Operating Instructions

Cerabar S PMC71, PMP71, PMP72, PMP75

Process pressure measurement
Overview documentation

<table>
<thead>
<tr>
<th>Device</th>
<th>Documentation</th>
<th>Content</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerabar S 4 to 20 mA HART</td>
<td>Technical Information TI383P (PMC71, PMP71, PMP75) Technical Information TI438P (PMP72)</td>
<td>Technical data</td>
<td></td>
</tr>
<tr>
<td>Operating Instructions BA271P</td>
<td>– Identification – Installation – Wiring – Operation – Commissioning, Description of Quick Setup menus – Maintenance – Trouble-shooting and spare parts – Appendix: Illustration of menu</td>
<td></td>
<td>– The documentation is located on the supplied documentation CD. – The documentation is also available via the Internet. → See: www.endress.com → Download</td>
</tr>
<tr>
<td>Operating Instructions BA274P</td>
<td>– Examples of configuration for pressure and level measurement – Description of parameters – Trouble-shooting – Appendix: Illustration of menu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brief Operating Instructions KA1019P</td>
<td>– Installation – Wiring – Operation on-site – Commissioning – Description of Quick Setup menus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brief Operating Instructions KA218P</td>
<td>– Wiring – Operation without on-site display – Description of Quick Setup menus – Operation HistoROM®/M-DAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional Safety Manual SD190P</td>
<td>– Safety function with Cerabar S – Behaviour in operation and failure – Commissioning and iterative tests – Settings – Technical safety characteristic quantities – Management Summary</td>
<td></td>
<td>– The documentation is valid for devices showing version "E" in feature 100 "Additional options 1" or in feature 110 "Additional options 2": → See also Technical Information TI383P, chapter "Ordering information".</td>
</tr>
</tbody>
</table>
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Safety instructions</td>
<td>4</td>
</tr>
<tr>
<td>1.1 Designated use</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Installation, commissioning and operation</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Operational safety and process safety</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Notes on safety conventions and icons</td>
<td>5</td>
</tr>
<tr>
<td>2 Identification</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Device designation</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Scope of delivery</td>
<td>9</td>
</tr>
<tr>
<td>2.3 CE mark, declaration of conformity</td>
<td>9</td>
</tr>
<tr>
<td>2.4 Registered trademarks</td>
<td>9</td>
</tr>
<tr>
<td>3 Installation</td>
<td>10</td>
</tr>
<tr>
<td>3.1 Incoming acceptance and storage</td>
<td>10</td>
</tr>
<tr>
<td>3.2 Installation conditions</td>
<td>10</td>
</tr>
<tr>
<td>3.3 Installation instructions</td>
<td>10</td>
</tr>
<tr>
<td>3.4 Post-installation check</td>
<td>19</td>
</tr>
<tr>
<td>4 Wiring</td>
<td>20</td>
</tr>
<tr>
<td>4.1 Connecting the device</td>
<td>20</td>
</tr>
<tr>
<td>4.2 Connecting the measuring unit</td>
<td>22</td>
</tr>
<tr>
<td>4.3 Potential matching</td>
<td>26</td>
</tr>
<tr>
<td>4.4 Overvoltage protection (optional)</td>
<td>27</td>
</tr>
<tr>
<td>4.5 Post-connection check</td>
<td>27</td>
</tr>
<tr>
<td>5 Operation</td>
<td>28</td>
</tr>
<tr>
<td>5.1 On-site display (optional)</td>
<td>28</td>
</tr>
<tr>
<td>5.2 Operating elements</td>
<td>29</td>
</tr>
<tr>
<td>5.3 On-site operation – on-site display not connected</td>
<td>32</td>
</tr>
<tr>
<td>5.4 On-site operation – on-site display connected</td>
<td>35</td>
</tr>
<tr>
<td>5.5 HistoROM®/M-DAT (optional)</td>
<td>37</td>
</tr>
<tr>
<td>5.6 Operation via HART handheld terminal</td>
<td>41</td>
</tr>
<tr>
<td>5.7 FieldCare</td>
<td>41</td>
</tr>
<tr>
<td>5.8 Locking/unlocking operation</td>
<td>42</td>
</tr>
<tr>
<td>5.9 Factory setting (reset)</td>
<td>43</td>
</tr>
<tr>
<td>6 Commissioning</td>
<td>45</td>
</tr>
<tr>
<td>6.1 Function check</td>
<td>45</td>
</tr>
<tr>
<td>6.2 Selecting language and measuring mode</td>
<td>45</td>
</tr>
<tr>
<td>6.3 Position adjustment</td>
<td>47</td>
</tr>
<tr>
<td>6.4 Pressure measurement</td>
<td>48</td>
</tr>
<tr>
<td>6.5 Level measurement</td>
<td>50</td>
</tr>
<tr>
<td>7 Maintenance</td>
<td>54</td>
</tr>
<tr>
<td>7.1 Exterior cleaning</td>
<td>54</td>
</tr>
<tr>
<td>8 Trouble-shooting</td>
<td>55</td>
</tr>
<tr>
<td>8.1 Messages</td>
<td>55</td>
</tr>
<tr>
<td>8.2 Response of outputs to errors</td>
<td>62</td>
</tr>
<tr>
<td>8.3 Confirming messages</td>
<td>64</td>
</tr>
<tr>
<td>8.4 Repair</td>
<td>65</td>
</tr>
<tr>
<td>8.5 Repair of Ex-certified devices</td>
<td>65</td>
</tr>
<tr>
<td>8.6 Spare Parts</td>
<td>66</td>
</tr>
<tr>
<td>8.7 Returning the device</td>
<td>67</td>
</tr>
<tr>
<td>8.8 Disposal</td>
<td>67</td>
</tr>
<tr>
<td>8.9 Software history</td>
<td>68</td>
</tr>
<tr>
<td>9 Technical data</td>
<td>70</td>
</tr>
<tr>
<td>10 Appendix</td>
<td>70</td>
</tr>
<tr>
<td>10.1 Operating menu for on-site display, FieldCare and HART handheld terminal</td>
<td>70</td>
</tr>
<tr>
<td>10.2 Patents</td>
<td>79</td>
</tr>
<tr>
<td>Index</td>
<td>82</td>
</tr>
</tbody>
</table>
1 Safety instructions

1.1 Designated use
The Cerabar S is a pressure transmitter for measuring pressure and level.
The manufacturer accepts no liability for damages resulting from incorrect use or use other than that designated.

1.2 Installation, commissioning and operation
The device has been designed to operate safely in accordance with current technical, safety and EU standards. If installed incorrectly or used for applications for which it is not intended, however, it is possible that application-related dangers may arise, e.g. product overflow due to incorrect installation or calibration. For this reason, the instrument must be installed, connected, operated and maintained according to the instructions in this manual: personnel must be authorised and suitably qualified. The manual must have been read and understood, and the instructions followed. Modifications and repairs to the device are permissible only when they are expressly approved in the manual. Pay particular attention to the technical data on the nameplate.

1.3 Operational safety and process safety
Alternative monitoring measures must be taken to ensure operational safety and process safety during configuration, testing and maintenance work on the device.

1.3.1 Hazardous areas (optional)
Devices for use in hazardous areas are fitted with an additional nameplate (→ see Page 6). If the device is to be installed in an explosion hazardous area, then the specifications in the certificate as well as all national and local regulations must be observed. The device is accompanied by separate "Ex documentation", which is an integral part of this Operating Instructions. The installation regulations, connection values and Safety Instructions listed in this Ex document must be observed. The documentation number of the related Safety Instructions is also indicated on the additional nameplate.

- Ensure that all personnel are suitably qualified.

1.3.2 Functional Safety SIL3 (optional)
If using devices for applications with safety integrity, the Functional Safety Manual (SD190P) must be observed thoroughly.
1.4 Notes on safety conventions and icons

In order to highlight safety-relevant or alternative operating procedures in the manual, the following conventions have been used, each indicated by a corresponding icon in the margin.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Warning! A warning highlights actions or procedures which, if not performed correctly, will lead to personal injury, a safety hazard or destruction of the instrument.</td>
</tr>
<tr>
<td>🔴</td>
<td>Caution! Caution highlights actions or procedures which, if not performed correctly, may lead to personal injury or incorrect functioning of the instrument.</td>
</tr>
<tr>
<td>📝</td>
<td>Note! A note highlights actions or procedures which, if not performed correctly, may indirectly affect operation or may lead to an instrument response which is not planned.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex</td>
<td>Device certified for use in explosion hazardous area If the device has this symbol embossed on its nameplate, it can be installed in an explosion hazardous area or a non-explosion hazardous area, according to the approval.</td>
</tr>
<tr>
<td>Ex</td>
<td>Explosion hazardous area Symbol used in drawings to indicate explosion hazardous areas.</td>
</tr>
<tr>
<td></td>
<td>– Devices used in hazardous areas must possess an appropriate type of protection.</td>
</tr>
<tr>
<td>x</td>
<td>Safe area (non-explosion hazardous area) Symbol used in drawings to indicate, if necessary, non-explosion hazardous areas.</td>
</tr>
<tr>
<td></td>
<td>– Devices used in hazardous areas must possess an appropriate type of protection. Lines used in hazardous areas must meet the necessary safety-related characteristic quantities.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>Direct voltage A terminal to which or from which a direct current or voltage may be applied or supplied.</td>
</tr>
<tr>
<td>~</td>
<td>Alternating voltage A terminal to which or from which an alternating (sine-wave) current or voltage may be applied or supplied.</td>
</tr>
<tr>
<td>—</td>
<td>Grounded terminal A grounded terminal, which as far as the operator is concerned, is already grounded by means of an earth grounding system.</td>
</tr>
<tr>
<td>⚡</td>
<td>Protective grounding (earth) terminal A terminal which must be connected to earth ground prior to making any other connection to the equipment.</td>
</tr>
<tr>
<td>⚡</td>
<td>Equipotential connection (earth bonding) A connection made to the plant grounding system which may be of type e.g. neutral star or equipotential line according to national or company practice.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>! → [I]</td>
<td>Safety instruction For safety instructions refer to the manual for the appropriate instrument version.</td>
</tr>
</tbody>
</table>
2 Identification

2.1 Device designation

2.1.1 Nameplate

Note!
- The MWP (maximum working pressure) is specified on the nameplate. This value refers to a reference temperature of 20°C (68°F) or 100°F for ANSI flanges.
- The pressure values permitted at higher temperatures can be found in the following standards:
 - EN 1092-1: 2001 Tab. 18
 - ASME B 16.5a – 1998 Tab. 2-2.2 F316
 - ASME B 16.5a – 1998 Tab. 2.3.8 N10276
 - JIS B 2220
- The test pressure corresponds to the over pressure limit (OPL) of the device = MWP x 1.5.
- The Pressure Equipment Directive (EC Directive 97/23/EC) uses the abbreviation "PS". The abbreviation "PS" corresponds to the MWP (maximum working pressure) of the measuring device.

1) With regard to their stability-temperature property, the materials 1.4435 and 1.4404 are grouped together under 13EO in EN 1092-1 Tab. 18. The chemical composition of the two materials can be identical.
2) The equation does not apply for PMP71 and PMP75 with a 40 bar or a 100 bar measuring cell.

Aluminium and stainless steel housing (T14)

![Nameplate for Cerabar S](image)

Fig. 1: Nameplate for Cerabar S

1 Order code
 See the specifications on the order confirmation for the meanings of the individual letters and digits.
2 Serial number
3 Degree of protection
4 MWP (Maximum working pressure)
5 Symbol: Note: pay particular attention to the data in the "Technical Information"!
6 Minimum/maximum span
7 Nominal measuring range
8 Electronic version (output signal)
9 Supply voltage
10 Wetted materials
11 ID number of notified body with regard to Pressure Equipment Directive (optional)
12 ID number of notified body with regard to ATEX (optional)
13 GL-symbol for GL marine certificate (optional)
14 SIL-symbol for devices with SIL3/IEC 61508 Declaration of conformity (optional)
15 Layout identification of the nameplate
Devices for use in hazardous areas are fitted with an additional nameplate.

![Diagram of additional nameplate for devices in hazardous areas]

Fig. 2: Additional nameplate for devices for hazardous areas

1. EC type examination certificate number
2. Type of protection e.g. II 1/2 G Ex ia IIC T4/T6
3. Electrical data
4. Safety Instructions number e.g. XA235P
5. Safety Instructions index e.g. A
6. Device manufacture data

Devices suitable for oxygen applications are fitted with an additional nameplate.

![Diagram of additional nameplate for devices with oxygen applications]

Fig. 3: Additional nameplate for devices suitable for oxygen applications

1. Maximum pressure for oxygen applications
2. Maximum temperature for oxygen applications
3. Layout identification of the nameplate
Hygenic stainless steel housing (T17)

Fig. 4: Nameplate for Cerabar S

1 Order code
 See the specifications on the order confirmation for the meanings of the individual letters and digits.
2 Serial number
3 MWP (Maximum working pressure)
4 Symbol: Note: pay particular attention to the data in the "Technical Information"!
5 Minimum/Maximum span
6 Nominal measuring range
7 Electronic version (output signal)
8 Supply voltage
9 Wetted materials
10 Degree of protection

Optional:
11 ID number of notified body with regard to Pressure Equipment Directive
12 ID number of notified body with regard to ATEX
13 3A-symbol
14 CSA-symbol
15 FM-symbol
16 SIL-symbol for devices with SIL3/IEC 61508 Declaration of conformity
17 GL-symbol for GL marine certificate
18 Ex-symbol
19 EC type examination certificate
20 Type of protection e.g. II 1/2G Ex n A IIC T4/T6
21 Approval number for WHG overspill protection
22 Temperature operating range for devices for use in hazardous areas
23 Electrical data for devices for use in hazardous areas
24 Safety Instructions number e.g. XA283P
25 Safety Instructions index e.g. A
26 Device manufacture data
27 Maximum temperature for devices suitable for oxygen applications
28 Maximum pressure for devices suitable for oxygen applications
2.2 Scope of delivery
The scope of delivery comprises:
- Cerabar S pressure transmitter
- For devices with the "HistoROM/M-DAT" option:
 CD-ROM with Endress+Hauser operating program and documentation
- Optional accessories
Documentation supplied:
- The Operating Instructions BA271P and BA274P, the Technical Information TI383P and the Safety Instructions, Functional Safety Manual and brochures can be found on the supplied documentation CD.
 → See also Page 2, "Overview documentation" chapter.
- Brief Operating Instructions KA1019P
- Leporello KA218P
- Final inspection report
- Also Safety Instructions with ATEX, IECEx and NEPSI devices
- Optional: factory calibration form, test certificates

2.3 CE mark, declaration of conformity
The device is designed to meet state-of-the-art safety requirements, has been tested and left the factory in a condition in which it is safe to operate. The device complies with the applicable standards and regulations as listed in the EC declaration of conformity and thus complies with the statutory requirements of the EC Directives. Endress+Hauser confirms the successful testing of the device by affixing to it the CE mark.

2.4 Registered trademarks
KALREZ, VITON, TEFLO
Registered trademarks of E.I. Du Pont de Nemours & Co., Wilmington, USA
TRI-CLAMP
Registered trademark of Ladish & Co., Inc., Kenosha, USA
HART
Registered trademark of the HART Communication Foundation, Austin, USA.
GORE-TEX®
Registered trademark of W.L. Gore & Associates, Inc., USA
3 Installation

3.1 Incoming acceptance and storage

3.1.1 Incoming acceptance

- Check the packaging and the contents for damage.
- Check the shipment, make sure nothing is missing and that the scope of supply matches your order.

3.1.2 Storage

The device must be stored in a dry, clean area and protected against damage from impact (EN 837-2).

Storage temperature range:

- PMC71, PMP71, PMP75:
 - –40...+90°C (–40...+194°F)
 - On-site display: –40...+85°C (–40...+185°F)
 - Separate housing: –40 to +60°C (–40 to +140°F)
- PMP72:
 - see TI438P

3.2 Installation conditions

3.2.1 Dimensions

→ For dimensions, please refer to the Technical Information for Cerabar S TI383P (PMC71, PMP71, PMP75); TI438P (PMP72), "Mechanical construction" section. See Page 2, "Overview documentation".

3.3 Installation instructions

Note!
- Due to the orientation of the Cerabar S, there may be a shift in the measured value, i.e. when the container is empty, the measured value does not display zero. You may correct this zero point shift either directly on the device using the "E"-key or by remote operation. → See Page 30, Section 5.5.2 "Function of the operating elements – on-site display not connected" or Page 47, Section 6.3 "Position adjustment".
- For PMP75, please refer to Section 3.3.2 "Installation instructions for devices with diaphragm seals – PMP75", Page 13.
- To ensure optimal readability of the on-site display, it is possible to rotate the housing up to 380°. → See Page 19, Section 3.3.5 "Rotating the housing".
- Endress+Hauser offers a mounting bracket for installing on pipes or walls. → See Page 16, Section 3.3.4 "Wall and pipe mounting".
3.3.1 Installation instructions for devices without diaphragm seals – PMP71, PMP72, PMC71

Note!

- If a heated Cerabar S is cooled during the cleaning (e.g. by cold water), a vacuum develops for a short time, whereby water can penetrate the sensor through the pressure compensation (1). If this is the case, mount the sensor with the pressure compensation (1) pointing downwards.

- Keep the pressure compensation and GORE-TEX® filter (1) free from contaminations and water.
- Cerabar S without diaphragm seal are mounted as per the norms for a manometer (DIN EN 837-2). We recommend the use of shut-off devices and siphons. The orientation depends on the measuring application.
- Do not clean or touch process isolating diaphragm seals with hard or pointed objects.

Pressure measurement in gases

Fig. 5: Measuring arrangement for pressure measurement in gases

1 Cerabar S
2 Shut-off device

- Mount Cerabar S with shut-off device above the tapping point so that any condensate can flow into the process.
Pressure measurement in steams

Fig. 6: Measuring arrangement for pressure measurement in steams

1 Cerabar S
2 Shut-off device
3 U-shaped siphon
4 Circular siphon

- Mount Cerabar S with siphon below the tapping point.
- The siphon reduces the temperature to almost ambient temperature.
- Fill the siphon with fluid before commissioning.

Pressure measurement in liquids

Fig. 7: Measuring arrangement for pressure measurement in liquids

1 Cerabar S
2 Shut-off device

- Mount Cerabar S with shut-off device below or at the same level as the tapping point.
Level measurement

- Mount Cerabar S below the lowest measuring point.
- Do not mount the device at the following positions:
 - In the fill flow, in the tank outlet or at a point in the container which could be affected by pressure pulses from an agitator.
 - Do not mount the device in the suction area of a pump.
- The calibration and functional test can be carried out more easily if you mount the device after a shut-off device.

PVDF adapter

Note!

For instruments with PVDF adapter, a maximum torque of 7 Nm is permitted. The thread connection may become loose at high temperatures and pressures. This means that the integrity of the thread must be checked regularly and may need to be tightened using the torque given above. Teflon tape is recommended for sealing with the 1/2 NPT thread.

3.3.2 Installation instructions for devices with diaphragm seals – PMP75

Note!

- The Cerabar S with diaphragm seal is screwed in, flanged or clamped, depending on the type of diaphragm seal.
- The diaphragm seal and the pressure sensor together form a closed and calibrated system which is filled with filling fluid through a hole in the upper part. This hole is sealed and not to be opened.
- Do not clean or touch process isolating diaphragm of the diaphragm seals with hard or pointed objects.
- Do not remove the protection of the process isolating diaphragm until shortly before installation.
- When using a mounting bracket, sufficient strain relief must be ensured for the capillaries in order to prevent the capillary bending down (bending radius ≥ 100 mm).
- Please note that the hydrostatic pressure of the liquid columns in the capillaries can cause zero point shift. The zero point shift can be corrected. → See also Page 47, Section 6.3 "Position adjustment".
- Please note the application limits of the diaphragm seal filling oil as detailed in the Technical Information for Cerabar S TI383P, Section "Planning instructions for diaphragm seal systems". → See also Page 2, "Overview documentation".

In order to obtain more precise measurement results and to avoid a defect in the device, mount the capillaries as follows:
- vibration-free (in order to avoid additional pressure fluctuations)
- not in the vicinity of heating or cooling lines
- insulate if the ambient temperature is below or above the reference temperature
- with a bending radius of ≥100 mm.
Vacuum application

For applications under vacuum, Endress+Hauser recommends mounting the pressure transmitter underneath the diaphragm seal. A vacuum load of the diaphragm seal caused by the presence of filling oil in the capillaries is hereby prevented.

When the pressure transmitter is mounted above the diaphragm seal, the maximum height difference H_1 in accordance with the illustration below on the left must not be exceeded. The maximum height difference is dependent on the density of the filling oil and the smallest ever pressure that is permitted to occur at the diaphragm seal (empty container), see illustration below, on the right.

Mounting with temperature isolator

Endress+Hauser recommends the use of temperature separators in the event of constant extreme fluid temperatures which lead to the maximum permissible electronics temperature of +85°C (+185°F) being exceeded. To minimise the influence of rising heat, Endress+Hauser recommends the device be mounted horizontally or with the housing pointing downwards.

The additional installation height also brings about a zero point shift of approx. 21 mbar due to the hydrostatic columns in the temperature isolator. You can correct this zero point shift. → See also Page 30, Section 5.2.2 "Function of the operating elements – on-site display not connected" or Page 47, Section 6.3 "Position adjustment".
3.3.3 Seal for flange mounting

![Diagram of seal for flange mounting]

Fig. 11: Mounting the versions with flange or diaphragm seal

1. Process isolating diaphragm
2. Seal

⚠️ **Warning!**

The seal is not allowed to press on the process isolating diaphragm as this could affect the measurement result.
3.3.4 Installation with heat insulation – PMC71 high temperature version and PMP72/PMP75

The devices must only be insulated up to a certain height. The maximum permitted insulation height is labelled on the devices and applies to an insulation material with a specific heat conductivity and to the maximum permitted ambient and process temperature (see following table). The data were determined under the most critical application "quiescent air".

![Fig. 12: Maximum insulation height, here e.g. PMC71 with flange](image)

<table>
<thead>
<tr>
<th></th>
<th>PMC71</th>
<th>PMP75</th>
<th>PMP72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature (TA)</td>
<td>≤ 70°C (158°F)</td>
<td>≤ 70°C (158°F)</td>
<td>≤ 50°C (122°F)</td>
</tr>
<tr>
<td>Process temperature (TP)</td>
<td>≤ 150°C (302°F)</td>
<td>≤ 400°C (752°F)</td>
<td>1) ≤ 280°C (536°F)</td>
</tr>
<tr>
<td>Heat conductivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation material</td>
<td>≤ 0,04 W/(m x K)</td>
<td>at 100°C (212°F): 8 0,04 W/(m x K)</td>
<td>at 300°C (572°F): linearly increasing to 0,072 W/(m x K)</td>
</tr>
</tbody>
</table>

1) Depending on the diaphragm seal filling oil used (→ see Technical Information TI383P Cerabar S)

3.3.5 Wall and pipe-mounting (optional)

Endress+Hauser offers a mounting bracket for installing on pipes or walls.

![Wall and pipe-mounting diagram](image)

Please note the following when mounting:
- The cable entry should always point downwards so that moisture on the connecting cable can drain off and not penetrate the housing.
- In the case of pipe mounting, the nuts on the bracket must be tightened uniformly with a torque of at least 5 Nm.
3.3.6 Assembling and mounting the "separate housing" version

1. In the "separate housing" version, the sensor is supplied with process connection and cable fitted.
2. Cable with connection jack
3. Pressure compensation
4. Plug
5. Locking screw
6. Housing fitted with housing adapter, included
7. Mounting bracket suitable for wall and pipe mounting, included

Assembly and mounting
1. Connect plug (item 4) into the corresponding connection jack of the cable (item 2).
2. Plug the cable into the housing adapter (item 6).
3. Tighten the locking screw (item 5).
4. Mount the housing on a wall or pipe using the mounting bracket (item 7). When mounting on a pipe, tighten the nuts on the bracket uniformly with a torque of at least 5 Nm. Mount the cable with a bending radius \(r \geq 120 \text{ mm} \).
3.3.7 PMP71, version prepared for diaphragm seal mount – welding recommendation

Fig. 14: Version U1: prepared for diaphragm seal mount

1 Hole for filling fluid
2 Bearing
3 Threaded pin with an internal hexagon 4 mm
A1 see the following table "Welding recommendation"

Welding recommendation
For the "U1 Prepared for diaphragm seal mount" version in feature 70 "Process connection; Material" in the order code of up to including 40 bar-sensors, Endress+Hauser recommends welding on the diaphragm seal as follows: the total welding depth of the fillet weld is 1 mm at an external diameter of 16 mm. Welding is performed according to the WIG method.

<table>
<thead>
<tr>
<th>Consecutive seam no.</th>
<th>Sketch/welding groove shape, dimension as per DIN 8551</th>
<th>Base material matching</th>
<th>Welding process DIN EN ISO 24063</th>
<th>Welding position</th>
<th>Inert gas, additives</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 for sensors ≤ 40 bar</td>
<td>Adapter made of 1.4435 (AISI 316L) to be welded to diaphragm seal made of 1.4435 or 1.4404 (AISI 316L)</td>
<td>141 PB</td>
<td>Inert gas Ar/H 95/5 Additive: 1.4430 (ER 316L Si)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3.8 Rotating the housing

The housing can be rotated up to 380° by loosening the Allen screw.

![Fig. 15: Aligning the housing](image)

- T14 and T15 housing: Loosen setscrew with a 2 mm Allen key.
- Hygienic T17 housing: Loosen setscrew with a 3 mm Allen key.
- Rotate housing (max. up to 380°).
- Retighten setscrew.

3.3.9 Close cover on a hygienic stainless steel housing (T17)

![Fig. 16: Close cover](image)

The covers for the terminal and electronics compartment are hooked into the casing and closed with a screw. These screws should be finger-tightened (2 Nm) to the stop to ensure that the covers sit tightly.

3.4 Post-installation check

After installing the device, carry out the following checks:
- Are all screws firmly tightened?
- Are the housing covers screwed down tight?
4 Wiring

4.1 Connecting the device

Note!
- When using the measuring device in hazardous areas, installation must comply with the corresponding national standards and regulations and the Safety Instructions or Installation or Control Drawings.
- Devices with integrated overvoltage protection must be earthed.
- Protective circuits against reverse polarity, HF influences and overvoltage peaks are installed.

- The supply voltage must match the supply voltage on the nameplate. (→ See also Page 6, Section 2.1.1 Nameplate.)
- Switch off the supply voltage before connecting the device.
- Remove housing cover of the terminal compartment.
- Guide cable through the gland. Preferably use twisted, screened two-wire cable.
- Connect device in accordance with the following diagram.
- Screw down housing cover.
- Switch on supply voltage.

Fig. 17: Electrical connection 4...20 mA HART

→ Observe also Section 4.2.1 "Supply voltage", Page 22.

1 Housing
2 Jumper for 4...20 mA test signal.
 → See also Page 22, Section 4.2.1, "Taking 4...20 mA test signal" part.
3 Internal earth terminal
4 External earth terminal
5 4...20 mA test signal between plus and test terminal
6 Minimum supply voltage = 10.5 V DC, jumper is inserted in accordance with the illustration.
7 Minimum supply voltage = 11.5 V DC, jumper is inserted in "Test" position.
8 Devices with integrated overvoltage protection are labelled OVP (overvoltage protection) here.
4.1.1 Connecting devices with Harting plug Han7D

Fig. 18: Left: electrical connection for devices with Harting plug Han7D
Right: view of the plug connector at the device

4.1.2 Connecting devices with M12 plug

Fig. 19: Left: electrical connection for devices with M12 plug
Right: view of the plug at the device
4.2 Connecting the measuring unit

4.2.1 Supply voltage

Note!

- All explosion protection data are given in separate documentation which is available upon request. The Ex documentation is supplied as standard with all devices approved for use in explosion hazardous areas.
- When using the measuring device in hazardous areas, installation must comply with the corresponding national standards and regulations and the Safety Instructions or Installation or Control Drawings.

<table>
<thead>
<tr>
<th>Electronic version</th>
<th>Jumper for 4...20 mA test signal in "Test" position (Delivery status)</th>
<th>Jumper for 4...20 mA test signal in "Non-Test" position</th>
</tr>
</thead>
<tbody>
<tr>
<td>4...20 mA HART, for non-hazardous areas</td>
<td>11.5...45 V DC</td>
<td>10.5...45 V DC</td>
</tr>
</tbody>
</table>

Taking 4...20 mA test signal

A 4...20 mA signal may be measured via the positive and test terminal without interrupting the measurement. The minimum supply voltage of the device can be reduced by simply changing the position of the jumper. As a result, operation is also possible with lower voltage sources. To keep the measured error below 0.1%, the current measuring device should display an internal resistance of < 0.7 Ω. Observe the position of the jumper in accordance with the following table.

<table>
<thead>
<tr>
<th>Jumper position for test signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Taking 4...20 mA test signal via plus and test terminal: possible. (Thus, the output current can be measured without interruption via the diode.)</td>
</tr>
</tbody>
</table>
| | - Delivery status
| | - minimum supply voltage: 11.5 V DC |
| ![Test](image) | - Taking 4...20 mA test signal via plus and test terminal: not possible. |
| | - minimum supply voltage: 10.5 V DC |

4.2.2 Cable specification

- Endress+Hauser recommends using twisted, screened two-wire cables.
- Terminals for wire cross-sections 0.5...2.5 mm²
- Cable external diameter: 5...9 mm
4.2.3 Load

Fig. 20: Load diagram, observe the position of the jumper and the explosion protection. (→ See also Page 22, “Taking 4...20 mA test signal” part.)

1 Jumper for the 4...20 mA test signal inserted in "Non-Test" position
2 Jumper for the 4...20 mA test signal inserted in "Test" position
3 Supply voltage 10.5 (11.5)...30 V DC for 1/2 G, 1 GD, 1/2 GD, FM IS, CSA IS, IECEx ia, NEPSI Ex ia
4 Supply voltage10.5 (11.5)...45 V DC for devices for non-hazardous areas, 1/2 D, 1/3 D, 2 G EEEx d, 3 G EEEx nA, FM XP, FM DIP, FM NI, CSA XP and CSA Dust-Ex, NEPSI Ex d
5 Supply voltage 11 (12)...45 V DC for PMC71, EEEx d[j,a], NEPSI Ex d[j,a]
$R_{L_{\text{max}}}$ Maximum load resistance
U Supply voltage

Note!
When operating via a handheld terminal or via PC with an operating program, a minimum communication resistance of 250 Ω must exist within the loop.

4.2.4 Screening/potential matching

- You achieve optimum screening against disturbances if the screening is connected on both sides (in the cabinet and on the device). If you have to reckon with potential equalisation currents in the plant, only earth screening on one side, preferably at the transmitter.
- When using in hazardous areas, you must observe the applicable regulations.

Separate Ex documentation with additional technical data and instructions is included with all Ex systems as standard.
4.2.5 Connecting HART handheld terminal

With a HART handheld terminal you can set and check the transmitter and avail of additional functions all along the 4...20 mA line.

![Diagram of HART handheld terminal connection](image)

*Fig. 21: Connecting an HART handheld terminal, e.g. Field Communicator 375

1. Necessary communication resistor ≥ 250 Ω
2. HART handheld terminal
3. HART handheld terminal, directly connected to the device even in the Ex i-area

⚠️ Warning!
- In the case of Ex d type of protection, do not connect the handheld terminal in the hazardous area.
- Do not replace the battery of the handheld terminal in the hazardous area.
- For devices with FM or CSA certificates, establish electrical connection as per Installation or Control Drawing (ZD) supplied.
4.2.6 Connecting Commubox FXA191/FXA195 for operation via FieldCare

The Commubox FXA191 connects intrinsically safe transmitters to a computer's serial interface (RS 232C) using the HART protocol. This allows remote operation of the measuring transmitter using Endress+Hauser’s operating program FieldCare. The Commubox is supplied with power through the serial interface. The Commubox is also suitable for connection to intrinsically safe circuits. → See Technical Information TI404F for further information.

Connecting Commubox FXA195

The Commubox FXA195 connects intrinsically safe transmitters to a computer's USB port using the HART protocol. This allows remote operation of the measuring transmitter using Endress+Hauser’s operating program FieldCare. The Commubox is supplied with power through the USB port. The Commubox is also suitable for connection to intrinsically safe circuits. → See Technical Information TI237F for further information.
4.2.7 Connecting Commubox FXA291 / ToF Adapter FXA291 for operation via FieldCare

Connecting Commubox FXA291
The Commubox FXA291 connects Endress+Hauser field instruments with CDI interface (= Endress+Hauser Common Data Interface) to the USB interface of a personal computer or a notebook. For details refer to TI405C/07/en.

Note!
For the following Endress+Hauser instruments you need the "ToF Adapter FXA291" as an additional accessory:
- Cerabar S PMC71, PMP7x
- Deltabar S PMD7x, FMD7x
- Deltapilot S FMB70

Connecting ToF Adapter FXA291
The ToF Adapter FXA291 connects the Commubox FXA291 via the USB interface of a personal computer or a notebook to the following Endress+Hauser instruments:
- Cerabar S PMC71, PMP7x
- Deltabar S PMD7x, FMD7x
- Deltapilot S FMB70
For details refer to KA271F/00/a2.

4.3 Potential matching
Ex applications: Connect all devices to the local potential matching. Observe the applicable regulations.
4.4 Overvoltage protection (optional)

Devices showing version "M" in feature 100 "Additional options 1" or feature 110 "Additional options 2" in the order code are equipped with overvoltage protection (see also Technical Information TI383P "Ordering information".

- Overvoltage protection:
 - Nominal functioning DC voltage: 600 V
 - Nominal discharge current: 10 kA
- Surge current check \(i = 20 \text{ kA} \) as per DIN EN 60079-14: 8/20 \(\mu \text{s} \) satisfied
- Arrester AC current check \(I = 10 \text{ A} \) satisfied

⚠️ Warning!

Devices with integrated overvoltage protection must be earthed.

4.5 Post-connection check

Perform the following checks after completing electrical installation of the device:

- Does the supply voltage match the specifications on the nameplate?
- Is the device connected as per Section 4.1?
- Are all screws firmly tightened?
- Are the housing covers screwed down tight?

As soon as voltage is applied to the device, the green LED on the electronic insert lights up for a few seconds or the connected on-site display lights up.
5 Operation

Feature 20 "Output; operation" in the order code provides you with information on the operating options available to you.

<table>
<thead>
<tr>
<th>Versions in the order code</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 4...20 mA HART; external operation, LCD</td>
<td>Via on-site display and 3 keys on the exterior of the device</td>
</tr>
<tr>
<td>B 4...20 mA HART; internal operation, LCD</td>
<td>Via on-site display and 3 keys on the inside of the device</td>
</tr>
<tr>
<td>C 4...20 mA; internal operation</td>
<td>Without on-site display, 3 keys on the inside of the device</td>
</tr>
</tbody>
</table>

5.1 On-site display (optional)

A 4-line liquid crystal display (LCD) is used for display and operation. The on-site display shows measured values, dialog texts, fault messages and notice messages. The display of the device can be turned in 90° steps. Depending on the installation position of the device, this makes it easy to operate the device and read the measured values.

Functions:
- 8-digit measured value display including sign and decimal point, bargraph for current display
- simple and complete menu guidance thanks to separation of the parameters into several levels and groups
- each parameter is given a 3-digit ID number for easy navigation
- option for configuring the display according to individual requirements and desires, such as language, alternating display, contrast setting, display of other measured values such as sensor temperature
- comprehensive diagnostic functions (fault and warning message, peak-hold indicators, etc.)
- rapid and safe commissioning with the Quick Setup menus
The following table illustrates the symbols that can appear on the on-site display. Four symbols can occur at one time.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| ![Alarm symbol](image) | Alarm symbol
 - Symbol flashing: warning, device continues measuring.
 - Symbol permanently lit: error, device does not continue measuring.
 Note: The alarm symbol may overlap the tendency symbol. |
| ![Lock symbol](image) | Lock symbol
 The operation of the device is locked. Unlock device, → see Section 5.10. |
| ![Communication symbol](image) | Communication symbol
 Data transfer via communication
 Note: The alarm symbol may overlap the communication symbol. |
| ![Tendency symbol (increasing)](image) | Tendency symbol (increasing)
 The measured value is increasing. |
| ![Tendency symbol (decreasing)](image) | Tendency symbol (decreasing)
 The measured value is decreasing. |
| ![Tendency symbol (constant)](image) | Tendency symbol (constant)
 The measured value has remained constant over the past few minutes. |

5.2 Operating elements

5.2.1 Position of operating elements

With regard to aluminium or stainless steel housings (T14), the operating keys are located either outside the device under the protection cap or inside on the electronic insert. In hygienic stainless steel housings (T17), the operating keys are always located inside on the electronic insert.
5.2.2 Function of the operating elements – on-site display not connected

Press and hold the key or the key combination for at least 3 seconds to execute the corresponding function. Press the key combination for at least 6 seconds for a reset.

<table>
<thead>
<tr>
<th>Operating key(s)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>−</td>
<td>Adopt lower range value. A reference pressure is present at the device. → See also Page 32, Section 5.3.1 "Pressure measuring mode" or Page 33, Section 5.3.2 "Level measuring mode".</td>
</tr>
<tr>
<td>+</td>
<td>Adopt upper range value. A reference pressure is present at the device. → See also Page 32, Section 5.3.1 "Pressure measuring mode" or Page 33, Section 5.3.2 "Level measuring mode".</td>
</tr>
<tr>
<td>E</td>
<td>Position adjustment</td>
</tr>
<tr>
<td>+ and − and E</td>
<td>Reset all parameters. The reset via operating keys corresponds to the software reset code 7864.</td>
</tr>
<tr>
<td>+ and E</td>
<td>Copy the configuration data from the optional HistoROM®/M-DAT module to the device.</td>
</tr>
<tr>
<td>− and E</td>
<td>Copy the configuration data from the device to the optional HistoROM®/M-DAT module.</td>
</tr>
</tbody>
</table>

- DIP-switch 1: for locking/unlocking measured-value-relevant parameters
 - Factory setting: off (unlocked)
- DIP-switch 2: damping on/off,
 - Factory setting: on (damping on)
5.2.3 Function of the operating elements – on-site display connected

<table>
<thead>
<tr>
<th>Operating key(s)</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| + | – Navigate upwards in the picklist
| | – Edit the numerical values and characters within a function |
| - | – Navigate downwards in the picklist
| | – Edit the numerical values and characters within a function |
| E | – Confirm entry
| | – Jump to the next item |
| + and E | Contrast setting of on-site display: darker |
| - and E | Contrast setting of on-site display: brighter |
| + and - | ESC functions:
| | – Exit edit mode without saving the changed value.
| | – You are in a menu within a function group. The first time you press the keys simultaneously, you go back a parameter within the function group. Each time you press the keys simultaneously after that, you go up a level in the menu.
| | – You are in a menu at a selection level. Each time you press the keys simultaneously, you go up a level in the menu.
| | *Note:* The terms function group, level and selection level are explained in Section 5.4.1, Page 35.
5.3 On-site operation – on-site display not connected

Note!
To operate the device with a HistoROM®/M-DAT module see Page 37, Section 5.5 "HistoROM®/M-DAT module".

5.3.1 Pressure measuring mode

If no on-site display is connected, the following functions are possible by means of the three keys on the electronic insert or on the exterior of the device:
- Position adjustment (zero point correction)
- Setting lower range value and upper range value
- Device reset, → see also Page 30, Section 5.2.2 "Function of the operating elements", Table.

Note!
- The operation must be unlocked. → See Page 42, Section 5.9 "Locking /unlocking operation".
- The device is configured for the Pressure measuring mode as standard. You can switch measuring modes by means of the MEASURING MODE parameter. → See Page 45, Section 6.2 "Selecting language and measuring mode".
- The pressure applied must be within the nominal pressure limits of the sensor. See information on the nameplate.

<table>
<thead>
<tr>
<th>Carry out position adjustment.1</th>
<th>Setting lower range value.</th>
<th>Setting upper range value.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure is present at device.</td>
<td>Desired pressure for lower range value is present at device.</td>
<td>Desired pressure for upper range value is present at device.</td>
</tr>
<tr>
<td>↓ Press "E"-key for 3 s.</td>
<td>↓ Press "–"-key for 3 s.</td>
<td>↓ Press "+"-key for 3 s.</td>
</tr>
<tr>
<td>↓ Does the LED on the electronic insert light up briefly?</td>
<td>↓ Does the LED on the electronic insert light up briefly?</td>
<td>↓ Does the LED on the electronic insert light up briefly?</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

1) Observe "Warning" on page 45 in Chapter 6 "Commissioning".

Applied pressure for position adjustment has been accepted.
Applied pressure for lower range value has been accepted.
Applied pressure for upper range value has not been accepted. Observe the input limits.
5.3.2 Level measuring mode

If no on-site display is connected, the following functions are possible by means of the three keys on the electronic insert or on the exterior of the device:

- Position adjustment (zero point correction)
- Set the lower and upper pressure value and assign to the lower and upper level value
- Device reset, → see also Page 30, Section 5.2.2 "Function of the operating elements", Table.

Note!
- The "-" and "+"- keys only have a function in the following cases:
 - LEVEL SELECTION "Level Easy Pressure", CALIBRATION MODE "Wet"
 - LEVEL SELECTION "Level Standard", LEVEL MODE "Linear",
 CALIBRATION MODE "Wet"

 The keys have no function in other settings.

- The device is configured for the Pressure measuring mode as standard. You can switch measuring modes by means of the MEASURING MODE parameter. → See Page 45, Section 6.2 "Selecting language and measuring mode".

 The following parameters are set to the following values in the factory:
 - LEVEL SELECTION: Level Easy Pressure
 - CALIBRATION MODE: Wet
 - OUTPUT UNIT or LIN. MEASURAND: %
 - EMPTY CALIB.: 0.0
 - FULL CALIB.: 100.0.
 - SET LRV: 0.0 (corresponds to 4 mA value)
 - SET URV: 100.0 (corresponds to 20 mA value)

 These parameters can only be modified by means of the on-site display or remote operation such as the FieldCare.

- The operation must be unlocked. → See Page 42, Section 5.9 "Locking /unlocking operation".
- The pressure applied must be within the nominal pressure limits of the sensor. See information on the nameplate.

 → See also Page 50, Section 6.5 "Level measurement". For parameter description see Operating Instructions BA274P.

- LEVEL SELECTION, CALIBRATION MODE, LEVEL MODE, EMPTY CALIB., FULL CALIB., SET LRV and SET URV are parameter names used for on-site display or remote operation such as FieldCare, for instance.
Carry out position adjustment.\(^1\)

Pressure is present at device.

<table>
<thead>
<tr>
<th>Press "E"-key for 3 s.</th>
<th>Does the LED on the electronic insert light up briefly?</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Applied pressure for position adjustment has been accepted. Observe the input limits.

Setting lower pressure value.

Desired pressure for lower pressure value (EMPTY PRESSURE\(^2\)) is present at device.

<table>
<thead>
<tr>
<th>Press "-"-key for 3 s.</th>
<th>Does the LED on the electronic insert light up briefly?</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

The pressure present was saved as the lower pressure value (EMPTY PRESSURE\(^1\)) and assigned to the lower level value (EMPTY CALIB.\(^1\)).

Setting upper pressure value.

Desired pressure for upper pressure value (FULL PRESSURE\(^1\)) is present at device.

<table>
<thead>
<tr>
<th>Press "+"-key for 3 s.</th>
<th>Does the LED on the electronic insert light up briefly?</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

The pressure present was saved as the upper pressure value (FULL PRESSURE\(^1\)) and assigned to the upper level value (FULL CALIB.\(^1\)).

The pressure present was not saved as the upper pressure value. Observe the input limits.

1) Observe "Warning" on page 45 in Chapter 6 "Commissioning".

2) Parameter name used for the on-site display or remote operation such as the FieldCare.
5.4 On-site operation – on-site display connected

If the on-site display is connected, the three operating keys are used to navigate through the operating menu, → see Page 31, Section 5.2.3 "Function of the operating elements".

5.4.1 General structure of the operating menu

The menu is split into four levels. The three upper levels are used to navigate while you use the bottom level to enter numerical values, select options and save settings. The entire menu is illustrated in Section 10.1 "Menu for on-site display and digital communication". The structure of the OPERATING MENU depends on the measuring mode selected, e.g. if the "Pressure" measuring mode is selected, only the functions necessary for this mode are displayed.

![Diagram of the operating menu structure](image)

Fig. 25: Structure of the operating menu

1. Selection level
2. Selection level
3. Function groups
4. Parameter

Note!
The LANGUAGE and MEASURING MODE parameters are only displayed via the on-site display on the 1st selection level. In the digital communication, the LANGUAGE parameter is displayed in the DISPLAY group and the MEASURING MODE parameter is displayed in the QUICK SETUP menus or in the BASIC SETUP function group. → See also Section 10.1 "Operating menu for on-site display and digital communication".
5.4.2 Selecting an option
Example: select "English" as the language of the menu.

<table>
<thead>
<tr>
<th>On-site display</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPRACHE 879</td>
<td>German is selected as the language. A ✓ in front of the menu text indicates the active option.</td>
</tr>
<tr>
<td>Deutsch 🇩🇪</td>
<td></td>
</tr>
<tr>
<td>Français 🇫🇷</td>
<td></td>
</tr>
<tr>
<td>Français</td>
<td></td>
</tr>
</tbody>
</table>

Select English with "+" or "−".

1. Confirm your choice with ‘E’. A ✓ in front of the menu text indicates the active option. (English is now selected as the menu language.)
2. Jump to the next item with "E".

5.4.3 Editing a value
Example: adjusting DAMPING VALUE function from 2.0 s to 30.0 s. → See also Page 31, Section 5.2.3 "Function of the operating elements".

<table>
<thead>
<tr>
<th>On-site display</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAMPING VALUE 247</td>
<td>The on-site display shows the parameter to be changed. The value highlighted in black can be changed. The "s" unit is fixed and cannot be changed.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>▶</td>
<td></td>
</tr>
</tbody>
</table>

1. Press "+" or "−" to get to the editing mode.
2. The first digit is highlighted in black.

1. Use "+" to change "2" to "3".
2. Confirm "3" with "E". The cursor jumps to the next position (highlighted in black).

The decimal point is highlighted in black, i.e. you can now edit it.

1. Keep pressing "+" or "−" until "0" is displayed.
2. Confirm "0" with "E". The cursor jumps to the next position. "0" is displayed and is highlighted in black. → See next graphic.
5.4.4 Taking pressure applied at device as value

Example: configuring upper range value – assign 20 mA to the pressure value 400 mbar.

5.5 HistoROM®/M-DAT (optional)

HistoROM®/M-DAT is a memory module, which is attached to the electronic insert and fulfills the following functions:
- Back-up copy of configuration data
- Copying configuration data of a transmitter into another transmitter
- Cyclic recording of pressure and sensor-temperature measured values
- Recording diverse events, such as alarms, configuration changes, counters for measuring range undershooting and exceeding for pressure and temperature, exceeding and undershooting the user limits for pressure and temperature, etc.

⚠️ Warning!
Detach HistoROM®/M-DAT from the electronic insert or attach it to the insert in a deenergised state only.
Note!
- The HistoROM®/M-DAT module may be retrofitted at any time (Order No.: 52027785).
- The HistoROM data and the data in the device are analyzed once a HistoROM®/M-DAT is attached to the electronic insert and power is reestablished to the device. During the analysis, the messages "W702, HistoROM data not consistent" and "W706, Configuration in HistoROM and device not identical" can occur. For measures, see Page 55, Section 8.1 "Messages."

5.5.1 Copying configuration data

Abb. 26: Electronic insert with optional HistoROM®/M-DAT memory module

1 optional HistoROM®/M-DAT
2 To copy configuration data from the HistoROM®/M-DAT module to a device or from a device to a HistoROM®/M-DAT, the operation must be unlocked DIP-switch 1, Position "off", parameter INSERT PIN NO. = 100). Observe Page 42, Section 5.9 "Locking/unlocking operation".

On-site operation – on-site display not connected

Copying configuration data from a device to a HistoROM®/M-DAT module:

Note!
The operation must be unlocked.
1. Disconnect device from supply voltage.
2. Attach the HistoROM®/M-DAT module to the electronic insert.
3. Reestablish supply voltage to the device.
4. Press "E" and "+"-keys (for at least 3 seconds) until the LED on the electronic insert lights up.
5. Wait approx. 20 seconds. Configuration data are loaded from the device to the HistoROM®/M-DAT. The device is not restarted.
6. Disconnect device from the supply voltage again.
7. Detach memory module.
8. Reestablish supply voltage to the device.
Copying configuration data from a HistoROM®/M-DAT to a device:

Note!
The operation must be unlocked.

1. Disconnect device from supply voltage.
2. Attach the HistoROM®/M-DAT module to the electronic insert. Configuration data from another device are stored in the HistoROM®/M-DAT.
3. Reestablish supply voltage to the device.
4. Press "E" und "+"-keys (for at least 3 seconds) until the LED on the electronic insert lights up.
5. Wait approx. 20 seconds. All parameters except DEVICE SERIAL No, DEVICE DESIGN., CUST. TAG NUMBER, LONG TAG NUMBER, DESCRIPTION, BUS ADDRESS and the parameters in the POSITION ADJUSTMENT and PROCESS CONNECTION group are loaded into the device by HistoROM®/M-DAT. The device is restarted.
6. Before removing the HistoROM®/M-DAT again from the electronic insert, disconnect the device from supply voltage.

On-site operation via on-site display (optional) or remote operation

Copying configuration data from a device to a HistoROM®/M-DAT:

Note!
The operation must be unlocked.

1. Disconnect device from supply voltage.
2. Attach the HistoROM®/M-DAT module to the electronic insert.
3. Reestablish supply voltage to the device.
4. The DOWNLOAD SELECT. parameter setting has no influence on an upload from the device into HistoROM.
 (Menu path: (GROUP SELECTION → OPERATING MENU → OPERATION)
5. Using the HistoROM CONTROL parameter select the option "Device → HistoROM" as the data transfer direction.
 (Menu path: GROUPSELECTION → OPERATING MENU → OPERATION)
6. Wait approx. 20 seconds. Configuration data are loaded from the device to the HistoROM®/M-DAT. The device is not restarted.
7. Disconnect device from the supply voltage again.
8. Detach memory module.
9. Reestablish supply voltage to the device.
Copying configuration data from a HistoROM®/M-DAT to a device:

Note!
The operation must be unlocked.

1. Disconnect device from supply voltage.
2. Attach the HistoROM®/M-DAT module to the electronic insert. Configuration data from another device are stored in the HistoROM®/M-DAT.
3. Reestablish supply voltage to the device.
4. Use the DOWNLOAD SELECT parameter to select which parameters are to be overwritten (Menu path: (GROUPS SELECTION →) OPERATING MENU → OPERATION).

The following parameters are overwritten according to the selection:
- **Configuration copy (factory setting):**
 all parameters except DEVICE SERIAL No., DEVICE DESIGN, CUST. TAG NUMBER, LONG TAG NUMBER, DESCRIPTION, BUS ADDRESS and the parameters in the POSITION ADJUSTMENT, PROCESS CONNECTION, CURR. TRIM (SERVICE/SYSTEM 2), SENSOR TRIM and SENSOR DATA group.
- **Device replacement:**
 all parameters except DEVICE SERIAL No., DEVICE DESIGN and the parameters in the POSITION ADJUSTMENT, PROCESS CONNECTION, CURR. TRIM (SERVICE/SYSTEM 2), SENSOR TRIM and SENSOR DATA group.
- **Electronics replace:**
 all parameters except the parameters in the CURR. TRIM (SERVICE/SYSTEM 2), POSITION ADJUSTMENT and SENSOR DATA group.

Factory setting: Configuration copy

5. Using the HistoROM CONTROL parameter select the option "HistoROM → Device" as the data transfer direction. (Menu path: GROUP SELECTION → OPERATING MENU → OPERATION)

6. Wait approx. 20 seconds. Configuration data are loaded from the device to the HistoROM®/M-DAT. The device is restarted.

7. Before removing the HistoROM®/M-DAT again from the electronic insert, disconnect the device from supply voltage.
5.6 Operation via HART handheld terminal

Use the HART handheld terminal to set all parameters all the way along the 4...20 mA cable via menu operation.

Fig. 27: HART handheld terminal, here e.g. Field Communicator 375 and menu guidance

1 LC display with menu text
2 Keys for menu selection
3 Keys for parameter entry

Note!

• → See also Page 24, Section 4.2.5 "Connecting HART handheld terminal".
• For further information, please refer to the Operating Instructions for the handheld terminal. The Operating Instructions are supplied with the handheld terminal.

5.7 FieldCare

FieldCare is an Endress+Hauser asset management tool based on FDT technology. With FieldCare, you can configure all Endress+Hauser devices as well as devices from other manufacturers that support the FDT standard. The following operating systems are supported: WinNT4.0, Win2000 and Windows XP.

FieldCare supports the following functions:

• Configuration of transmitters in online operation
• Loading and saving device data (upload/download)
• HistorOM®/M-DAT analysis
• Documentation of the measuring point

Connection options:

• HART via Commubox FXA191 and the serial interface RS 232 C of a computer
• HART via Commubox FXA195 and USB interface of a computer
• HART via Fieldgate FXA520

Note!

• → See also Page 25, Section 4.2.6 "Connecting Commubox FXA191/FXA195 for operation via FieldCare".
• Further information on the FieldCare can be found on the Internet (http://www.endress.com, Download → Search for: FieldCare).
5.8 Locking/unlocking operation

Once you have entered all the parameters, you can lock your entries against unauthorised and undesired access.

You have the following possibilities for locking/unlocking the operation:
- Via a DIP-switch on the electronic insert, locally on the display.
- Via the on-site display (optional)
- Via digital communication.

The $$\text{\textregistered}$$-symbol on the on-site display indicates that operation is locked. Parameters which refer to how the display appears, e.g. LANGUAGE and DISPLAY CONTRAST can still be altered.

Note!
- If operation is locked by means of the DIP-switch, you can only unlock operation again by means of the DIP-switch. If operation is locked by means of the on-site display or remote operation e.g. FieldCare, you can only unlock operation again by means of the on-site display or remote operation.

The table provides an overview of the locking functions:

<table>
<thead>
<tr>
<th>Locking via</th>
<th>View/read parameter</th>
<th>Modify/write via(^1)</th>
<th>Unlocking via</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On-site display</td>
<td>Remote operation</td>
<td>DIP-switch</td>
</tr>
<tr>
<td>DIP-switch</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>On-site display</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Remote operation</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

1) Parameters which refer to how the display appears, e.g. LANGUAGE and DISPLAY CONTRAST can still be altered.

5.8.1 Locking/unlocking operation locally via DIP-switch

1) If necessary, remove on-site display (optional)
2) DIP-switch is at "on": operation is locked.
3) DIP-switch is at "off": operation is unlocked (operation possible)
5.8.2 Locking/unlocking operation via on-site display or remote operation

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locking operation</td>
</tr>
<tr>
<td>1. Select INSERT PIN NO. parameter, Menu path: OPERATING MENU → OPERATION → INSERT PIN NO.</td>
</tr>
<tr>
<td>2. To lock operation, enter a number for this parameter between 0...9999 that is ≠100.</td>
</tr>
<tr>
<td>Unlocking operation</td>
</tr>
<tr>
<td>1. Select INSERT PIN NO. parameter.</td>
</tr>
<tr>
<td>2. To unlock operation, enter "100" for the parameter.</td>
</tr>
</tbody>
</table>

5.9 Factory setting (reset)

By entering a certain code, you can completely, or partially, reset the entries for the parameters to the factory settings. (→ For factory settings refer to the Operating Instructions BA274P "Cerabar S/ Deltabar S/Deltapilot S, Description of device functions". See also Page 2, "Overview documentation"). Enter the code by means of the ENTER RESET CODE parameter (Menu path: (GROUP SELECTION →) OPERATING MENU → OPERATING).

There are various reset codes for the device. The following table illustrates which parameters are reset by the particular reset codes. Operation must be unlocked to reset parameters (→ see Page 42, Section 5.9).

Note!
Any customer-specific configuration carried out by the factory is not affected by a reset (customer-specific configuration remains). If, after a reset, you wish the parameters to be reset to the factory settings, please contact Endress+Hauser Service.

<table>
<thead>
<tr>
<th>Reset code</th>
<th>Description and effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1846</td>
<td>Display reset</td>
</tr>
<tr>
<td>– This reset resets all parameters which have to do with how the display appears (DISPLAY group).</td>
<td></td>
</tr>
<tr>
<td>– Any simulation which may be running is ended.</td>
<td></td>
</tr>
<tr>
<td>– The device is restarted.</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>PowerUp reset (warm start)</td>
</tr>
<tr>
<td>– This reset resets all the parameters in the RAM. Data are read back anew from the EEPROM (processor is initialised again).</td>
<td></td>
</tr>
<tr>
<td>– Any simulation which may be running is ended.</td>
<td></td>
</tr>
<tr>
<td>– The device is restarted.</td>
<td></td>
</tr>
<tr>
<td>2710</td>
<td>Measuring mode level reset</td>
</tr>
<tr>
<td>– Depending on the settings for the LEVEL MODE, LIN MEASURAND, LINDMEASURAND or COMB. MEASURAND parameters, the parameters needed for this measuring task will be reset.</td>
<td></td>
</tr>
<tr>
<td>– Any simulation which may be running is ended.</td>
<td></td>
</tr>
<tr>
<td>– The device is restarted.</td>
<td></td>
</tr>
</tbody>
</table>

Example LEVEL MODE = linear and LIN MEASURAND = Height
- HEIGHT UNIT = m
- CALIBRATION MODE = wet
- EMPTY CALIB. = 0
- FULL CALIB. = Sensor end value converted to mH₂O, e.g. 4.79 mH₂O for a 400 mbar sensor

| 333 | User reset |
| – Affects the following parameters: |
| – Function group POSITION ADJUSTMENT |
| – Function group BASIC SETUP, except for the customer-specific units |
| – Function group EXTENDED SETUP |
| – Group OUTPUT |
| – Function group HART DATA: BUS ADDRESS and PREAMBLE NUMBER |
| – Any simulation which may be running is ended. |
| – The device is restarted. |
Total reset
- Affects the following parameters:
 - Function group POSITION ADJUSTMENT
 - Function group BASIC SETUP
 - Function group EXTENDED SETUP
 - Function group LINEARISATION (an existing linearisation table is erased)
 - Group OUTPUT
 - Function group PEAK HOLD INDICATOR
 - Function group HART DATA
 - All configurable messages ("Error" type) are set to factory setting.

 → See also Page 55, Section 8.1 "Messages" and Page 62, Section 8.2 "Response of outputs to errors".
 - Function group USER LIMITS
 - Function group SYSTEM 2
 - Any simulation which may be running is ended.
 - The device is restarted.

HistoROM reset
The measured value memory and event memory are cleared. During the reset, the HistoROM must be attached to the electronic insert.
6 Commissioning

Warning!
- If a pressure smaller than the minimum permitted pressure is present at the device, the messages "E120 Sensor low pressure" and "E727 Sensor pressure error - overrange" are output in succession.
- If a pressure greater than the maximum permitted pressure is present at the device, the messages "E115 Sensor overpressure" and "E727 Sensor pressure error - overrange" are output in succession.
- Messages E727, E115 and E120 are "Error"-type messages and can be configured as a "Warning" or an "Alarm". These messages are configured as "Warning" messages at the factory. This setting prevents the current output from assuming the set alarm current value for applications (e.g. cascade measurement) where the user is consciously aware of the fact that the sensor range can be exceeded.
- We recommend setting messages E727, E115 and E120 to "Alarm" in the following instances:
 - The sensor range does not have to be exceeded for the measuring application.
 - Position adjustment has to be carried out that has to correct a large measured error as a result of the orientation of the device (e.g. devices with a diaphragm seal).

Note!
The device is configured for the Pressure measuring mode as standard. The measuring range and the unit in which the measured value is transmitted correspond to the specifications on the nameplate.

6.1 Function check

Carry out a post-installation and a post-connection check as per the checklist before commissioning the device.
- "Post-installation check" checklist → see Section 3.4
- "Post-connection check" checklist → see Section 4.4

6.2 Selecting language and measuring mode

6.2.1 On-site operation

The LANGUAGE and MEASURING MODE parameters are located on the top menu level. → See also Page, Section 5.4.1 "General structure of the operating menu".

The following languages are available:
- Deutsch
- English
- Français
- Italiano
- Español
- Nederlands
- Chinese (CHS)
- Japanese (JPN)

The following measuring modes are available:
- Pressure
- Level
6.2.2 Digital communication

The MEASURING MODE parameter is displayed in the digital communication in the QUICK SETUP menus and in the BASIC SETUP function group (OPERATING MENU → SETTINGS → BASIC SETUP).

The following measuring modes are available:
- Pressure
- Level

The LANGUAGE parameter is arranged in the DISPLAY group (OPERATING MENU → DISPLAY).
- Use the LANGUAGE parameter to select the menu language for the on-site display.
- Select the menu language for FieldCare by means of the "Language Button" in the configuration window. Select the menu language for the FieldCare frame via the "Extra" menu → "Options" → "Display" → "Language".

The following languages are available:
- Deutsch
- English
- Français
- Italiano
- Español
- Nederlands
- Chinese (CHS)
- Japanese (JPN)
6.3 Position adjustment

Due to the orientation of the device, there may be a shift in the measured value, i.e. when the container is empty or partly filled, the measured value parameter does not display zero. There are three options to choose from when performing position adjustment.

(Menu path: (GROUP SELECTION → OPERATING MENU → SETTINGS → POSITION ADJUSTMENT)

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Description</th>
</tr>
</thead>
</table>
| POS. ZERO ADJUST (685) | Position adjustment – the pressure difference between zero (set point) and the measured pressure need not be known. Example:
- MEASURED VALUE = 2.2 mbar
- Correct the MEASURED VALUE via the POS. ZERO ADJUST parameter with the "Confirm" option. This means that you are assigning the value 0.0 to the pressure present.
- MEASURED VALUE (after pos. zero adjust) = 0.0 mbar
- The current value is also corrected.
The CALIB. OFFSET parameter displays the resulting pressure difference (offset) by which the MEASURED VALUE was corrected.
Factory setting: 0.0 |
| POS. INPUT VALUE (563) | Position adjustment – the pressure difference between zero (set point) and the measured pressure need not be known. To correct the pressure difference, you need a reference measurement value (e. g. from a reference device). Example:
- MEASURED VALUE = 0.5 mbar
- For the POS. INPUT VALUE parameter, specify the desired set point for the MEASURED VALUE, e.g. 2 mbar.
\[\text{MEASURED VALUE}_{\text{new}} = \text{POS. INPUT VALUE} \]
- MEASURED VALUE (after entry for POS. INPUT VALUE) = 2.0 mbar
- The CALIB. OFFSET parameter displays the resulting pressure difference (offset) by which the MEASURED VALUE was corrected.
\[\text{CALIB. OFFSET} = \text{MEASURED VALUE}_{\text{old}} - \text{POS. INPUT VALUE}_{\text{new}} \]
- The current value is also corrected.
Factory setting: 0.0 |
| CALIB. OFFSET (319) | Position adjustment – the pressure difference between zero (set point) and the measured pressure is known. Example:
- MEASURED VALUE = 2.2 mbar
- Via the CALIB. OFFSET parameter, enter the value by which the MEASURED VALUE should be corrected. To correct the MEASURED VALUE to 0.0 mbar, you must enter the value 2.2 here.
\[\text{MEASURED VALUE}_{\text{new}} = \text{MEASURED VALUE}_{\text{old}} - \text{CALIB. OFFSET} \]
- MEASURED VALUE (after entry for calib. offset) = 0.0 mbar
- The current value is also corrected.
Factory setting: 0.0 |
6.4 Pressure measurement

6.4.1 Information on pressure measurement

Note!
- There is a Quick Setup menu for each of the measuring modes Pressure and Level which guides you through the most important basic functions. With the setting in the MEASURING MODE parameter, you specify which Quick Setup menu should be displayed. → See also Page 45, Section 6.2 "Selecting language and measuring mode".
- For a detailed description of the parameters see the Operating Instructions BA274P "Cerabar S/Deltabar S/Deltapilot S, Description of device functions"
 - Table 6, POSITION ADJUSTMENT
 - Table 7, BASIC SETUP
 - Table 15, EXTENDED SETUP
 → See also Page 2, Section "Overview documentation".
- For pressure measurement, select the "Pressure" option by means of the MEASURING MODE parameter. The operating menu is structured appropriately. → See also Section 10.1.

6.4.2 Quick Setup menu for Pressure measuring mode

![Quick Setup menu for Pressure measuring mode](Image)

Fig. 29: Quick Setup menu for Pressure measuring mode

<table>
<thead>
<tr>
<th>On-site operation</th>
<th>Digital communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured value display
On-site display: Switch from the measured value display to GROUP SELECTION with [1].</td>
<td>Measured value display
Select QUICK SETUP menu.</td>
</tr>
<tr>
<td>GROUP SELECTION
Select MEASURING MODE.</td>
<td>MEASURING MODE
Select "Pressure" option.</td>
</tr>
<tr>
<td>MEASURING MODE
Select "Pressure" option.</td>
<td>GROUP SELECTION
Select QUICK SETUP menu.</td>
</tr>
<tr>
<td>POS. ZERO ADJUST
Due to orientation of the device, there may be a shift in the measured value. You correct the MEASURED VALUE via the POS. ZERO ADJUST parameter with the "Confirm" option, i.e. you assign the value 0.0 to the pressure present.</td>
<td>POS. ZERO ADJUST
Due to orientation of the device, there may be a shift in the measured value. You correct the MEASURED VALUE via the POS. ZERO ADJUST parameter with the "Confirm" option, i.e. you assign the value 0.0 to the pressure present.</td>
</tr>
</tbody>
</table>
Note!
For on-site operation, see also Page 31, Section 5.2.3 "Function of the operating elements" and Page 35, Section 5.4 "On-site operation".

On-site operation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS. INPUT VALUE</td>
<td>Due to orientation of the device, there may be a shift in the measured value. For the POS. INPUT VALUE parameter, specify the desired set point for the MEASURED VALUE.</td>
</tr>
<tr>
<td>SET LRV</td>
<td>Set the measuring range (enter 4 mA value). Specify a pressure value for the lower current value (4 mA value). A reference pressure does not have to be present at the device.</td>
</tr>
<tr>
<td>SET URV</td>
<td>Set the measuring range (enter 20 mA value). Specify a pressure value for the upper current value (20 mA value). A reference pressure does not have to be present at the device.</td>
</tr>
<tr>
<td>DAMPING TIME</td>
<td>Enter damping time (time constant τ). The damping affects the speed at which all subsequent elements, such as the on-site display, measured value and current output react to a change in the pressure.</td>
</tr>
</tbody>
</table>

Digital communication

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS. INPUT VALUE</td>
<td>Due to orientation of the device, there may be a shift in the measured value. For the POS. INPUT VALUE parameter, specify the desired set point for the MEASURED VALUE.</td>
</tr>
<tr>
<td>SET LRV</td>
<td>Set the measuring range (enter 4 mA value). Specify a pressure value for the lower current value (4 mA value). A reference pressure does not have to be present at the device.</td>
</tr>
<tr>
<td>SET URV</td>
<td>Set the measuring range (enter 20 mA value). Specify a pressure value for the upper current value (20 mA value). A reference pressure does not have to be present at the device.</td>
</tr>
<tr>
<td>DAMPING TIME</td>
<td>Enter damping time (time constant τ). The damping affects the speed at which all subsequent elements, such as the on-site display, measured value and current output react to a change in the pressure.</td>
</tr>
</tbody>
</table>
6.5 Level measurement

6.5.1 Information on level measurement

Note!

- The Pressure and Level operating modes each have a quick setup menu which guides you through the most important basic functions. → See Page 52 for the "Level" quick setup menu.
- Furthermore, the three level modes "Level Easy Pressure", "Level Easy Height" and "Level Standard" are available to you for level measurement. You can select from the "Linear", "Pressure linearized" and "Height linearized" level types for the "Level Standard" level mode. The table in the "Overview of level measurement" section below provides an overview of the various measuring tasks.
 - In the "Level Easy Pressure" and "Level Easy Height" level modes, the values entered are not tested as extensively as in the "Level Standard" level mode. The values entered for EMPTY CALIB./FULL CALIB., EMPTY PRESSURE/FULL PRESSURE, EMPTY HEIGHT/FULL HEIGHT and SET LRV/SET URV must have a minimum interval of 1% for the "Level Easy Pressure" and "Level Easy Height" level modes. The value will be rejected with a warning message if the values are too close together. Further limit values are not checked; i.e. the values entered must be appropriate for the sensor and the measuring task so that the measuring device can measure correctly.
 - The "Level Easy Pressure" and "Level Easy Height" level modes encompass fewer parameters than the "Level Standard" mode and are used for quick and easy configuration of a level application.
 - Customer-specific units of fill level, volume and mass or a linearization table may only be entered in the "Level Standard" level mode.
 - Where the device is intended for use as a subsystem in a safety function (SIL), a "Device configuration with enhanced parameter security" (SAFETY CONFIRM.) is only possible for the "Level" operating mode in the "Level Easy Pressure" level mode. All parameters previously entered are checked after a password is entered. Once the "Level Easy Height" or "Level Standard" has been selected, the configuration will first have to be reset to the ex-works setting using the RESET parameter (menu path: (GROUP SELECTION → OPERATING MENU → OPERATION) using the reset code "7864". → For further information see the Cerabar S (SD190P) Functional Safety Manual.
- See the Operating Instructions BA274P "Cerabar S/Deltabar S/Deltapilot S, Description of device functions". → See also Page 2, "Overview Documentation" section.
6.5.2 Overview of level measurement

<table>
<thead>
<tr>
<th>Measuring task</th>
<th>LEVEL SELECTION/ LEVEL MODE</th>
<th>Measured variable options</th>
<th>Description</th>
<th>Comment</th>
<th>Measured value display</th>
</tr>
</thead>
</table>
| The measured variable is in direct proportion to the measured pressure. Calibration is performed by entering two pressure-level value pairs. | LEVEL SELECTION: Level Easy Pressure | Via OUTPUT UNIT parameter: %, level, volume or mass units. | – Calibration with reference pressure - wet calibration, see Operating Instructions BA274P, Section 5.2.1
– Calibration without reference pressure - dry calibration, see Operating Instructions BA274P, Section 5.2.2 | – Incorrect entries are possible
– Customised units are not possible | The measured value display and the LEVEL BEFREN LIN parameter show the measured value. |
| The measured variable is in direct proportion to the measured pressure. Calibration is performed by entering the density and two height-level value pairs. | LEVEL SELECTION: Level Easy Height | Via OUTPUT UNIT parameter: %, level, volume or mass units. | – Calibration with reference pressure - wet calibration, see Operating Instructions BA274P, Section 5.3.1
– Calibration without reference pressure - dry calibration, see Operating Instructions BA274P, Section 5.3.2 | – Incorrect entries are possible
– Customised units are not possible | The measured value display and the LEVEL BEFREN LIN parameter show the measured value. |
| The measured variable is in direct proportion to the measured pressure. | LEVEL SELECTION: Level standard/ LEVEL MODE: Linear | Via LIN, MEASURAND parameter:
– % (level)
– Level
– Volume
– Mass | – Calibration with reference pressure - wet calibration, see Operating Instructions BA274P, Section 5.4.1
– Calibration without reference pressure - dry calibration, see Operating Instructions BA274P, Section 5.4.2 | – Incorrect entries are rejected by the device
– Customised level, volume and mass units are possible | The measured value display and the LEVEL BEFREN LIN parameter show the measured value. |
| The measured variable is not in direct proportion to the measured pressure as, for example, with containers with a conical outlet. A linearisation table must be entered for the calibration. | LEVEL SELECTION: Level standard/ LEVEL MODE: Pressure linearized | Via LINd MEASURAND parameter:
– Pressure + %
– Pressure + volume
– Pressure + mass | – Calibration with reference pressure: semiautomatic entry of linearisation table, see Operating Instructions BA274P, Section 5.5.1
– Calibration without reference pressure: manual entry of linearisation table, see Operating Instructions BA274P, Section 5.5.2 | – Incorrect entries are rejected by the device
– Customised level, volume and mass units are possible | The measured value display and the LEVEL BEFREN LIN parameter show the measured value. |
| Two measured variables are required or The container shape is given by value pairs, such as height and volume. The 1st measured variable %-height or height must be in direct proportion to the measured pressure. The 2nd measured variable volume, mass or % must not be in direct proportion to the measured pressure. A linearisation table must be entered for the 2nd measured variable. The 2nd measured variable is assigned to the 1st measured variable by means of this table. | LEVEL SELECTION: Level standard/ LEVEL MODE: Height linearized | Via COMB, MEASURAND parameter:
– Height + volume
– Height + mass
– Height + %
– % Height + volume
– % Height + mass
– % Height + % | – Calibration with reference pressure: wet calibration and semiautomatic entry of linearisation table, see Operating Instructions BA274P, Section 5.6.1
– Calibration without reference pressure: dry calibration and manual entry of linearisation table, see Operating Instructions BA274P, Section 5.6.2 | – Incorrect entries are rejected by the device
– Customised level, volume and mass units are possible | The measured value display and the TANK CONTENT parameter show the 2nd measured value (volume, mass or %). The LEVEL BEFORE LIN parameter displays the 1st measured value (%-height or height). |
6.5.3 Quick Setup menu for Level measuring mode

Note!
- Some parameters are only displayed if other parameters are appropriately configured. For example, the EMPTY CALIB. parameter is only displayed in the following cases:
 - LEVEL SELECTION "Level Easy Pressure" and CALIBRATION MODE "Wet"
 - LEVEL SELECTION "Level Standard", LEVEL MODE "Linear" and
 CALIBRATION MODE "WET"

You can find the LEVEL MODE parameter in the BASIC SETTINGS function group (menu path:
(GROUP SELECTION → OPERATING MENU → SETTINGS → BASIC SETTINGS)).

- The following parameters are set to the following values in the factory:
 - LEVEL SELECTION: Level Easy Pressure
 - CALIBRATION MODE: Wet
 - OUTPUT UNIT or LIN. MEASURAND: %
 - EMPTY CALIB.: 0.0
 - FULL CALIB.: 100.0
 - SET LRV (BASIC SETTINGS group): 0.0 (corresponds to 4 mA value)
 - SET URV (BASIC SETTINGS group): 100.0 (corresponds to 20 mA value).

- The quick setup is suitable for simple and quick commissioning. If you wish to make more complex settings, e.g. change the unit from "%" to "m", you will have to calibrate using the BASIC SETTINGS group. → See Operating Instructions BA274P or Page 2, "Overview Documentation" section.

![Fig. 30: Quick Setup menu for the Level measuring mode](image)

<table>
<thead>
<tr>
<th>On-site operation</th>
<th>Digital communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured value display</td>
<td>Measured value display</td>
</tr>
<tr>
<td>On-site display: Switch from the measured value display to GROUP SELECTION with 1.</td>
<td>Select QUICK SETUP menu.</td>
</tr>
<tr>
<td>GROUP SELECTION</td>
<td>MEASURING MODE</td>
</tr>
<tr>
<td>Select MEASURING MODE.</td>
<td>Select "Level" option.</td>
</tr>
<tr>
<td>MEASURING MODE</td>
<td>LEVEL SELECTION</td>
</tr>
<tr>
<td>Select "Level" option.</td>
<td>Select level mode. For an overview see Page 51.</td>
</tr>
<tr>
<td>LEVEL SELECTION</td>
<td>GROUP SELECTION</td>
</tr>
<tr>
<td>Select level mode. For an overview see Page 51.</td>
<td>Select QUICK SETUP menu.</td>
</tr>
</tbody>
</table>

Fig. 30: Quick Setup menu for the Level measuring mode
On-site operation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS. ZERO ADJUST</td>
<td>Due to orientation of the device, there may be a shift in the measured value. You correct the MEASURED VALUE via the POS. ZERO ADJUST parameter with the "Confirm" option, i.e. you assign the value 0.0 to the pressure present.</td>
</tr>
<tr>
<td>POS. INPUT VALUE</td>
<td>Due to orientation of the device, there may be a shift in the measured value. For the POS. INPUT VALUE parameter, specify the desired set point for the MEASURED VALUE.</td>
</tr>
<tr>
<td>EMPTY CALIB.</td>
<td>Enter level for the lower calibration point. For this parameter, enter a level value which is assigned to the pressure present at the device.</td>
</tr>
<tr>
<td>FULL CALIB.</td>
<td>Enter level for the upper calibration point. For this parameter, enter a level value which is assigned to the pressure present at the device.</td>
</tr>
<tr>
<td>DAMPING TIME</td>
<td>Enter damping time (time constant τ). The damping affects the speed at which all subsequent elements, such as the on-site display, measured value and current output react to a change in the pressure.</td>
</tr>
</tbody>
</table>

1) – LEVEL SELECTION "Level Easy Pressure" and CALIBRATION MODE "Wet" – LEVEL SELECTION "Level Standard", LEVEL MODE "Linear" and CALIBRATION MODE "Wet"

Digital communication

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS. ZERO ADJUST</td>
<td>Due to orientation of the device, there may be a shift in the measured value. You correct the MEASURED VALUE via the POS. ZERO ADJUST parameter with the "Confirm" option, i.e. you assign the value 0.0 to the pressure present.</td>
</tr>
<tr>
<td>POS. INPUT VALUE</td>
<td>Due to orientation of the device, there may be a shift in the measured value. For the POS. INPUT VALUE parameter, specify the desired set point for the MEASURED VALUE.</td>
</tr>
<tr>
<td>EMPTY CALIB.</td>
<td>Enter level for the lower calibration point. For this parameter, enter a level value which is assigned to the pressure present at the device.</td>
</tr>
<tr>
<td>FULL CALIB.</td>
<td>Enter level for the upper calibration point. For this parameter, enter a level value which is assigned to the pressure present at the device.</td>
</tr>
<tr>
<td>DAMPING TIME</td>
<td>Enter damping time (time constant τ). The damping affects the speed at which all subsequent elements, such as the on-site display, measured value and current output react to a change in the pressure.</td>
</tr>
</tbody>
</table>

Note!

For on-site operation, see also Page 31, Section 5.2.3 "Function of the operating elements" and Page 35, Section 5.4 "On-site operation".
7 Maintenance

Keep the pressure compensation and GORE-TEX® filter (1) free from contaminations and water.

7.1 Exterior cleaning

Please note the following points when cleaning the device:

- The cleaning agents used should not attack the surface and the seals.
- Mechanical damage to the process isolating diaphragm, e.g. due to pointed objects, must be avoided.
- Observe degree of protection. See therefor nameplate if necessary (Page 6).
8 Trouble-shooting

8.1 Messages

The following table lists all the possible messages that can occur. The device differentiates between the error types "Alarm", "Warning" and "Error". You may specify whether the instrument should react as if for an "Alarm" or "Warning" for "Error" messages. → See "Error type/NA 64" column and Section 8.2 "Response of outputs to errors".

In addition, the "Error type/NA 64" column classifies the messages in accordance with NAMUR Recommendation NA 64:

- Break down: indicated with "B"
- Maintenance need: indicated with "C" (check request)
- Function check: indicated with "I" (in service)

Error message display on the on-site display:

- The measured value display shows the message with the highest priority. → See "Priority" column.
- The ALARM STATUS parameter shows all the messages present in descending order of priority. You can scroll through all the messages present with the S-key or O-key.

Message display via the digital communication:

- The ALARM STATUS parameter shows the message with the highest priority. → See "Priority" column.

Note!

- If the device detects a defect in the on-site display during initialization, special error messages are generated. → For the error messages, see Page 62, Section 8.1.1 "On-site display error messages".
- For support and further information, please contact Endress+Hauser Service.
- → See also Section 8.4, 8.5 and 8.6.

<table>
<thead>
<tr>
<th>Code</th>
<th>Error type/NA 64</th>
<th>Message/description</th>
<th>Cause</th>
<th>Measure</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Alarm B</td>
<td>B>Sensor electronic EEPROM error</td>
<td>Electromagnetic effects are greater than specifications in the technical data. (→ See Section 9.) This message normally only appears briefly.</td>
<td>Wait a few minutes. Restart the device. Perform reset (Code 62). Block off electromagnetic effects or eliminate source of disturbance.</td>
<td>17</td>
</tr>
<tr>
<td>102</td>
<td>Warning C</td>
<td>C>Checksum error in EEPROM: peakhold segment</td>
<td>Main electronics defect. Correct measurement can continue as long as you do not need the peak hold indicator function.</td>
<td>Replace main electronics.</td>
<td>53</td>
</tr>
<tr>
<td>106</td>
<td>Warning C</td>
<td>C>Downloading - please wait</td>
<td>Downloading.</td>
<td>Wait for download to complete.</td>
<td>52</td>
</tr>
<tr>
<td>110</td>
<td>Alarm B</td>
<td>B>Checksum error in EEPROM: configuration segment</td>
<td>The supply voltage is disconnected when writing. Electromagnetic effects are greater than specifications in the technical data. (→ See Section 9.) Main electronics defect.</td>
<td>Reestablish supply voltage. Perform reset (Code 7864) if necessary. Carry out calibration again. Block off electromagnetic effects or eliminate sources of disturbance.</td>
<td>6</td>
</tr>
<tr>
<td>113</td>
<td>Alarm B</td>
<td>B>ROM failure in transmitter electronic</td>
<td>Main electronics defect.</td>
<td>Replace main electronics.</td>
<td>1</td>
</tr>
<tr>
<td>Code</td>
<td>Error type/NA 64</td>
<td>Message/description</td>
<td>Cause</td>
<td>Measure</td>
<td>Priority</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>--------------------</td>
<td>--</td>
<td>--</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 115 | Error factory setting: Warning | B> Sensor overpressure | - Overpressure present.
- Sensor defect. | - Reduce pressure until message disappears.
- Replace sensor. | 29 |
| 116 | Warning | C> Download error, repeat download | - The file is defect.
- During the download, the data are not correctly transmitted to the processor, e.g. because of open cable connections, spikes (ripple) on the supply voltage or electromagnetic effects. | - Use another file.
- Check cable connection PC – transmitter.
- Block off electromagnetic effects or eliminate sources of disturbance.
- Perform reset (Code 7864) and carry out calibration again.
- Repeat download. | 36 |
| 120 | Error factory setting: Warning | B> Sensor low pressure | - Pressure too low.
- Sensor defect. | - Increase pressure until message disappears.
- Replace sensor. | 30 |
| 121 | Alarm B | B>Checksum error in factory segment of EEPROM | - Main electronics defect. | - Replace main electronics. | 5 |
| 122 | Alarm B | B> Sensor not connected | - Cable connection sensor –main electronics disconnected.
- Electromagnetic effects are greater than specifications in the technical data.
(→ See Section 9.)
- Main electronics defect.
- Sensor defect. | - Check cable connection and repair if necessary.
- Block off electromagnetic effects or eliminate source of disturbance.
- Replace main electronics.
- Replace sensor. | 13 |
| 130 | Alarm B | B> EEPROM is defect. | - Main electronics defect. | - Replace main electronics. | 10 |
| 131 | Alarm B | B>Checksum error in EEPROM: min/max segment | - Main electronics defect. | - Replace main electronics. | 9 |
| 132 | Alarm B | B>Checksum error in totalizer EEPROM | - Main electronics defect. | - Replace main electronics. | 7 |
| 133 | Alarm B | B>Checksum error in History EEPROM | - An error occurred when writing.
- Main electronics defect. | - Perform reset (Code 7864) and carry out calibration again.
- Replace electronics. | 8 |
| 602 | Warning C | C>Linearisation curve not monotonic | - The linearisation table is not monotonic increasing or decreasing. | - Add to linearisation table or perform linearisation again. | 57 |
| 613 | Warning I | I>Simulation is active | - Simulation is switched on, i.e. the device is not measuring at present. | - Switch off simulation. | 60 |
| 620 | Error C Factory setting: Warning | C> Current output out of range | The current is outside the permitted range 3.8 to 20.5 mA.
- The pressure applied is outside the set measuring range (but within the sensor range).
- Loose connection at sensor cable | - Check pressure applied, reconfigure measuring range if necessary
(→ See also Operating Instructions BA274P, chapter 4 to 6 or these Operating Instructions, Page 2.)
- Perform reset (Code 7864) and carry out calibration again.
- Wait a short period of time and tighten the connection, or avoid loose connection. | 49 |
| 700 | Warning C | C> Last configuration not stored | - An error occurred when writing or reading configuration data or the power supply was disconnected.
- Main electronics defect. | - Perform reset (Code 7864) and carry out calibration again. | 54 |
<table>
<thead>
<tr>
<th>Code</th>
<th>Error type/NA 64</th>
<th>Message/description</th>
<th>Cause</th>
<th>Measure</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>701 [W701]</td>
<td>Warning C</td>
<td>C> Measuring chain config. exceeds sensor range</td>
<td>– The calibration carried out would result in the sensor nominal operating range being undershot or overshot.</td>
<td>– Carry out calibration again.</td>
<td>50</td>
</tr>
<tr>
<td>702 [W702]</td>
<td>Warning C</td>
<td>C>HistoROM data not consistent.</td>
<td>– Data were not written correctly to the HistoROM, e.g. if the HistoROM was detached during the writing process. – HistoROM does not have any data.</td>
<td>– Repeat upload. – Perform reset (Code 7864) and carry out calibration again. – Copy suitable data to the HistoROM. (→ See also Page 38, Section 5.5.1 "Copying configuration data").</td>
<td>55</td>
</tr>
<tr>
<td>703 [A703]</td>
<td>Alarm B</td>
<td>B> Measurement error</td>
<td>– Fault in the main electronics. – Main electronics defect.</td>
<td>– Briefly disconnect device from the power supply. – Replace main electronics.</td>
<td>22</td>
</tr>
<tr>
<td>704 [A704]</td>
<td>Alarm B</td>
<td>B> Measurement error</td>
<td>– Fault in the main electronics. – Main electronics defect.</td>
<td>– Briefly disconnect device from the power supply. – Replace main electronics.</td>
<td>12</td>
</tr>
<tr>
<td>705 [A705]</td>
<td>Alarm B</td>
<td>B> Measurement error</td>
<td>– Fault in the main electronics. – Main electronics defect.</td>
<td>– Briefly disconnect device from the power supply. – Replace main electronics.</td>
<td>21</td>
</tr>
<tr>
<td>706 [W706]</td>
<td>Warning C</td>
<td>C> Configuration in HistoROM and device not identical</td>
<td>– Configuration (parameters) in the HistoROM and in the device is not identical.</td>
<td>– Copy data from the device to the HistoROM. (→ See also Page 38, Section 5.5.1 "Copying configuration data"). – Copy data from the HistoROM to the device. (→ See also Page 38, Section 5.5.1 "Copying configuration data"). The message remains if the HistoROM and the device have different software versions. The message goes out if you copy the data from the device to the HistoROM. – Device reset codes such as 7864 do not have any effect on the HistoROM. That means that if you do a reset, the configurations in the HistoROM and in the device may not be the same.</td>
<td>59</td>
</tr>
<tr>
<td>707 [A707]</td>
<td>Alarm B</td>
<td>B> X-VAL. of lin. table out of edit limits.</td>
<td>– At least one X-VALUE in the linearisation table is either below the value for HYDR. PRESS MIN. or MIN. LEVEL, or above the value for HYDR. PRESS. MAX. or LEVEL MAX.</td>
<td>– Carry out calibration again. (→ See also Operating Instructions BA274P, chapter 5 or these Operating Instructions, Page 2.)</td>
<td>38</td>
</tr>
<tr>
<td>710 [W710]</td>
<td>Warning C</td>
<td>B> Set span too small. Not allowed.</td>
<td>– Values for calibration (e.g. lower range value and upper range value) are too close together. – The sensor was replaced and the customer-specific configuration does not suit the sensor. – Unsuitable download carried out.</td>
<td>– Adjust calibration to suit sensor. – Adjust calibration to suit sensor. – Replace sensor with a suitable sensor. – Check configuration and perform download again.</td>
<td>51</td>
</tr>
<tr>
<td>Code</td>
<td>Error type/NA 64</td>
<td>Message/Description</td>
<td>Cause</td>
<td>Measure</td>
<td>Priority</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
<td>----------</td>
</tr>
</tbody>
</table>
| A711 | Alarm B | B>LRV or URV out of edit limits | – Lower range value and/or upper range value undershoot or overshoot the sensor range limits.
– The sensor was replaced and the customer-specific configuration does not suit the sensor.
– Unsuitable download carried out. | – Reconfigure lower range value and/or upper range value to suit the sensor. Pay attention to position factor.
– Reconfigure lower range value and/or upper range value to suit the sensor. Pay attention to position factor.
– Replace sensor with a suitable sensor.
– Check configuration and perform download again. | 37 |
| A713 | Alarm B | B>100% POINT level out of edit limits| – The sensor was replaced. | – Carry out calibration again. | 39 |
| E715 | Error C | Sensor over temperature | – The temperature measured in the sensor is greater than the upper nominal temperature of the sensor.
(→ See also Operating Instructions BA274P, parameter description Tmax SENSOR or these Operating Instructions, Page 2.)
– Unsuitable download carried out. | – Reduce process temperature/ambient temperature.
– Check configuration and perform download again. | 32 |
– Reduce pressure. | 24 |
| E717 | Error C | Transmitter over temperature | – The temperature measured in the electronics is greater than the upper nominal temperature of the electronics (+88 °C).
– Unsuitable download carried out. | – Reduce ambient temperature. | 34 |
| E718 | Error C | Transmitter under temperature | – The temperature measured in the electronics is smaller than the lower nominal temperature of the electronics (−43 °C).
– Unsuitable download carried out. | – Increase ambient temperature.
– Insulate device if necessary. | 35 |
| A719 | Alarm B | Y-VAL of lin. table out of edit limits| – At least on Y-VALUE in the linearisation table is below the MIN. TANK CONTENT or above the MAX. TANK CONTENT. | – Carry out calibration again.
(→ See also Operating Instructions BA274P, chapter 5 or these Operating Instructions, Page 2.) | 40 |
| E720 | Error C | Sensor under temperature | – The temperature measured in the sensor is smaller than the lower nominal temperature of the sensor.
(→ See also Operating Instructions BA274P, parameter description Tmin SENSOR or Operating Instructions, Page 2.)
– Unsuitable download carried out. | – Increase process temperature/ambient temperature.
– Check configuration and perform download again.
– Wait a short period of time and tighten the connection, or avoid loose connection. | 33 |
<p>| A721 | Alarm B | ZERO POSITION level out of edit limits| – LEVEL MIN or LEVEL MAX has been changed. | – Perform reset (Code 2710) and carry out calibration again. | 41 |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Error type/ NA 64</th>
<th>Message/description</th>
<th>Cause</th>
<th>Measure</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>722 [A722]</td>
<td>Alarm B</td>
<td>B>EMPTY CALIB. or FULL CALIB. out of edit limits</td>
<td>– LEVEL MIN or LEVEL MAX has been changed.</td>
<td>– Perform reset (Code 2710) and carry out calibration again.</td>
<td>42</td>
</tr>
<tr>
<td>723 [A723]</td>
<td>Alarm B</td>
<td>B>MAX. FLOW out of edit limits</td>
<td>– FLOW-MEAS. TYPE has been changed.</td>
<td>– Carry out calibration again.</td>
<td>43</td>
</tr>
<tr>
<td>725 [A725]</td>
<td>Alarm B</td>
<td>B>sensor connection error, cycle disturbance</td>
<td>– Electromagnetic effects are greater than specifications in the technical data. (→ See Section 9.)</td>
<td>– Block off electromagnetic effects or eliminate source of disturbance.</td>
<td>25</td>
</tr>
<tr>
<td>726 (E726)</td>
<td>Error C</td>
<td>Factory setting: Warning</td>
<td>C>sensor temperature error - overrange</td>
<td>– Block off electromagnetic effects or eliminate source of disturbance.</td>
<td>31</td>
</tr>
<tr>
<td>727 (E727)</td>
<td>Error C</td>
<td>Factory setting: Warning</td>
<td>C>sensor pressure error - overrange</td>
<td>– Block off electromagnetic effects or eliminate source of disturbance.</td>
<td>28</td>
</tr>
<tr>
<td>728 (A728)</td>
<td>Alarm B</td>
<td>B>RAM error</td>
<td>– Fault in the main electronics.</td>
<td>– Briefly disconnect device from the power supply.</td>
<td>2</td>
</tr>
<tr>
<td>729 (A729)</td>
<td>Alarm B</td>
<td>B>RAM error</td>
<td>– Fault in the main electronics.</td>
<td>– Briefly disconnect device from the power supply.</td>
<td>3</td>
</tr>
<tr>
<td>730 (E730)</td>
<td>Error C</td>
<td>Factory setting: Warning</td>
<td>C>LRV user limits exceeded</td>
<td>– Check system/pressure measured value.</td>
<td>46</td>
</tr>
<tr>
<td>731 (E731)</td>
<td>Error C</td>
<td>Factory setting: Warning</td>
<td>C>URV user limits exceeded</td>
<td>– Check system/pressure measured value.</td>
<td>45</td>
</tr>
</tbody>
</table>
Trouble-shooting

Cerabar S PMC71, PMP71, PMP72, PMP75 with 4...20 mA HART

<table>
<thead>
<tr>
<th>Code</th>
<th>Error type/NA 64</th>
<th>Message/description</th>
<th>Cause</th>
<th>Measure</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>732</td>
<td>Error C Factory setting: Warning</td>
<td>C>LRV Temp. User limits exceeded</td>
<td>Temperature measured value has undershot the value specified for the Tmin ALARM WINDOW parameter.</td>
<td>Check system/temperature measured value. Change value for Tmin ALARM WINDOW if necessary. (→ See also Operating Instructions BA274P, parameter description Tmin ALARM WINDOW or these Operating Instructions, Page 2.)</td>
<td>48</td>
</tr>
<tr>
<td>733</td>
<td>Error C Factory setting: Warning</td>
<td>C>URV Temp. User limits exceeded</td>
<td>Temperature measured value has overshot the value specified for the Tmax ALARM WINDOW parameter.</td>
<td>Check system/temperature measured value. Change value for Tmax ALARM WINDOW if necessary. (→ See also Operating Instructions BA274P, parameter description Tmax ALARM WINDOW or these Operating Instructions, Page 2.)</td>
<td>47</td>
</tr>
<tr>
<td>736</td>
<td>Alarm B B>RAM error</td>
<td></td>
<td>Fault in the main electronics. Main electronics defect.</td>
<td>Briefly disconnect device from the power supply. Replace main electronics.</td>
<td>4</td>
</tr>
<tr>
<td>737</td>
<td>Alarm B B>Measurement error</td>
<td></td>
<td>Fault in the main electronics. Main electronics defect.</td>
<td>Briefly disconnect device from the power supply. Replace main electronics.</td>
<td>20</td>
</tr>
<tr>
<td>738</td>
<td>Alarm B B>Measurement error</td>
<td></td>
<td>Fault in the main electronics. Main electronics defect.</td>
<td>Briefly disconnect device from the power supply. Replace main electronics.</td>
<td>19</td>
</tr>
<tr>
<td>739</td>
<td>Alarm B B>Measurement error</td>
<td></td>
<td>Fault in the main electronics. Main electronics defect.</td>
<td>Briefly disconnect device from the power supply. Replace main electronics.</td>
<td>23</td>
</tr>
<tr>
<td>740</td>
<td>Error C Factory setting: Warning</td>
<td>C>Calculation overflow, bad configuration</td>
<td>Level measuring mode: the measured pressure has undershot the value for HYDR. PRESS. MIN. or overshot the value for HYDR. PRESS MAX. Level measuring mode: The measured level did not reach the LEVEL MIN value or exceeded the LEVEL MAX value. Flow measuring mode: the measured pressure has undershot the value for MAX. PRESS FLOW.</td>
<td>Check configuration and carry out calibration again if necessary. Select a device with a suitable measuring range. Check configuration and carry out calibration again if necessary. (→ See also Operating Instructions BA274P, parameter description LEVEL MIN. these Operating Instructions, Page 2.) Check configuration and carry out calibration again if necessary. Select a device with a suitable measuring range.</td>
<td>27</td>
</tr>
<tr>
<td>741</td>
<td>Alarm B B>TANK HEIGHT out of edit limits</td>
<td></td>
<td>LEVEL MIN or LEVEL MAX has been changed.</td>
<td>Perform reset (Code 2710) and carry out calibration again.</td>
<td>44</td>
</tr>
<tr>
<td>742</td>
<td>Alarm B B>Sensor connection error (upload)</td>
<td></td>
<td>Electromagnetic effects are greater than specifications in the technical data. (→ See Section 9.) This message normally only appears briefly. Cable connection sensor –main electronics disconnected. Sensor defect.</td>
<td>Wait a few minutes. Perform reset (Code 7864) and carry out calibration again. Check cable connection and repair if necessary. Replace sensor.</td>
<td>18</td>
</tr>
<tr>
<td>743</td>
<td>Alarm B B>Electronic PCB error during initialisation</td>
<td></td>
<td>This message normally only appears briefly. Main electronics defect.</td>
<td>Wait a few minutes. Restart the device. Perform reset (Code 62). Replace main electronics.</td>
<td>14</td>
</tr>
<tr>
<td>Code</td>
<td>Error type/NA 64</td>
<td>Message/description</td>
<td>Cause</td>
<td>Measure</td>
<td>Priority</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 744 [A744] | Alarm B | B>Main electronic PCB error | – Electromagnetic effects are greater than specifications in the technical data.
(→ See Section 9.)
– Main electronics defect. | – Restart the device. Perform reset (Code 62).
– Block off electromagnetic effects or eliminate source of disturbance.
– Replace main electronics. | 11 |
| 745 [W745] | Warning C | C>Sensor data unknown | – Sensor does not suit the device (electronic sensor nameplate). Device continues measuring. | – Replace sensor with a suitable sensor. | 56 |
| 746 [W746] |Warning C | C>Sensor connection error - initialising | – Electromagnetic effects are greater than specifications in the technical data.
(→ See Section 9.) This message normally only appears briefly.
– Overpressure or low pressure present. | – Wait a few minutes.
– Restart the device. Perform reset (Code 7864).
– Block off electromagnetic effects or eliminate source of disturbance.
– Reduce or increase pressure. | 26 |
| 747 [A747] | Alarm B | B>Sensor software not compatible to electronics | – Sensor does not suit the device (electronic sensor nameplate). | – Replace sensor with a suitable sensor. | 16 |
| 748 [A748] | Alarm B | B>Memory failure in signal processor | – Electromagnetic effects are greater than specifications in the technical data.
(→See Section 9.)
– Main electronics defect. | – Block off electromagnetic effects or eliminate source of disturbance.
– Replace main electronics. | 15 |
8.1.1 On-site display error messages

If the device detects a defect in the on-site display during initialization, the following error messages can be displayed:

<table>
<thead>
<tr>
<th>Message</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization, VU Electr. Defect A110</td>
<td>Exchange on-site display.</td>
</tr>
<tr>
<td>Initialization, VU Electr. Defect A114</td>
<td></td>
</tr>
<tr>
<td>Initialization, VU Electr. Defect A281</td>
<td></td>
</tr>
<tr>
<td>Initialization, VU Checksum Err. A110</td>
<td></td>
</tr>
<tr>
<td>Initialization, VU Checksum Err. A112</td>
<td></td>
</tr>
<tr>
<td>Initialization, VU Checksum Err. A171</td>
<td></td>
</tr>
</tbody>
</table>

8.2 Response of outputs to errors

The device differentiates between the error types Alarm, Warning and Error.

→ See the following table and Page 55, Section 8.1 "Messages".

<table>
<thead>
<tr>
<th>Output</th>
<th>A (Alarm)</th>
<th>W (Warning)</th>
<th>E (Error: Alarm/Warning)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current output</td>
<td>Assumes the value specified via the OUTPUT FAIL MODE¹, ALT. CURR. OUTPUT² and SET MAX. ALARM³ parameter. → See also the following section "Configuring current output for an alarm".</td>
<td>Device continues measuring.</td>
<td>For this error, you can enter whether the device should react as in the event of an alarm or as in the event of a warning. See corresponding "Alarm" or "Warning" column. (→ See also Operating Instructions BA274F, parameter description SELECT ALARM TYPE or these Operating Instructions, Page 2.)</td>
</tr>
<tr>
<td>Bargraph (on-site display)</td>
<td>The bargraph adopts the value defined by the OUTPUT FAIL MODE¹ parameter.</td>
<td>The bargraph adopts the value which corresponds to the current value.</td>
<td>→ See this table, "Alarm" or "Warning" column, depending on selection.</td>
</tr>
<tr>
<td>On-site display</td>
<td>The measured value and message are displayed alternately</td>
<td>The measured value and message are displayed alternately</td>
<td>For this error, you can enter whether the device should react as in the event of an alarm or as in the event of a warning. See corresponding "Alarm" or "Warning" column.</td>
</tr>
<tr>
<td>Message display</td>
<td>Measured value display: (\mathbb{1})-symbol is permanently displayed.</td>
<td>Measured value display: (\mathbb{1})-symbol flashes.</td>
<td></td>
</tr>
<tr>
<td>3-digit number such as A122 and description</td>
<td>Message display: 3-digit number such as W613 and description</td>
<td>Message display: 3-digit number such as E731 and description</td>
<td></td>
</tr>
<tr>
<td>Remote operation (digital communication)</td>
<td>In the case of an alarm, the ALARM STATUS² parameter displays a 3-digit number such as 122 for "Sensor not connected".</td>
<td>In the case of a warning, the ALARM STATUS² parameter displays a 3-digit number such as 613 for "Simulation is active".</td>
<td>In the case of an error, the ALARM STATUS² parameter displays a 3-digit number such as 731 for "URV user limits exceeded".</td>
</tr>
</tbody>
</table>

1) Menu path: [GROUP SELECTION →] OPERATING MENU → OUTPUT
2) Menu path: [GROUP SELECTION →] OPERATING MENU → MESSAGES
8.2.1 Configuring current output for an alarm

You can configure the current output for the event of an alarm by means of the OUTPUT FAIL MODE, ALT. CURR. OUTPUT and SET MAX. ALARM parameters. These parameters are displayed in the OUTPUT group (menu path: GROUP SELECTION → OPERATING MENU → OUTPUT).

In the event of an alarm, the current and the bargraph assume the value entered with the OUTPUT FAIL MODE parameter.

![Diagram of current output in the event of an alarm](image)

Fig. 31: Current output in the event of an alarm

*Options:
1. Max. alarm (110%): can be set between 21 to 23 mA via the SET MAX. ALARM parameter
2. Hold meas. value: last measured value is kept
3. Min. alarm (–10%): 3.6 mA

Factory setting:
- OUTPUT FAIL MODE: Max. Alarm (110%)
- SET MAX. ALARM: 22 mA

Use the ALT. CURR. OUTPUT parameter to set the current output value for the error messages E 120 "Sensor low pressure" and E 115 "Sensor overpressure". You have the following options:
- Normal: the current output assumes the value set via the OUTPUT FAIL MODE and SET MAX. ALARM parameters.
- NAMUR
 - Lower sensor limit undershot (E 120 "Sensor low pressure"): 3.6 mA
 - Upper sensor limit overshot (E 115 "Sensor overpressure") overshot: current output assumes the value set via the SET MAX ALARM parameter.

Factory setting:
- ALT. CURR. OUTPUT: normal
8.3 Confirming messages

Depending on the settings for the ALARM DISPL. TIME and ACK. ALARM MODE parameters, the following measures should be taken to clear a message:

<table>
<thead>
<tr>
<th>Settings 1</th>
<th>Measures</th>
</tr>
</thead>
</table>
| ALARM DISPL. TIME = 0 s
ACK. ALARM MODE = off | Rectify cause of the message (see also Section 8.1). |
| ALARM DISPL. TIME > 0 s
ACK. ALARM MODE = off | Rectify cause of the message (see also Section 8.1).
Wait for the alarm display time to elapse. |
| ALARM DISPL. TIME = 0 s
ACK. ALARM MODE = on | Rectify cause of the message (see also Section 8.1).
Confirm message using ACK. ALARM parameter. |
| ALARM DISPL. TIME > 0 s
ACK. ALARM MODE = on | Rectify cause of the message (see also Section 8.1).
Confirm message using ACK. ALARM parameter.
Wait for the alarm display time to elapse. If a message appears and the alarm display time elapses before the message has been acknowledged, the message will be cleared once it has been acknowledged. |

1) Menu path for ALARM DISPL. TIME and ACK. ALARM MODE: (GROUP SELECTION →) OPERATING MENU → DIAGNOSTICS → MESSAGES

If the on-site display displays a message, you can suppress it with the F_5-key.
If there are several messages, the on-site display shows the message which has the highest priority (see also Section 8.1). Once you have suppressed this message using the F_5-key, the message with the next highest priority is displayed. You can use the F_5-key to suppress each message, one after the other.
The ALARM STATUS parameter continues to display all the messages present.
8.4 Repair

The Endress+Hauser repairs concept provides for measuring devices to have a modular design and also the customer may carry out repairs (see Chap. 8.6 "Spare Parts" on Page 66).

Note!
- For certified devices, please consult Chapter "Repair of Ex-certified devices".
- For more information on service and spare parts contact the Endress+Hauser Service. See www.endress.com/worldwide.

8.5 Repair of Ex-certified devices

Warning!
When repairing Ex-certified devices, please note the following:
- Only specialist personnel or Endress+Hauser may undertake repairs of certified devices.
- Relevant standards, national hazardous area regulations and Safety Instructions and Certificates must be observed.
- Only genuine Endress+Hauser spare parts may be used.
- When ordering spare parts, please check the device designation on the nameplate. Identical parts may only be used as replacements.
- Electronic inserts or sensors already in use in a standard instrument may not be used as spare parts for a certified device.
- Carry out repairs according to the instructions. After repairs, the device must fulfil the requirements of the specified individual tests.
- A certified device may only be converted into another certified variant by Endress+Hauser.
- All repairs and modifications must be documented.
8.6 Spare Parts

An overview of the spare parts for your device is available in the internet at www.endress.com. To obtain information on the spare parts, proceed as follows:

1. Go to "www.endress.com" and select your country.
2. Click "Instruments".
3. Enter the product name into the "product name" field.

 Endress+Hauser product search

 Via product name
 Enter the product name

 [Start search]

4. Select the device.
5. Click the "Accessories/Spare parts" tab.

<table>
<thead>
<tr>
<th>General Information</th>
<th>Technical Information</th>
<th>Documents/Software</th>
<th>Service</th>
<th>Accessories/Spare parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories</td>
<td>All Spare parts</td>
<td>Housing/housing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>accessories</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sealant</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cover</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terminal module</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HIF module</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electronic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Antenna module</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Advice
 Here you'll find a list of all available accessories and spare parts. To only view accessories and spare parts specific to your product(s), please contact us and ask about our Life Cycle Management Services.

6. Select the required spare parts (You may also use the overview drawing on the right side of the screen.)

When ordering spare parts, always quote the serial number indicated on the nameplate. As far as necessary, the spare parts also include replacement instructions.
8.7 Returning the device

Before you send in a device for repairs or checking:
- Remove all signs of fluids, paying particular attention to seal grooves and gaps in which fluid can become lodged. This is especially important if the fluid is hazardous to health. Please refer also to the "Declaration of Hazardous Material and De-Contamination".

Please enclose the following when returning the device:
- Please fill out completely and sign the "Declaration of Hazardous Material and De-Contamination".
- It is only then possible for Endress+Hauser to inspect or repair the returned device.
- The chemical and physical properties of the fluid.
- A description of the application.
- A description of the error which occurred.
- Special instructions on handling, if necessary, e.g. safety data sheet as per EN 91/155/EEC.

8.8 Disposal

When disposing, separate and recycle the device components based on the materials.
8.9 Software history

<table>
<thead>
<tr>
<th>Date</th>
<th>Software version</th>
<th>Changes software</th>
<th>CD-ROM</th>
<th>Operating Instructions</th>
<th>Description of Instrument Functions</th>
</tr>
</thead>
</table>
| 11.2003| 01.00.zz | Original software. Compatible with:
- ToF Tool Field Tool Package, version 1.04.00 or higher
- Commuwin II version 2.08.-1, Update G or higher
- HART Communicator 375 with Device Rev.: 10, DD Rev.: 1

| | | — BA271P/00/EN/10.03 52020517 | — | | — |
| 06.2004| 02.00.zz | Number of parameters in the Quick Setup menus has been reduced.
- On-site operation: LANGUAGE and MEASURING MODE parameters have been moved to the top level.
- New SAFETY CONFIRM group implemented for SIL. → See also SD190F Safety Manual Cerabar S.
- MEASURING MODE "Level", LEVEL MODE "Linear": AREA UNIT and TANK SECTION parameters have been replaced with the TANK VOLUME and TANK HEIGHT parameters.
- Function of the UNIT FLOW parameter has been split across four parameters.
- Function of the SIMULATED VALUE parameter has been split across six parameters.
- SENSOR TRIM and CURRENT TRIM groups have been removed.
- Sensor adapt reset, code 1209 and sensor calibration reset, code 2509 have been removed.
- Quick Setup menus are available via ToF Tool.
Compatible with:
- ToF Tool Field Tool Package version 2.00.00 or higher
- Commuwin II version 2.08.-1, Update > G
- HART Communicator 375 with Device Rev.: 20, DD Rev.: 1

| | | — BA271P/00/EN/05.04 52022795 | — | | BA274P/00/EN/05.04 52021469 |
| 06.2005| 02.01.zz | Operating keys also integrated on the optional on-site display.
- Chinese and Japanese are available as the menu language on request.
Compatible with:
- ToF Tool Field Tool Package version 3.00.00 or higher
- FieldCare version 2.01.00, DTM Library version 2.06.00,
 DTM: Deltabar S/MD7x/V02.00 V 1.4.98.74*
- HART Communicator 375 with Device Rev.: 20, DD Rev.: 1*

<p>| | | — BA271P/00/EN/06.05 71000115 | — | | BA274P/00/EN/05.04 52021469 |
| | | — BA271P/00/EN/11.05 71009589 | | | BA274P/00/EN/05.04 52021469 |</p>
<table>
<thead>
<tr>
<th>Date</th>
<th>Software version</th>
<th>Changes software</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.2006</td>
<td>02.10.zz</td>
<td>– New "Level Easy Pressure" and "Level Easy Height" level modes implemented. New LEVEL SELECTION parameter implemented.</td>
<td>CD-ROM: 71033931/00/A2/10.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– OPERATION group with DOWNLOAD SELECT parameter extended.</td>
<td>BA271P/00/EN/10.07/71043296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– SAFETY CONFIRM group extended for the "Level" operating mode in the "Level Easy Pressure" level selection.</td>
<td>BA274P/00/EN/10.07/71043296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See also SD190P Safety Manual Cerabar S.</td>
<td>CD-ROM: 71033931/00/A2/12.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Factory setting for the "Error" messages redefined.</td>
<td>BA271P/00/EN/12.07/71043296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Chinese and Japanese included as menu languages by default.</td>
<td>BA274P/00/EN/10.07/71061022</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compatible with:</td>
<td>CD-ROM: 71071801/00/A2/05.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– ToF Tool Field Tool Package version 4.0</td>
<td>BA271P/00/EN/05.08/71071770</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– FieldCare version 2.02.00</td>
<td>BA274P/00/EN/05.08/71071855</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– HART Communicator 375 with Device Rev.: 21, DD Rev.: 1</td>
<td>CD-ROM: 71077559/00/A2/08.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BA271P/00/EN/08.08/71077544</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CD-ROM: 71095448/00/A2/06.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BA271P/00/EN/06.09/71095434</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BA274P/00/EN/06.09/71095452</td>
</tr>
</tbody>
</table>
9 Technical data

For technical data, please refer to the Technical Information Cerabar S TI383P (PMC71, PMP71, PMP75); TI438P (PMP72). → See also Page 2, Section "Overview documentation".

10 Appendix

10.1 Operating menu for on-site display, FieldCare and HART handheld terminal

Note!

- The entire menu is depicted on the following pages.
- The menu has a different structure depending on the measuring mode selected. This means that some function groups are only displayed for one measuring mode, e.g. "LINEARISATION" function group for the Level measuring mode.
- In addition, there are also parameters that are only displayed if other parameters are appropriately configured. For example the Customer Unit P parameter is only displayed if the "User unit" option was selected for the PRESS. ENG. UNIT parameter. These parameters are indicated with a "**".
- For a description of the parameters, please refer to Operating Instructions BA274P "Description of device functions". The exact dependency of individual parameters on one another is explained here. See also Page 2, Section "Overview documentation".
1) Display via on-site display only
2) Display via FieldCare and HART Handheld terminal only

* There are parameters that are only displayed if other parameters are appropriately configured.
 For example the CUSTOMER UNIT parameter is only displayed if the "User unit" option was selected for the PRESS. ENG. UNIT parameter.
 These parameters are indicated with a **.
2) Display via FieldCare and
HART Handheld terminal only

* There are parameters that are only displayed if other parameters are
appropriately configured.

For example the CUSTOMER UNIT P parameter is only displayed
if the "User unit" option was selected for the PRESS. ENG. UNIT parameter.
These parameters are indicated with a "*".

Continuation,
see the following page
Appendix

Cerabar S PMC71, PMP71, PMP72, PMP75 with 4...20 mA HART

LEVEL SELECTION = Level Standard

LEVEL MODE

CALIBRATION MODE

Height

Volume

Mass

%

CALIBRATION MODE

EMPTY CALIB.

FULL CALIB.

ADJUSTED DENSITY

TANK VOLUME

HEIGHT UNIT

CUSTOMER UNIT H

CUST. UNIT FACT. H

DAMPING VALUE

LEVEL MIN

LEVEL MAX

CALIBRATION MODE

DAMPING VALUE

There are parameters that are only displayed if other parameters are appropriately configured.

For example the CUST. UNIT FACT. H parameter is only displayed if the "User unit" option was selected for the HEIGHT UNIT parameter. These parameters are indicated with a **.**
* There are parameters that are only displayed if other parameters are appropriately configured. These parameters are indicated with a **.*
2) Display via HART handheld terminal only
3) Level measuring mode only
4) only LEVEL SELECTION = Level Easy Pressure

** There are parameters that are only displayed if other parameters are appropriately configured. These parameters are indicated with a "***".

*** See Safety Manual SD190P.
2) Display via FieldCare and
HART handheld terminal only

+ There are parameters that are only displayed if other parameters are
appropriately configured.
These parameters are indicated with a "*".

Endress+Hauser

77

Cerabar S PMC71, PMP71, PMP72, PMP75 with 4...20 mA HART

Appendix
There are parameters that are only displayed if other parameters are appropriately configured. These parameters are indicated with a **.*.
10.2 Patents

This product may be protected by at least one of the following patents. Further patents are pending.

- US 5,836,063 A1 ≅ EP 0 797 084 B1
- US 5,877,424 A1 ≅ EP 0 780 674 B1
- DE 203 05 869 U1
- US 6,363,790 A1 ≅ EP 0 995 979 B1
- US 5,670,063 A1 ≅ EP 0 516 579 B1
- US 5,539,611 A1
- US 5,050,034 A1 ≅ EP 0 445 382 B1
- US 5,005,421 A1 ≅ EP 0 351 701 B1
- EP 0 414 871 B1
- EP 1 061 351 B1
- US 5,334,344 A1 ≅ EP 0 490 807 B1
- US 6,703,943 A1
Index

Numerics
- 4...20 mA test signal ... 22

A
- Alarm messages .. 55

C
- Cable specification ... 22
- Commubox FXA191, connection 25
- Commubox FXA195, connection 25
- Connecting Commubox FXA291 26
- Connecting ToF Adapter FXA291 26

D
- Diaphragm seals, installation instructions 13
- Diaphragm seals, vacuum application 14
- Display .. 28

E
- Electrical connection .. 20
- Error messages ... 55
- Ersatzteile ... 66

F
- Factory setting .. 43
- FieldCare ... 41

H
- HART handheld terminal, connection 24
- Hazardous areas .. 4
- Heat insulation ... 16
- HistoROM/M-DAT .. 37

I
- Incoming acceptance ... 10
- Installation instructions for devices with diaphragm seals . 13
- Installation instructions for devices without diaphragm seals ... 11

L
- Language, selection .. 45
- Level measurement ... 50–51
- Level measurement, Quick Setup menu 52
- Load .. 23
- Locking operation ... 42

M
- Measuring arrangement for level measurement 13
- Measuring arrangement for pressure measurement 11–12
- Measuring mode, selection 45

N
- Nameplate .. 6

O
- On-site display ... 28
- Operating elements, function, with on-site display 31
- Operating elements, position 29

P
- Pipe mounting .. 16
- Position adjustment ... 47
- Potential matching .. 23, 26
- Pressure measurement .. 48
- Pressure measurement, Quick Setup menu 48

Q
- Quick Setup menu level ... 52
- Quick Setup menu pressure 48

R
- Repair ... 65
- Repair of Ex-certified devices 65
- Reset ... 43
- Rotating the housing ... 19

S
- Scope of delivery ... 9
- Screening .. 23
- Separate housing, assemble and mount 17
- Service Interface FXA291 26
- SIL3 .. 4
- Software history .. 68
- Storage ... 10
- Supply voltage ... 22

T
- Temperature isolator, installation instructions 14
- Trouble-shooting ... 55

U
- Unlocking operation .. 42

W
- Wall mounting .. 16
- Warnings .. 55
- Welding recommendation 18
Declaration of Hazardous Material and De-Contamination

Erklärung zur Kontamination und Reinigung

RA No. __________

Because of legal regulations and for the safety of our employees and operating equipment, we need the "Declaration of Hazardous Material and De-Contamination", with your signature, before your order can be handled. Please make absolutely sure to attach it to the outside of the packaging.

Aufgrund der gesetzlichen Vorschriften und zum Schutz unserer Mitarbeiter und Betriebseinrichtungen, benötigen wir die unterschriebene "Erklärung zur Kontamination und Reinigung", bevor Ihr Auftrag bearbeitet werden kann. Bringen Sie diese unbedingt außen an der Verpackung an.

Type of instrument / sensor

<table>
<thead>
<tr>
<th>Geräte-/Sensortyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>____________________________</td>
</tr>
</tbody>
</table>

Serial number

<table>
<thead>
<tr>
<th>Seriennummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>__________</td>
</tr>
</tbody>
</table>

Used as SIL device in a Safety Instrumented System / Einsatz als SIL Gerät in Schutzeinrichtungen

Process data / **Prozessdaten**

<table>
<thead>
<tr>
<th>Temperature / Temperatur [°F] [°C]</th>
<th>Pressure / Druck [psi] [Pa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>__________</td>
<td>__________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conductivity / Leitfähigkeit [μS/cm]</th>
<th>Viscosity / Viskosität [cp] [mm²/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>__________</td>
<td>__________</td>
</tr>
</tbody>
</table>

Medium and warnings / Warnhinweise zum Medium

<table>
<thead>
<tr>
<th>Medium /Konzentration</th>
<th>Identification CAS No.</th>
<th>flammable</th>
<th>toxic</th>
<th>corrosive</th>
<th>irritant</th>
<th>harmful</th>
<th>other *</th>
<th>harmless</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium im Prozess</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium for process cleaning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium zur Prozessreinigung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Returned part cleaned with Medium zur Endreinigung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* explosive; oxidising; dangerous for the environment; biological risk; radioactive
* explosiv; brandfördernd; umweltgefährlich; biogefährlich; radioaktiv

Please tick should one of the above be applicable, include safety data sheet and, if necessary, special handling instructions.

Zutreffendes ankreuzen; trifft einer der Warnhinweise zu, Sicherheitsdatenblatt und ggf. spezielle Handhabungsvorschriften beiliegen.

Description of failure / Fehlerbeschreibung

__
__
__

Company data / Angaben zum Absender

<table>
<thead>
<tr>
<th>Company / Firma</th>
<th>Phone number of contact person / Telefon-Nr. Ansprechpartner:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address / Adresse</th>
<th>Fax / E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Your order No. / Ihre Auftragsnr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>__________</td>
</tr>
</tbody>
</table>

"We hereby certify that this declaration is filled out truthfully and completely to the best of our knowledge. We further certify that the returned parts have been carefully cleaned. To the best of our knowledge they are free of any residues in dangerous quantities."

"Wir bestätigen, die vorliegende Erklärung nach unserem besten Wissen wahrheitsgetreu und vollständig ausgefüllt zu haben. Wir bestätigen weiter, dass die zurückgesandten Teile sorgfältig gereinigt wurden und nach unserem besten Wissen frei von Rückständen in gefahrbringender Menge sind."

(place, date / Ort, Datum) Name, dept./Abt. (please print / bitte Druckschrift) Signature / Unterschrift