or Easycal™ calibration with its associated analyzer.

Note!
Upon re-assembly, insure that the lamp assembly is mounted on to the side of the flow cell with the “shorter” length of the two windows.
6.9 Sensors with Precision Optical Pathlength Adjuster Option

Systems fitted with an EasyCal™ calibration system may also be fitted with pathlength “adjusters” to allow trimming of the optical pathlength to the exact distance required for measurement. The precision pathlength adjuster is not required for systems being calibrated using liquid standards.

![Image of OUSAF44 Sensor with Precision Pathlength Adjuster Option](image)

1. Remove the lamp and the detector housings from the sensor body.
2. Remove the 4 socket head screws from each window retaining ring and remove the rings. Be careful to loosen the screws evenly and alternately around the window retaining ring. If the window is ‘stuck’, apply Acetone to the window seal area and let soak for several minutes. This may assist in freeing the windows from the seals.
3. Gently push/ease the windows out of the sensor.
4. Inspect the window area and clean as necessary. Inspect the windows for any signs of abrasive wear or chipping. If any is apparent, replace the windows.
5. Assemble window actuators into window rings, adjusting to their widest position (rotated all the way into the window ring). Insert the locking set-screws into the sides of the window rings, but do not tighten.
6. Install a new “O” seal and window into one side of the flow cell.
7. Place the Thrust Washer into its seat in the actuator ring and install the complete window ring onto the flowcell, taking care to align the screw holes properly.
8. Install and tighten the four socket head screws to secure the window ring to the flow cell.
9. Repeat the above for the other side.
10. Once both windows are installed and the rings secured, clean and insert the pathlength gauge into the cell down through one of the tube entries until it is between the window faces.
11. Using the Pathlength Adjusting Tool, narrow the pathlength by carefully screwing in the actuator on each side (in small increments) until the pathlength gauge just touches both windows. Do not over tighten.
12. Carefully withdraw the pathlength gauge and tighten the locking set-screws to hold the actuator in place.
13. If possible, pressure test assembled flow cell at two times (2X) process pressure. Re-check with pathlength gauge and adjust pathlength as needed. Pressure testing cycles the compression of the window o-rings and actuator upon assembly. This will compensate for any initial changes in the pathlength.

Note!

Some window faces may not be parallel to each other. This is normal, especially with fire-polished quartz windows. Take care to ensure pathlength gauge does not scratch window faces.
Install actuator for full engagement, Seat Thrust Washer into Actuator, and process sealing o-ring in place. Install assembly onto flowcell w/ windows and process sealing o-ring in place. Tighten 4 ea. M4 x 10 socket head screws and lock washer onto flowcell (both sides).

![Figure 6.9: Assembling the Precision Pathlength Adjustment Rings into the Sensor](image-url)
Insert gauge in place. Adjust each side in small increments on alternating sides until gauge just touches windows.

Tighten Locking Set Screw after pathlength is adjusted.

Figure 6.10: Adjusting Pathlength in the Flow cell
UV Quartz Windows

Window Type vs. Length

- Type A = 14.0mm
- Type B = 19.0mm
- Type C = 24.0mm
- Type D = 23.0mm
- Type E = 18.0mm
- Type F = 33.5mm
- Type G = 9.0mm
- Type H = 31.5mm
- Type I = 18.5mm
- Type J = 23.5mm
- Type K = 16.5mm
- Type L = 21.5mm
- Type M = 29.0mm
- Type N = 34.0mm

Window Selection

- Type I + B
- Type E + B
- Type E + E
- Type K + K
- Type A + B
- Type A + A
- Type G + G
- Type G + G
- Type M + M
- Type G + G
- Type F + F
- Type F + N
- Type F + F
- Type J + C
- Type D + C
- Type D + D
- Type L + L
- Type H + H
- Type A + A
- Type C + C
- Type B + B
- Type B + B
- Type A + A
- Type B + B
- Type A + A
- Type B + B
- Type A + A
- Type G + G
- Type A + A
- Type G + G
- Type A + A

Figure 6.11: Window Type vs. Sensor Pathlength
7. Replacement Parts List

7.1 Model OUM960 UV Analyzer

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>Reference No.</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuse, AC Input 3.15A GDA Ceramic</td>
<td>1678-0017-00</td>
<td>63006917</td>
</tr>
<tr>
<td>Fuse, DC Input 1A MST</td>
<td>1678-1000-00</td>
<td>63006930</td>
</tr>
<tr>
<td>Fuse, Relays/Alarm 125mA MSF</td>
<td>1678-0125-00</td>
<td>63006925</td>
</tr>
</tbody>
</table>

7.2 Model OUSAF44 UV Inline Sensor /OUA260 Flow Cell

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>Reference No.</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement Mercury Lamp, Phosphor Coated (276, 280nm)</td>
<td>1415-0150-00</td>
<td>63006614</td>
</tr>
<tr>
<td>Replacement Mercury Lamp, Uncoated (254, 295, 302, 313, 365nm)</td>
<td>1415-0160-00</td>
<td>63006615</td>
</tr>
<tr>
<td>Reference Detector (Pre 1999 units)</td>
<td>1405-0030-00</td>
<td>63006514</td>
</tr>
<tr>
<td>Reference Detector PCB (1999 onward units)</td>
<td>A020-0050-00</td>
<td>63009351</td>
</tr>
<tr>
<td>Measurement Detector Assembly (TMW)</td>
<td>A012-0760-10</td>
<td>63009331</td>
</tr>
<tr>
<td>Detector Lens, Quartz</td>
<td>1417-0001-00</td>
<td>63006617</td>
</tr>
<tr>
<td>254nm Interference Filter</td>
<td>1410-0254-00</td>
<td>63006537</td>
</tr>
<tr>
<td>276nm Interference Filter</td>
<td>1410-0276-00</td>
<td>63006540</td>
</tr>
<tr>
<td>280nm Interference Filter</td>
<td>1410-0280-00</td>
<td>63009149</td>
</tr>
<tr>
<td>295nm Interference Filter</td>
<td>1410-0295-00</td>
<td>63006545</td>
</tr>
<tr>
<td>302nm Interference Filter</td>
<td>1410-0302-00</td>
<td>63006547</td>
</tr>
<tr>
<td>313nm Interference Filter</td>
<td>1410-0313-00</td>
<td>63006548</td>
</tr>
<tr>
<td>365nm Interference Filter</td>
<td>1410-0365-00</td>
<td>63006553</td>
</tr>
<tr>
<td>Type 'A' Quartz Window</td>
<td>1420-0140-01</td>
<td>63006635</td>
</tr>
<tr>
<td>Type 'B' Quartz Window</td>
<td>1420-0190-03</td>
<td>63006649</td>
</tr>
<tr>
<td>Type 'C' Quartz Window</td>
<td>1420-0240-03</td>
<td>63006659</td>
</tr>
<tr>
<td>Type 'D' Quartz Window</td>
<td>1420-0230-03</td>
<td>63006654</td>
</tr>
<tr>
<td>Type 'E' Quartz Window</td>
<td>1420-0180-03</td>
<td>63006644</td>
</tr>
<tr>
<td>Type 'F' Quartz Window</td>
<td>1420-0335-01</td>
<td>63006665</td>
</tr>
<tr>
<td>Type 'G' Quartz Window</td>
<td>1420-0090-01</td>
<td>63006630</td>
</tr>
<tr>
<td>Type 'H' Quartz Window</td>
<td>1420-0315-01</td>
<td>63006663</td>
</tr>
<tr>
<td>Type 'I' Quartz Window</td>
<td>1420-0185-03</td>
<td>63006647</td>
</tr>
<tr>
<td>Type 'J' Quartz Window</td>
<td>1420-0235-03</td>
<td>63006657</td>
</tr>
<tr>
<td>Type 'K' Quartz Window</td>
<td>1420-0165-03</td>
<td>71000344</td>
</tr>
<tr>
<td>Type 'L' Quartz Window</td>
<td>1420-0215-03</td>
<td>63006652</td>
</tr>
<tr>
<td>Type 'M' Quartz Window</td>
<td>1420-0290-01</td>
<td>63006662</td>
</tr>
<tr>
<td>Type 'N' Quartz Window</td>
<td>1420-0340-01</td>
<td>63006667</td>
</tr>
</tbody>
</table>

Window Gasket Kit, Viton (USP Class VI) | A000-0660-01 | 63009112 |
Window Gasket Kit, Kalrez | A000-0660-04 | 63009113 |
Window Gasket Kit, EPR(EPDM) | A000-0660-05 | 63009114 |
Window Gasket Kit, PTFE Encapsulated Viton | A000-0662-16 | 63009121 |
Certified POPL Retrofit Kit for 0.5nm Pathlength | A004-4420-00 | 71000047 |
Certified POPL Retrofit Kit for 1nm Pathlength | A004-4420-01 | 63011917 |
Certified POPL Retrofit Kit for 2nm Pathlength | A004-4420-02 | 63009163 |
Certified POPL Retrofit Kit for 5nm Pathlength | A004-4420-05 | 63009164 |
8. Technical Information

8.1 UV Analyzer OUM960

8.1.1 Input

<table>
<thead>
<tr>
<th>Measured Variable</th>
<th>Dual Channel Current from Model OUSAF44 Inline Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Up to 5 AU/50 OD dependent upon sensor pathlength and sensor type</td>
</tr>
<tr>
<td>Digital Input</td>
<td>4 Channels, dry contact</td>
</tr>
<tr>
<td>Keyboard</td>
<td>6 push buttons keyboard</td>
</tr>
</tbody>
</table>

8.1.2 Output

<table>
<thead>
<tr>
<th>Current Output</th>
<th>2 channel, 4~20mA NUMAR compatible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>12bit</td>
</tr>
<tr>
<td>Isolation</td>
<td>O1 to PE 500 VDC</td>
</tr>
<tr>
<td></td>
<td>O2 to PE 500 VDC</td>
</tr>
<tr>
<td></td>
<td>O1 to O2 500 VDC</td>
</tr>
<tr>
<td>Signal on Lamp Alarm</td>
<td>3.6mA or 21.5mA in case of error</td>
</tr>
<tr>
<td>Actual Current</td>
<td>3.8mA to 20.5mA</td>
</tr>
<tr>
<td>Output Range</td>
<td></td>
</tr>
<tr>
<td>Load</td>
<td>750 ohm Max.</td>
</tr>
<tr>
<td>Front Panel Display</td>
<td>4x20 Character LC display</td>
</tr>
<tr>
<td>Alarm LED</td>
<td>On front Panel, Red LED</td>
</tr>
<tr>
<td>General Relay Output</td>
<td>2 Channel, Solid State Relays 250VAC 125mA max.</td>
</tr>
<tr>
<td>Relay Operation</td>
<td>Above/Below trigger configurable; NO/NC configurable</td>
</tr>
<tr>
<td>Relay Delay</td>
<td>0~60 sec configurable</td>
</tr>
<tr>
<td>Lamp Alarm Relay</td>
<td>1 Channel, NC</td>
</tr>
<tr>
<td>Lamp Power Supply</td>
<td>12V DC, 1.5A Max.</td>
</tr>
</tbody>
</table>

8.1.3 Power Supply

<table>
<thead>
<tr>
<th>Supply Voltage</th>
<th>85~265 VAC, 24VDC as option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Consumption</td>
<td>12 VA Max.</td>
</tr>
<tr>
<td>Mains Fuse</td>
<td>3.15 A</td>
</tr>
</tbody>
</table>
8.1.4 Performance

<table>
<thead>
<tr>
<th>Sensor Photo Current Input</th>
<th>1mA to 100pA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity</td>
<td>0.3% Max.</td>
</tr>
<tr>
<td>Repeatability</td>
<td>0.3% Max.</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.3% Max.</td>
</tr>
<tr>
<td>Initial Drifting</td>
<td><0.5% for first 24 hours</td>
</tr>
</tbody>
</table>

8.1.5 Environment

<table>
<thead>
<tr>
<th>Temperature (Performance)</th>
<th>0~55°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (Operation)</td>
<td>0~70 55°C</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>95%</td>
</tr>
<tr>
<td>Degree of Protection</td>
<td>IP 65 (front panel), IP 30 (housing)</td>
</tr>
</tbody>
</table>

8.1.6 Mechanical Construction

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>L x W x D: 102 x 102 x 177 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>1.213 kg</td>
</tr>
<tr>
<td>Material</td>
<td>Aluminum (polyester coating on front panel)</td>
</tr>
<tr>
<td>Degree of Protection</td>
<td>IP 65 (front panel), IP 30 (housing)</td>
</tr>
</tbody>
</table>

8.2 UV Absorbance Sensor OUSAF44

8.2.1 Input and Output

<table>
<thead>
<tr>
<th>Measured Input Variable</th>
<th>Process UV absorption and optical density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Signal</td>
<td>Photo detector current (100pA~ 1uA)</td>
</tr>
</tbody>
</table>

8.2.2 Mechanic Construction

| Weight | 1.225 kg (flow cell not included) |
| Housing Material | Stainless steel 316L |
Figure 8.1: Model OUSAF44 Std. Inline Sensor Dimensions

<table>
<thead>
<tr>
<th>Connection Size</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4" - 3/4"</td>
<td>10.5"</td>
<td>3.75"</td>
<td>6.75"</td>
<td>3.25"</td>
<td>1.63"</td>
</tr>
<tr>
<td></td>
<td>(266.7 mm)</td>
<td>(95.3 mm)</td>
<td>(171.5 mm)</td>
<td>(82.5 mm)</td>
<td>(41.5 mm)</td>
</tr>
<tr>
<td>1" - 1 1/2"</td>
<td>10.88"</td>
<td>3.94"</td>
<td>6.94"</td>
<td>3.25"</td>
<td>1.63"</td>
</tr>
<tr>
<td></td>
<td>(276.2 mm)</td>
<td>(100.0 mm)</td>
<td>(176.2 mm)</td>
<td>(82.5 mm)</td>
<td>(41.5 mm)</td>
</tr>
<tr>
<td>2"</td>
<td>11.63"</td>
<td>4.31"</td>
<td>7.31"</td>
<td>3.25"</td>
<td>1.63"</td>
</tr>
<tr>
<td></td>
<td>(295.3 mm)</td>
<td>(109.5 mm)</td>
<td>(185.7 mm)</td>
<td>(82.5 mm)</td>
<td>(41.5 mm)</td>
</tr>
</tbody>
</table>

Figure 8.2: Model OUSAF44 NIST Inline Sensor Dimensions

<table>
<thead>
<tr>
<th>Connection Size</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4" - 3/4"</td>
<td>10.5"</td>
<td>3.75"</td>
<td>6.75"</td>
<td>3.25"</td>
<td>1.63"</td>
</tr>
<tr>
<td></td>
<td>(266.7 mm)</td>
<td>(95.3 mm)</td>
<td>(171.5 mm)</td>
<td>(82.5 mm)</td>
<td>(41.5 mm)</td>
</tr>
<tr>
<td>1" - 1 1/2"</td>
<td>10.88"</td>
<td>3.94"</td>
<td>6.94"</td>
<td>3.25"</td>
<td>1.63"</td>
</tr>
<tr>
<td></td>
<td>(276.2 mm)</td>
<td>(100.0 mm)</td>
<td>(176.2 mm)</td>
<td>(82.5 mm)</td>
<td>(41.5 mm)</td>
</tr>
<tr>
<td>2"</td>
<td>11.63"</td>
<td>4.31"</td>
<td>7.31"</td>
<td>3.25"</td>
<td>1.63"</td>
</tr>
<tr>
<td></td>
<td>(295.3 mm)</td>
<td>(109.5 mm)</td>
<td>(185.7 mm)</td>
<td>(82.5 mm)</td>
<td>(41.5 mm)</td>
</tr>
</tbody>
</table>
8.2.3 Environment

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>0–55°C</td>
</tr>
<tr>
<td>Temperature</td>
<td>0–90°C Continuous up to 130°C for 2 hours</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>95%</td>
</tr>
<tr>
<td>Degree of Protection</td>
<td>IP 65</td>
</tr>
<tr>
<td>Maximum Pressure in Flow Cell</td>
<td>33 Bar/500 psi. 100 Bar option available</td>
</tr>
</tbody>
</table>

8.2.4 Power Supply

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>12 VDC</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>4 VA continuous 8 VA start up in-rush</td>
</tr>
</tbody>
</table>

8.2.5 Optical Specifications

<table>
<thead>
<tr>
<th></th>
<th>Line Size</th>
<th>Pathlengths Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelengths Available</td>
<td>254, 276, 280, 295, 302, 313, 326 and 365nm</td>
<td></td>
</tr>
<tr>
<td>Filters</td>
<td>Interference filters, 10 nm BW, stray light .01% maximum.</td>
<td></td>
</tr>
<tr>
<td>Detectors</td>
<td>UV enhanced Silicon detectors, hermetically sealed.</td>
<td></td>
</tr>
<tr>
<td>Lamp</td>
<td>Pre-Focused Low pressure Mercury lamp, (2000 hour half life, 3000 hour typical)</td>
<td></td>
</tr>
</tbody>
</table>
9. Ordering Information

9.1 UV Analyzer OUM960

<table>
<thead>
<tr>
<th>Sensor Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>OUSAF44/AF45</td>
</tr>
<tr>
<td>B</td>
<td>OUSAF46 (Two Analyzers Required and Provided)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power Supply</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100-250 VAC</td>
</tr>
<tr>
<td>4</td>
<td>24VDC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmitter Units</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Optical Density</td>
</tr>
<tr>
<td>Y</td>
<td>Special Version</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calibration Options</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spare Part – Electronic Calibration Only</td>
</tr>
<tr>
<td>2</td>
<td>Calibrated With Sensor</td>
</tr>
<tr>
<td>9</td>
<td>Special Calibration</td>
</tr>
</tbody>
</table>

| OUM960 | | | Complete Order Code |
9.2 UV Absorbance Sensor OUSAF44

<table>
<thead>
<tr>
<th>Wavelength / Optical Filter Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 254 nm</td>
</tr>
<tr>
<td>B 280 nm</td>
</tr>
<tr>
<td>C 295 nm</td>
</tr>
<tr>
<td>D 302 nm</td>
</tr>
<tr>
<td>E 313 nm</td>
</tr>
<tr>
<td>F 365 nm</td>
</tr>
<tr>
<td>Y Special Version</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calibration / Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Standard</td>
</tr>
<tr>
<td>1 EasyCal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lamp Housing Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Standard</td>
</tr>
<tr>
<td>B FM Div I (please specify transmitter)</td>
</tr>
<tr>
<td>C ATEX II 2G Exd IIC T5 (please specify transmitter)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calibration Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Isolated Order / Spare Part</td>
</tr>
<tr>
<td>1 Assembly to Flow Cell</td>
</tr>
<tr>
<td>9 Special Version</td>
</tr>
</tbody>
</table>

OUSAF44 Complete Order Code
9.3 Model OUA260 Flow Cell

| Process Connection |
|--------------------|--|
| A | OUSAF4x |
| B | OUSAF12/OUSAF22/OUSAF23 |
| C | OUSAF10 |
| D | B60x |

| Mean Diameter |
|-------------------|--|
| A | 0.25" |
| B | 0.375" |
| C | 0.5" |
| D | 0.75" |
| E | 1" Low Volume |
| F | 1" Standard |
| G | 1.5" |
| H | 2" |
| I | 2.5" |
| J | 3" |
| K | 4" |
| Y | Special Version |

| Optical Pathlength |
|--------------------|--|
| 01 | 0.5 mm with POPL |
| 02 | 1mm with POPL |
| 03 | 2mm with POPL |
| 04 | 2mm with POPL Standard |
| 05 | 2mm with POPL Standard |
| 06 | 5mm Standard |
| 07 | 5mm with POPL |
| 08 | 10mm Standard |
| 09 | 20mm Standard |
| 10 | 30mm Standard |
| 11 | 40mm Standard |
| 12 | 50mm Standard |
| 13 | 60mm Standard |
| 14 | 70mm Standard |
| 15 | 80mm Standard |
| 16 | 90mm Standard |
| 00 | Not Needed(B60x) |
| 09 | Special Version |

| Window Material |
|--------------------|--|
| A | Pyrex (not available for UV sensors) |
| B | Quartz |
| C | Sapphire |
| X | Without Windows (B60x only) |

| Sealing Material |
|--------------------|--|
| 01 | EPDM – FDA, USP Class VI |
| 02 | Kalrez – FDA, USP Class VI |
| 03 | Silicone - FDA |
| 04 | Viton – FDA, USP Class VI |
| 05 | Special Version |

| Air Purge |
|--------------------|--|
| A | Not used |
| B | Standard |
| Y | Special Version |

| Certification |
|--------------------|--|
| I | Basic Documentation Package |
| J | Life Sciences Documentation(includes 3.1) |
| Y | Special Version |

| Options |
|--------------------|--|
| A | No Options |
| B | Mounting Holes |
| C | Cleaning Port |
| D | Manual Wiper |
| E | Pneumatic Wiper |
| Y | Special Version |

| OUA260 |
|--------------------|--|
| Complete Order Code| |
9.4 Model OUK40 UV Sensor Cable Set

<table>
<thead>
<tr>
<th>Sensor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 OUSAF44</td>
<td></td>
</tr>
<tr>
<td>2 OUSAF46</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmitter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A OUS900 Series</td>
<td></td>
</tr>
<tr>
<td>B OUS600 Series</td>
<td></td>
</tr>
<tr>
<td>C OUS700 Series</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cable Length</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10 10 ft/3m</td>
<td></td>
</tr>
<tr>
<td>15 15 ft/4.5m</td>
<td></td>
</tr>
<tr>
<td>25 25 ft/7.5m</td>
<td></td>
</tr>
<tr>
<td>50 50 ft/15m</td>
<td></td>
</tr>
<tr>
<td>88 Custom length per foot</td>
<td></td>
</tr>
<tr>
<td>89 Custom length per meter</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Barrier</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A No Hazardous Area</td>
<td></td>
</tr>
<tr>
<td>B FM, Busbar IS Barrier (included)</td>
<td></td>
</tr>
<tr>
<td>C ATEX, Busbar IS Barrier (included)</td>
<td></td>
</tr>
<tr>
<td>D FM, DIN Rail IS Barrier (included)</td>
<td></td>
</tr>
<tr>
<td>E ATEX, DIN Rail IS Barrier (included)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUK40</th>
<th></th>
<th>Complete Order Code</th>
</tr>
</thead>
</table>
WARRANTY

Endress+Hauser Conducta Inc., warrants its products to be free from defects in workmanship and material. Endress+Hauser Conducta Inc. liability is limited to replacing the instrument or any part thereof that is returned by the original purchaser, transportation paid, to the factory within one (1) year after the date of shipment, provided that Endress+Hauser examination shall disclose that a defect existed under proper and normal use.

Endress+Hauser Conducta Inc. shall not be liable for consequential or incidental damages.