Liquiline M CM42 Transmitter via PROFIBUS PA to the PlantPAx Process Automation System

Using a 1788-EN2PAR Linking Device
Preferred Integration

Rockwell Automation and Endress+Hauser have strengthened their strategic alliance to provide complete process automation solutions that use best-in-class instrumentation, software, and control systems.

There are hundreds of different components in a typical plant: controllers, remote I/O, electrical drives, safety equipment, and sensors. Each must be integrated, configured, and optimized during start-up and operation. Recognizing the challenges this creates, Rockwell Automation and Endress+Hauser are focused on providing you with scalable, off-the-shelf solutions.

To supply robust system solutions, Rockwell Automation pre-tests many third-party manufactured HART, FOUNDATION Fieldbus, and PROFIBUS PA field devices in the system test laboratory for compatibility with the Rockwell Automation PlantPAx process automation system. Each field device is connected to the PlantPAx system and is subjected to interoperability testing procedures similar to operating procedures in your plant. The results of each field test are recorded in a test report for integration planning purposes.

For Endress+Hauser field devices, an additional step provides an “Integration Document” and “Interoperability Statement” for each tested instrument. The Integration Document provides information on installation, configuration, startup, and operation of the integrated system. The Interoperability Statement is assurance that the Endress+Hauser field device meets PlantPAx system interoperability performance measures, as jointly established by Rockwell Automation and Endress+Hauser and verified through completion of common test procedures performed by either company. Both the Integration Document and Interoperability Statement help reduce risk with ease of integration.
The overall mission of the alliance is to provide you with proven solutions that combine field instrumentation with fieldbus networks, such as HART, FOUNDATION Fieldbus, and PROFIBUS PA networks, with asset management capabilities and Rockwell Automation’s system capabilities to provide a total engineered solution.

Through preferred integration and support of increasing requirements for plant-wide control, the alliance offers the following benefits:

- Reduced integration costs throughout engineering, commissioning, and start-up
- Optimized plant availability and output
- Ensured product quality and consistency
- Optimized traceability to meet regulatory demands
- Predictive maintenance through intelligent instruments

For new construction, process improvements at an existing plant, or operating cost reductions, the alliance delivers the following:

- Preferred integration reduces risk, reduces integration costs, and protects investment with pre-engineered interoperability. Both companies believe open systems and standardized interfaces bring maximum benefits.
- Advanced diagnostics with plant-wide control provides better visibility of plant health and easier access to instrument diagnostics, which ultimately leads to faster troubleshooting and improves decision-making.
- Collaborative lifecycle management leads to improvements in design, engineering, and startup and support of plants. This collaboration increases productivity, manages information about instrumentation assets, optimizes plant assets, and results in a complete lifecycle management solution.
Application Overview

This document provides a step-by-step approach to integrating an Endress+Hauser Liquiline via PROFIBUS PA into a Rockwell Automation PlantPAx process automation system.

<table>
<thead>
<tr>
<th>This Section</th>
<th>Describes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Overview</td>
<td>Details about the field instrument and control system.</td>
</tr>
<tr>
<td>System Details</td>
<td>Specifications on the required hardware and software components.</td>
</tr>
<tr>
<td>Installation</td>
<td>How to install and connect the instrument, linking device and other components.</td>
</tr>
<tr>
<td>Configuration</td>
<td>How to:</td>
</tr>
<tr>
<td></td>
<td>• Configure the EN2PAR linking device.</td>
</tr>
<tr>
<td></td>
<td>• Configure the measurement instrument.</td>
</tr>
<tr>
<td>Visualization</td>
<td>How to implement and configure a graphical display of device information.</td>
</tr>
</tbody>
</table>
The ControlLogix platform provides a robust EtherNet/IP backbone for communication to process fieldbus networks. The PlantPAx architecture uses producer/consumer technology, allowing input information and output status to be shared by all ControlLogix controllers in the system. This integration document assumes you have a working knowledge of ControlLogix systems. For more details regarding the equipment and tasks described in this document see additional resources.
Liquiline M CM42 Transmitter

Liquiline M CM42 is a modular two-wire transmitter for all areas of process engineering. Depending on the order version, Liquiline has one or two analog current outputs or it can be connected to field buses. Liquiline is developed according to the international safety standard IEC 61508. The extremely robust, corrosion-resistant plastic version and the hygienic stainless steel version are designed for the following applications:

- Chemical processes
- Pharmaceuticals industry
- Foodstuff technology
- Applications in hazardous locations

Your benefits:

- Cost savings
 - Simple commissioning with Quick Setup and Navigator (multifunction button)
 - Thanks to Memosens technology, calibration in the plant is not required
 - Predictive maintenance system detects when a sensor has to be cleaned, calibrated or replaced
 - Less storage thanks to modular design

- Safe
 - Active display of cable interruption with Memosens version
 - Red alarm LED reports error immediately
 - User-guided commissioning, graphic display and plain text guidance
 - ATEX, FM, CSA, NEPSI
 - Code-protected commissioning and calibration

- Industry solutions
 - Modular concept: sensor module replaceable
Measuring System Examples

pH/ORP
- CM42-P/R…
- Measuring cable CPK9
- Assembly Cleanfit CPA471
- Sensor Orbisint CPS11

Conductivity, Inductive Measurement
- CM42-I…
- Assembly Dipfit CLA111

Conductivity, Conductive Measurement
- CM420C…
- Measuring cable CPK9
- Sensor Condumax CLS16

Digital Sensor
- CM42-MN/O
- Measuring cable CUK10
- Assembly Unifit CPA442
- Sensor CPS11D (ph: glass)/CPS471 D (ph: ISFET)/COS21D (oxygen)
Measured Variables

pH / ORP (analog sensors)
- pH value
- Oxidation-reduction potential (ORP)
- Temperature

Conductivity (analog sensors)
- Conductivity
- Resistivity (conductive measurement only)
- Concentration

pH / ORP (digital sensors)

Oxygen (digital sensors)
- pH value
- Oxidation-reduction potential
- Oxygen
- Temperature
Signals from Instruments to Control System

PROFIBUS PA Interface

- PROFIBUS PA in accordance with EN 50170 Volume 2, IEC 61158-2 (MBP), galvanically isolated
- Current consumption: 16 mA
- Error current FDE (Fault Disconnection Electronic): 0 mA
- Signal encoding = Manchester II
- Function blocks: see Operating Manual
- Bus address can be set at the device via DIP switches
Control System

The control system includes these components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller</td>
<td>The ControlLogix controller is a modular, high performance control that uses RSLogix 5000 programming software to configure, program, and monitor a system.</td>
</tr>
<tr>
<td>PROFIBUS PA linking device</td>
<td>The 1788-EN2PAR is a PROFIBUS PA master linking device to an EtherNet/IP network for a PROFIBUS PA field device network capable of supporting process instrumentation. It is a true PA master, linking directly to the PA network with built in PA power conditioners. The EN2PAR and PA field devices are added directly into the RSLogix 5000 I/O tree. The EN2PAR supports FDT (Field Device Type) / DTM (Device Type Manager) technology. The 1788-EN2PAR provides a fast and integrated solution for adding PROFIBUS PA field devices to any Logix platform. This linking device provides a direct link between PROFIBUS PA and EtherNet/IP with no intermediate PROFIBUS-DP layer required. The module supports a maximum of 24 field devices and can supply a 500mA per trunk. It will also allow the user to view detailed diagnostics from each field device using its DTM (device type manager) directly from the Logix environment with Hiprom’s FDT-ThinFrame. The user will be able to view a scope trace of the signal of each field device and provide extended statistics with regards to packet count (send, received, class 1, class2 etc.).</td>
</tr>
<tr>
<td>Programming software</td>
<td>RSLogix 5000 is the software tool used to create the configuration that will be stored in the Logix controller and the EN2PAR and provide access to cyclic data to and from each field device. The AOP in RSLogix5000 is able to configure each instrument on the network, transfer the configuration to the Logix controller and PA master which interpret the instrument specific data structures.</td>
</tr>
<tr>
<td>Visualization software</td>
<td>FactoryTalk View Site Edition software is an HMI software program for monitoring, controlling, and acquiring data from manufacturing operations throughout an enterprise. A generic display provides a graphical representation via faceplates of the field instrument connected to the EN2PAR linking device.</td>
</tr>
</tbody>
</table>
Asset management software

FactoryTalk AssetCentre, with a fully scalable design, provides a set of asset-centric focused tools for securely and centrally managing factory and process automation production environments. It secures access to the control system, tracks users’ actions, managing asset configuration files, configuring process instruments, and provides backup and recovery of operating asset configurations.

- **Change management** — management of security, configuration and archiving of control assets.
- **Process device management** — calibration and configuration for process instrumentation.
- **Condition monitoring** — predict or prevent impending failures of process instrumentation with centralized device information.
- **Disaster recovery** — for all assets and devices.

FactoryTalk AssetCentre is based on the open, industry-leading FDT/DTM technology integrated into the PlantPAx process automation system. It is a common environment and launch application for Device Type Manager (DTM). An expanding library of Device DTMs and an array of Communication DTMs are supported.

The optional smart device configuration tool **FieldCare** and the Life Cycle Management tool **W@M** are Endress+Hauser’s plant asset management solution.

- Easy to implement and to scale up into existing infrastructure.
- Entire management of smart field devices supporting Ethernet, HART, PROFIBUS, FOUNDATION Fieldbus and Wireless HART.
- Supports the entire device life cycle based on W@M starting with engineering through ordering, installation, configuration, commissioning, calibration, documentation management and spare parts handling.
- Endures technology migration by supporting all device DTMs and iDTMs for DD based devices.
- Allows communication through third party systems supporting FDT/DTM technology.
- Condition monitoring: used for preventive and predictive maintenance based on diagnostic information from field devices.

FieldCare enables you to step into the plant asset management world with a sustainable investment and offers the possibility to scale up to an integrated asset management solution.
Example System

Endress+Hauser and Rockwell Automation interoperability testing is performed for every new device and product.

Hardware Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquiline MC42 transmitter</td>
<td>CM42-MAA201EAS00</td>
</tr>
<tr>
<td>ControlLogix controller</td>
<td>1756-L75</td>
</tr>
<tr>
<td>Hiprom 1788-EN2PAR module</td>
<td>1788-EN2PAR</td>
</tr>
<tr>
<td>Stratix 8000 Switch</td>
<td>1783-MS10T</td>
</tr>
<tr>
<td>Power Supply AB</td>
<td>1606-XLE</td>
</tr>
<tr>
<td>Junction Box</td>
<td>1788-FBJB6 or FBJB4R</td>
</tr>
<tr>
<td>Ethernet Bridge</td>
<td>1756-EN2T</td>
</tr>
</tbody>
</table>

Software Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSLogix 5000 Enterprise Series programming software, Professional edition</td>
<td>9324-RLD700NXENE</td>
</tr>
<tr>
<td>Includes: RSLinx Classic software</td>
<td></td>
</tr>
<tr>
<td>RSLinx Enterprise software</td>
<td></td>
</tr>
<tr>
<td>FactoryTalk View Site Edition (SE) software</td>
<td>9701-VWSXXXXXENE</td>
</tr>
<tr>
<td>FactoryTalk AssetCentre server</td>
<td>9515-ASTSRVRENE</td>
</tr>
<tr>
<td>FactoryTalk AssetCentre process device configuration</td>
<td>9515-ASTPRDCFENE</td>
</tr>
<tr>
<td>FieldCare Standard Asset Management software (optional)</td>
<td>SFE500</td>
</tr>
<tr>
<td>HIPROM Profibus DTM for 1788-EN2PAR</td>
<td></td>
</tr>
<tr>
<td>AOP for EN2PAR</td>
<td></td>
</tr>
</tbody>
</table>

For specifications of the engineering workstation (EWS) and operator workstation (OWS), see the Integrated Architecture for Process Control System Recommendations Manual, publication PROCES-RM001.

See Additional Resources for complete installation instructions, including warnings.
Installation and Configuration

Installing a Liquiline Transmitter

The following information is a summary of the installation procedures. See Additional Resources for complete installation instructions, including warnings.

Connect a Liquiline M CM42 Transmitter

Housing Ground

You must connect the “Fixing plate” to the foundation ground with a separate functional ground line (2.3 mm² i14 AWG).

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fixing plate</td>
</tr>
<tr>
<td>2</td>
<td>2.5 mm² (i14 AWG) functional ground</td>
</tr>
</tbody>
</table>
Stainless Steel Housing

You must connect the outer ground connection of the housing to the foundation ground with a separate (GN/YE) (\geq2.5 mm² i14 AWG).

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Outer ground connection</td>
</tr>
<tr>
<td>2</td>
<td>2.5 mm² (i14 AWG) line (GN/YE)</td>
</tr>
</tbody>
</table>

Sensor Connection: pH / ORP

Following are figures of the glass electrodes with PML (symmetrical) view in device (CPU module) (left) and wiring diagram (right).
Following are figures of the glass electrodes without PML (symmetrical) view in device (CPU module) (left) and wiring diagram (right).

Following are figures of the ISFET sensors with PMI view in device (CPU module) (left) and wiring diagram (right).
Following are figures of the ISFET sensors without PML view in device (CPU module (left) and wiring diagram (right)).

Following are figures of the Pfaudler electrode absolute wiring diagram (left) and the relative wiring diagram (type 18 / type 40 / Reiner) (right).
Following are figures of the inductive sensors view in device (left) and wiring diagram (right).

Sensor Connection: pH / ORP / ISFET / Oxygen (digital sensors)

Following are figures of the sensor connections: ph / ORP / ISFET / oxygen (digital sensors) view in device (left) and wiring diagram (right).
Supply and Signal Circuit

Note: Always use a Fieldbus cable that is grounded on both sides (device and PCS).

You can connect PROFIBUS devices in various ways:

1. Shielded two-wire cable, “Hard grounding” (generally to be preferred to capacitive grounding).

2. Shielded two-wire cable, “Capacitive grounding” (shield grounded in device via a capacitor, accessory “C module” necessary). Use it if there is a risk of high equalizing currents. Not applicable for Ex versions!

3. Using the Fieldbus connection socket (accessories).

Hard Grounding

• Place the cable shield on the “Fixing plate.”
• Connect the cable wires as per the assignment.

Following are figures of the view in device (CPU module) (left) and the wiring diagram (right).
Capacitive Grounding

- Strip back the shield braiding, push the extension wire of the C module (pos. 1) onto the exposed shield, and fasten the clip:

- Place the extension wire on the “Fixing plate.”
- Connect the cable wires as per the assignment.

Following are figures of the view in device (CPU module) (left) and the wiring diagram (right).
Fieldbus Connection Socket

1. Screw the fieldbus connection socket (accessories) into the housing bushing.

2. Trim the connection cores of the socket to approximately 15 cm (5.9”)

3. Connect the cable cores as per the assignment. In doing so, you must place the cable shield (GN/YE) on the “Fixing plate.”

Following are figures of the view in device (CPU module) (left) and the wiring diagram (right).
Fieldbus Connector

The connection technology of PROFINET PA allows measuring devices to be connected to the fieldbus via uniform mechanical connections, such as T-boxes, distribution modules, etc. This connection technology, which uses prefabricated distribution modules and plug-in connectors, offers substantial advantages over conventional wiring.

- Field devices can be removed, replaced or added at any time during normal operation. Communication is not interrupted.
- Installation and maintenance are significantly easier.
- Existing cable infrastructures can be used and expanded instantly; e.g., when constructing new star distributors using 4-channel or 8-channel distribution modules.

The device can be supplied with the option of a ready-mounted fieldbus connector. Fieldbus connectors for retrofitting can be ordered from Endress+Hauser as a spare part. Please see Endress+Hauser Support and contact your representative.

Connecting Devices with M12 Plug

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>Electrical connection for devices with M12 plug</td>
</tr>
<tr>
<td>Right</td>
<td>View of the plug at the device</td>
</tr>
</tbody>
</table>

Connecting Devices with 7/8” Plug

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>Electrical connection for devices with 7/8” plug</td>
</tr>
<tr>
<td>Right</td>
<td>View of the plug at the device</td>
</tr>
</tbody>
</table>
Configuring the Device Address

- Every PROFIBUS PA device must be given an address. If the address is not set correctly, the device will not be recognized by the process control system.
- A device address may appear only one within a particular PROFIBUS PA network.
- Valid device addresses are in the range of 1 and 126. All devices are delivered from the factory with the software address 126.
- The default address can be used to check the function of the device and connect it to an operating PROFIBUS PA system. Afterwards the address must be changed to allow other devices to be connected to the network.

Hardware addressing comes into operation, when DIP switch 8 is in the position “HW (OFF).” In this case the address is determined by the position of DIP-switches 1 to 7 according to the table:

<table>
<thead>
<tr>
<th>Switch No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value in position “OFF”</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Value in position “ON”</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
</tr>
</tbody>
</table>

The new address becomes valid 10 seconds after switching. It results in a new device restart.

Note: Address setting via HIPROM CommDTM is currently not possible via EN2PAR module.
Wire & Connect a Field Instrument to EN2PAR

The 1788-EN2PAR linking device is designed to operate within the Rockwell Automation PlantPAx system using EtherNet/IP as the communication backbone to the PROFIBUS PA process device network. All power required for the module's operation is derived from an external 24V power supply. For current consumption, please refer to electrical specifications in the EN2PAR user manual.

The current status of the linking device is conveyed to the user by means of the LCD display.

The following information is stored in the EN2PAR and is available to the PlantPAx process automation system.

- Eight Input process variables (PVs) and eight Output PVs from up to 24 PROFIBUS PA field devices
- Diagnostics from the 1788-EN2PAR module
- Extended diagnostics of each PROFIBUS field device

The EN2PAR and field devices can be connected through a junction box (complying with IEC61158-2), such as the 1788-JBFB4R or FBJB6.
Installation of the EN2PAR

Power

The 1788-EN2PAR requires 9 - 32V input to operate. The user has the option to connect a second power supply (for redundant purposes) to the module. See wiring below.
PROFIBUS PA

The PROFIBUS PA network must be connected via the PA terminal on the module. The pin-out is as follows:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right</td>
<td>PA +</td>
</tr>
<tr>
<td>Middle</td>
<td>PA -</td>
</tr>
<tr>
<td>Left</td>
<td>Shield</td>
</tr>
</tbody>
</table>

The PA cable color code is used as set in IEC61158-2 Physical Layer Specification.
Configure the Linking Device Ethernet Address

The module will connect to an Ethernet network using a RJ45 connector. The module will ship with BOOTP enabled. Thus the user can set the IP address using a BOOTP server or using the hardware switches. The hardware switches is located under the front cover as shown below. The Page button is used to toggle between different diagnostics on the display.

In this application, the Ethernet Port is used to connect the Linking Device to the ControlLogix system using the 1756-EN2TR.
Module will boot with IP address: 192.168.1.091.

Note: Modify the address if necessary. For this example we used 91.

Module will boot with BOOTP enabled.

For normal operation the switches must be set to “000”.

Software

The user will need the following software to configure and use the 1788-EN2PAR:

- Add-on Profile (AOP)
- 1788-EN2PAR Device Type Manager (DTM)

Both the applications can be found on the product CD or the Hiprom Technologies website: www.hiprom.com.

Note: To install the AOP and DTM, go to the Hiprom site and download. Then open RSLogix 5000.
Configuring the System Using RSLogix 5000

The following are the steps required to build a PROFIBUS PA tree in RSLogix 5000 Setup.

Note: Using RSWho Active in RSLinx or RSLogix and verify the active devices. See the example screen below.
1. Open RSLogix and select **File > New**.

2. Create a new project.

 ![RSLogix 5000 interface](image)

3. Click and the New Controller screen appears. Select and enter the data.

 ![New Controller dialog box](image)

4. Click **OK** and create an RSLogix project in the I/O configuration.
Using the I/O configuration utility you will select modules and add IP address. For this example the 1756-EN2T is set to 192.168.1.8 and the 1788-EN2PAR Linking Device to 192.168.1.91.

5. From the I/O tree select **New Module** and add the EN2T. Click Create and set up the Ethernet bridge.

6. Using the I/O configuration utility, select module and enter the IP address of 192.168.1.8 for the EN2T

Note: Press Enter after each entry.
7. Click **OK** and select **New Module** again / **Communications** and select the **Linking Device**.

![New Module dialog box](image)

Note: To add the 1788-EN2PAR the user must select the module type when adding it under Allen-Bradley Ethernet bridge as shown above.
8. Then select the device as shown below and click **Create**.

9. Enter a name, set up the EN2PAR address 91 and click **OK**.
The screen should look similar to the following.

When added, the module requested packet interval (RPI) will default to 300ms. If needed, the user can change the RPI depending on the field device count and update times required.

Note: The RPI will determine the amount of Class 1 data requests send for the field devices configured on the PA Bus. Thus if there are many field devices configured on the bus and the RPI is set too low, the field devices will not be able to update in time and all acyclic PA data will be slow as Class 1 data is prioritized. Please see Class 2 MPPF in the master configuration.

Once the module is added to the tree the user can open the properties by right-clicking on the device and selecting the Properties option. Once the properties window is open select the Configuration tab to open the 1788-EN2PAR configuration page. For Example settings adding the EN2PAR to the I/O profile. Add the name and address of the device.
Note: If not already connected, connect up the PC and go online with RSLogix5000. Under the communication tab select Who Active. Using Who Active, select the proper processor.

10. Select or click **Download** and then Go Online.
11. If the following screen appears click **Download** again.

 ![Download Screen]

 The controller is in Remote Run mode. The mode will be changed to Remote Program prior to download.

 DANGER: Unexpected hazardous motion of machinery may occur.

 Some devices maintain independent configuration settings that are not loaded to the device during the download of the controller.

 Verify these devices (drivers, network devices, 3rd party products) have been properly loaded before placing the controller into run mode.

 Failure to load proper configuration could result in misaligned data and unexpected equipment operation.

12. Select **Yes** when complete and verify the online screen status.
13. Right-click on the 1788-EN2PAR in the I/O tree and then select **Properties**. Then left click and the following screen appears.

![Module Properties: Ethernet_Bridge](image1)

14. Select the **Configuration** tab and under Master (1) configuration.

![Module Properties: Ethernet_Master](image2)
15. Click Scan Network.

![Scan Network Image]

Note: If the above screen appears then the GSD files are loaded.

17. Select the **Scan Network** button and the following screen should appear. If new device is found click **OK**.

![Scan Network Image]
Note: The following steps 18.-21. are used only if new GSD files are required. If not, go to step 22.

18. Select the Process Catalog button. This will launch the Process Utility that manages the GSD files and DTMs. Thus if the user loaded new DTMs or GSD files the Process Utility must be launched and the libraries must be updated. The following should appear:

![Process Utility screenshot]

![Process Utility screenshot]

20. When complete, devices with GSD files will be displayed in the left pane.

Note: The default device settings shown can be changed. Refer to the device manual. The user will not be able to configure a field device for cyclic communication unless the GSD file is in the Process Utility Catalog and the catalog has been updated as shown below.

21. Select OK.
22. Select **Download**.

![Download option highlighted](Image)

23. When completed, select **Status** and select **PV Data Path**.

![Status and PV Data Path options](Image)

The following should appear with live data. All appropriate fields should be green.

![Live data view](Image)
Once the user is happy with the configuration it can be downloaded to the 1788-EN2PAR. The device will save the configuration in non-volatile memory. If the power is cycled then the module will use the last configuration saved.

24. Click the **Download** icon.

Note: Any changes will only take effect once it has been downloaded to the 1788-EN2PAR module.

Note: If the user is not certain about the format of the PV please refer to the user manual of the field device being used.

25. If required, from the Online properties screen, select **Configuration** and the user can choose the format clicking on the drop-down menu and selecting as shown in the example below.

See Additional Resources or Chapter Signals from Instruments to Control System for CHANNEL assignment.

26. Return to the Overview.
Device Type Manager (DTM)

The DTM can be used either in the profile with the ThinFrame or using a FDT Frame (e.g. AssetCentre or FieldCare).

Note: The ThinFrame can only view diagnostics of the field device. The user will need a FDT frame to configure and parameterize the field device.

1. Select **Process Catalog** and launch the DTM Tool.

![DTM Tool](image)

2. The user must first update the DTM catalog by launching the Process Utility and selecting update as shown below. When complete click **OK**.

Note: This update is only required once or when new devices are added.
3. After the update is complete, the user can select the DTM simply by selecting the correct DTM from the list.

4. Hit OK, Save and Close the project then reopen the project and Go On-Line.
5. Right-click on the EN2PAR and select **Properties** to Open the AOP and go to the device configuration tab.

![AOP Configuration Tab](image1)

6. From the AOP configuration tab select **Process Catalog**.

![Process Catalog](image2)
7. Then select **DTM** and **DTM Viewer**.

8. Verify the communication DTM and close.

9. Select the **Advanced** tab.
10. Open the DTM drop-down list and select the proper DTM.

11. Click **OpenDTM**, Go Online and select open DTM and select **Online Parameterize**.

Note: This is a view-only screen.

The instrument configuration is complete. Don’t forget to save the project.
Verify Operation using RSLogix

Each 1788-EN2PAR consumes a total of 4 connections from the Logix Controller regardless of the field device count. Thus the input and output image of each 1788-EN2PAR is divided into four sections A to D. The first connection will have the PA Master Data added as well.

Using the AOP to monitor online data:

1. In the RSLogix 5000 tree, select Controller Tags. Look up and select the EN2PAR1A, monitor tags then select Master.
If a field device is online and running (exchanging cyclic data) then its field device index bit in (the connection status) will be set. If the device goes offline the bit will be cleared.

2. Select Field Device 0 and click Data. Each field device will display its PA diagnostics as well as all available PVs and their status, as shown in the example below:

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Format</th>
<th>Style</th>
<th>Date Type</th>
<th>Extra Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>en2par1A</td>
<td>(...) (...)</td>
<td>(...)</td>
<td>(...)</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A CurrentStatus</td>
<td>16000000_0000</td>
<td>Hex</td>
<td>DINT</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A Master</td>
<td>(...) (...)</td>
<td>(...)</td>
<td>(...)</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A Master PA Bus Voltage</td>
<td>210003040</td>
<td>Float</td>
<td>REAL</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A Master PA Bus Current</td>
<td>8118</td>
<td>Float</td>
<td>REAL</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A Master PA Bus Voltage9</td>
<td>0.0</td>
<td>Float</td>
<td>REAL</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A Master PA Bus Current9</td>
<td>0.0</td>
<td>Float</td>
<td>REAL</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A Master External Voltage</td>
<td>2255874</td>
<td>Float</td>
<td>REAL</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A Master Temperature</td>
<td>4925</td>
<td>Float</td>
<td>REAL</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A Master Bank Enabled</td>
<td>1</td>
<td>Decimal</td>
<td>BOOL</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A Master Bank Enabled</td>
<td>0</td>
<td>Decimal</td>
<td>BOOL</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A Master Bank Trapped</td>
<td>0</td>
<td>Decimal</td>
<td>BOOL</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A Master Bank Terminated</td>
<td>1</td>
<td>Decimal</td>
<td>BOOL</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A Master Bank9 Terminated</td>
<td>0</td>
<td>Decimal</td>
<td>BOOL</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A Master New Field Device</td>
<td>0</td>
<td>Decimal</td>
<td>BOOL</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A Master Multi Master Static</td>
<td>0</td>
<td>Decimal</td>
<td>BOOL</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A Master Module Static</td>
<td>0</td>
<td>Decimal</td>
<td>INT</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A Master Connection Status</td>
<td>24000000_0000</td>
<td>Binary</td>
<td>DINT</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A FieldDevice0</td>
<td>(...) (...)</td>
<td>(...)</td>
<td>(...)</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A FieldDevice1</td>
<td>(...) (...)</td>
<td>(...)</td>
<td>(...)</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A FieldDevice2</td>
<td>(...) (...)</td>
<td>(...)</td>
<td>(...)</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A FieldDevice3</td>
<td>(...) (...)</td>
<td>(...)</td>
<td>(...)</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1A FieldDevice4</td>
<td>(...) (...)</td>
<td>(...)</td>
<td>(...)</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1B</td>
<td>(...) (...)</td>
<td>(...)</td>
<td>(...)</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1C</td>
<td>(...) (...)</td>
<td>(...)</td>
<td>(...)</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1D</td>
<td>(...) (...)</td>
<td>(...)</td>
<td>(...)</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1E</td>
<td>(...) (...)</td>
<td>(...)</td>
<td>(...)</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1F</td>
<td>(...) (...)</td>
<td>(...)</td>
<td>(...)</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1G</td>
<td>(...) (...)</td>
<td>(...)</td>
<td>(...)</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
<tr>
<td>en2par1H</td>
<td>(...) (...)</td>
<td>(...)</td>
<td>(...)</td>
<td>HT-178HP_EN2</td>
<td></td>
</tr>
</tbody>
</table>

3. Close RSLogix.
Connect to, Monitor and Configure the Instrument via AssetCentre

AssetCentre from Rockwell is the FDT-based plant asset management software tool that lets you configure the intelligent field instruments from E+H. An optional tool called FieldCare is also available from E+H.

Note: Before starting make sure the DTM's have been imported and installed for the Hiprom Communication linking device and the E+H Instrument. To access the DTMs and other software download them from the Hiprom and or E+H websites.

1. Install the appropriate DTMs.
2. Start-up AssetCentre and open a new project.
3. Update the DTM catalog under Tools. Click **DTM Catalog** and verify that the DTMs exist in the catalog.
4. Left click and verify that the DTMs now exist in the catalog. Scan if necessary.

5. Close the DTM catalog and set up the DTM network path under Tasks.

6. Select the DTM network and click.
7. Select the DTM network and right click to add the DTM to the HS network. Or select Add DTM.

![Add DTM window](image)

8. Select the HS Ethernet network and click OK.

![DTM Networks window](image)
9. Select the network and click **Add DTM**.

10. Select **1788-EN2PAR**, and then click **OK**.

11. Add the IP addresses and hit **Enter** after entry.
12. Hit **Next**.

13. Click **Scan Network**. The Scan Results screen should appear.
14. Verify the information, click **OK**, then click **Close**.

15. Click **Design** and from the AssetCentre Asset view select **Process Area**.

16. Right-click then select **New** and click.
17. Then from the Process Area tree, go to **Process Devices** and select the **Instrument**.

18. Click **OK**. The screen should appear.
19. Enter a Name (Example: Instrument) and click OK.

20. Right-click on Instrument or (other name), then select Properties and click Enter.
21. Select DTM addressing info and click the key on the right-hand side of the screen.

![Instrument_2 Properties](image)

22. From the following screen highlight the Instrument.

![select a DTM device from the DTM network](image)
23. Click **OK** and the following screen should appear.

![Instrument_2 Properties](image)

- **1. General**
 - **Name**: Instrument_2

- **2. Hardware Information**
 - **Device Name**: Physical Block [Liquiline M pH/ORP / CM42]
 - **Firmware Revision**: 10.04.07-0008
 - **Hardware Revision**: CM42
 - **Hardware Type**: Liquiline M CM42
 - **Manufacturer**: ENDRESS+HAUSER

- **3. Asset Information**
 - **Asset Number**: Instrument_2
 - **Location**: Instrument_2
 - **ProCatS Company**: Instrument_2
 - **ProCatS Linked Item**: Instrument_2
 - **Serial Number**: A70DF40560

DTM Addressing Info
- Links an Asset to a node in the DTM Network. Note: Setting this property will clear the 'Configuration Data' property.

![DTM Addressing Info](image)

- **OK**
- **Cancel**
- **Help**

24. Click **OK**.

25. Highlight “**Instrument**” and select **DTMView**.
A screen showing the instrument’s data will appear.

26. Select the Online view and open. Make any changes to settings if necessary.

27. Close the DTMs and AssetCentre.

28. Open RSLogix 5000 and open the Project.

29. If desired, Go Online and Open the Controller Tag database. Select the project name tags or instrument tags to display device, status and diagnostic data.
Connect to, Monitor and Configure the Instrument via FieldCare

FieldCare is the FDT-based plant asset management software tool that lets you configure the intelligent field instruments.

Note: Before starting make sure the DTM's have been imported and installed for the Hiprom Communication linking device and the E+H Instrument. To access the DTMs and other software, download them from the Hiprom and or E+H websites.

1. Install the appropriate DTMs.

2. Start FieldCare and open a new project.

3. Choose the **DTM Catalog** menu and click **Update**.
4. If there are DTMs listed in the dialog box’s left pane, select desired DTMs and click Move or choose “Add all to DTM catalog”.

If you do not find the desired DTMs, or if the left pane of the dialog box is empty, click Update. FieldCare searches for DTMs installed on your computer. After search, found DTMs are added to the dialog box’s left pane.

If necessary, to remove DTMs, select the desired DTMs in right pane and click Move.

5. Click OK to save your changes.
6. Click the **Add Device** icon, select **HS EtherNet/IP DTM** and click **OK**.
7. Click on **HS EtherNet/IP - DTM**. Click the **Add Device** icon, select **1788-EN2PA-R** and click **OK**.

![Click on HS EtherNet/IP - DTM and add 1788-EN2PA-R]

8. To configure the 1788-EN2PA-R, double click on **1788-EN2PA-R** in the left pane.

9. Enter the 1788-EN2PA-R IP address and the Max Scan Address.
10. Click the **Create Network** icon.

11. When prompted click **OK**. The Com DTM now scans the entire PROFIBUS PA network behind the 1788-EN2PA-R and searches for the right DTM. If the right DTM is installed, the instrument comes up in the Explorer view on the left pane.

If only one DTM is added to the network, the Software automatically goes online. Otherwise a warning occurs that must be confirmed. To switch this behavior off, in the Explorer- context- menu Extras/Options, select After Scanning within Page Scanning.

12. In an open FieldCare project, right-click on the **instrument** in the left pane and select **Connect**.

13. Double-click on the **instrument** in the left pane. The Online parameterization window appears with the Instrument Health Status.

14. You can right-click now on the **instrument** in the left pane to access other views and data, e.g. observe, reset or offline parameterization.
Visualization

In order to monitor the instruments using the pre-designed faceplates, the EN2PAR must be set up as specified in this integration document and the manual. We also suggest developing a similar configuration to the one included in the RSLogix 5000 project provided by Rockwell Automation. The controller exchanges data between the devices, and the FactoryTalk View SE faceplates notify personnel what is happening in the plant.

The following information summarizes the Add-On Instructions and faceplates. See Additional Resources for more detailed information.

Add-On Instructions

An Add-On Instruction exchanges data between each process variable located in the process device and the faceplate installed on a display. The name of the specific instance of the Add-On Instruction becomes the link from the actual instrument to the faceplate on the graphic.

Structured input data for each field instrument

The P_AIn_PA Add-On Instruction uses embedded P_MODE and P_ALARM Add-On Instructions. These embedded Add-On Instructions must already be in the project before importing the P_AIn_PA Add-On Instruction.
Global Object

A global object links the tag name to the faceplate, provides a touch area from which to launch the faceplate, and displays the process variables and alarms.

IMPORTANT
A unique global object and faceplate are available for each field due to each instrument having specific extended instrument diagnostics.
Faceplates

The FactoryTalk View SE generic display provides a graphical representation of the instrument based on the information within each Add-On Instruction. Navigation buttons at the top of the faceplate change the information displayed. Status displays show information using a bar graph, numeric values, and trend displays. Other displays show specific alarms and warning indications.

Here are some examples of predesigned faceplates.
The faceplates provide the following from the device:

- PROFIBUS PA process values (PV) - first, second, third, fourth, fifth, sixth, seventh, eighth from instrument
- PV fault status (communication fault)
- PROFIBUS PA device Extended Status

Configure the faceplates to provide the following:

- PROFIBUS PA PV range (minimum and maximum)
- Tag name
- Description
- Engineering units
- Mode (such as operator or program)
- High-high, high, low, low-low alarms
- Over-range and under-range alarms
- Alarm delay
- Alarm hysteresis

Extended Diagnostic Messages

PROFIBUS PA Extended Diagnostic Status provides information about an instrument when an instrument’s transmitter or sensor is not running properly. It produces bit-based outputs that can be translated into specific error codes in order to help maintenance personnel determine more specific details about abnormal conditions with PROFIBUS PA instruments.
Additional Resources

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROFIBUS PA Field Instruments</td>
<td></td>
</tr>
<tr>
<td>Liquiline M CM42 Technical Information, publication TI381C/07/en</td>
<td>Specifications and details of the Liquiline M CM42 transmitter.</td>
</tr>
<tr>
<td>Liquiline M CM42 Operating Instructions (PROFIBUS PA)</td>
<td>How to install, wire, configure, and operate a Liquiline M CM42 transmitter.</td>
</tr>
<tr>
<td>www.endress.com/liquiline-documentation</td>
<td>Fill in the form and you will then receive the specific Liquiline Operating Instructions, part 1 "Commissioning" and part 2 "Operation", via email.</td>
</tr>
<tr>
<td>Control System Components</td>
<td></td>
</tr>
<tr>
<td>ControlLogix Controllers Installation Instructions, publication 1756-IN101</td>
<td>How to install and configure a ControlLogix controller.</td>
</tr>
<tr>
<td>ControlLogix Controllers User Manual, publication 1756-UM001</td>
<td>How to configure, operate, and maintain a ControlLogix controller.</td>
</tr>
<tr>
<td>HIPROM EN2PAR User Manual</td>
<td>Describes the functionality, installation, configuration, and operation of the EN2PAR module.</td>
</tr>
<tr>
<td>Operator Components</td>
<td></td>
</tr>
<tr>
<td>Add-On Instructions and Faceplates for Visualizing PROFIBUS PA Instrument Data in FactoryTalk View SE, Knowledgebase document (Login required. Please contact your sales representative.)</td>
<td>How to implement the PROFIBUS PA Add-On-Instruction in controller logic to work with the FactoryTalk View faceplates for PROFIBUS PA instruments.</td>
</tr>
<tr>
<td>Faceplates, Add-On Instructions, project files, etc. (Login required. Please contact your sales representative.)</td>
<td>Download AOIs, Faceplates and Global Object graphics, and project files.</td>
</tr>
<tr>
<td>Process Control Information</td>
<td></td>
</tr>
<tr>
<td>Integrated Architecture for Process Control System Recommendations Manual, publication PROCESS-RM001</td>
<td>Process system recommendations that organize Rockwell Automation products functionally as system elements, which can then be applied in proven, scalable configurations for continuous and batch control.</td>
</tr>
</tbody>
</table>
Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products. At http://support.rockwellautomation.com, you can find technical manuals, a KnowledgeBase of FAQs, technical and application notes, sample code and links to software service packs, and a MySupport feature that you can customize to make the best use of these tools.

For an additional level of technical phone support for installation, configuration, and troubleshooting, we offer TechConnect support programs. For more information, contact your local distributor or Rockwell Automation representative, or visit http://support.rockwellautomation.com.

Endress+Hauser Support

Please refer to your local Endress+Hauser Sales Center for precise information regarding the service support available in your area or visit http://www.endress.com.

Installation Assistance

If you experience a problem within the first 24 hours of installation, please review the information that’s contained in this manual. You can also contact a special Customer Support number for initial help in getting your product up and running.

<table>
<thead>
<tr>
<th>United States</th>
<th>1.440.646.3434</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday – Friday, 8 a.m. – 5 p.m. EST</td>
<td></td>
</tr>
</tbody>
</table>

| Outside United States | Please contact your local Rockwell Automation representative for any technical support issues. |

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.

| United States | Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor in order to complete the return process. |

| Outside United States | Please contact your local Rockwell Automation representative for the return procedure. |

Allen-Bradley, ControlLogix, FactoryTalk, PlantPAx, Rockwell Automation, RSLinx, RSLogix 5000, and TechConnect are trademarks of Rockwell Automation, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

Endress+Hauser is trusted by more than 100,000 customers to make their processes safe, efficient and environmentally friendly. We offer a range of measurement products, including level, flow, pressure, temperature, analytical and complete engineered solutions designed to help customers acquire, transmit, control and record process information needed to manage operations in a safe, reliable and profitable manner.

www.endress.com/worldwide

International:
Endress+Hauser Instruments International
Kaegistr. 2, CH-4153 ReinachBL, Switzerland
Tel: +41 61 715 81 00
Fax: +41 61 715 25

USA:
Endress+Hauser, Inc.
2350 Endress Place
Greenwood, IN 46143
Tel: (1) 317 535 7138
Fax: (1) 317 535 8498

Canada:
Endress+Hauser, Canada
1075 Sutton Drive
Burlington, ON L7L 5B8
Tel: (1) 905 681 9572
Fax: (1) 905 681 9444

Mexico:
Endress+Hauser México, S.A. de C.V.
Montes de Oca 21 Edif A Piso 3
San Nicolás, 54030 Tlalnepantla,
Edo de México
Tel: +52 55 5231 2080
Fax: +52 55 5231 2099

Rockwell Automation, Inc. (NYSE: ROK) is a leading global provider of industrial automation power, control and information solutions that help manufacturers achieve a competitive advantage in their businesses. The company brings together leading global brands in industrial automation which include Allen-Bradley controls and services and Rockwell Software factory management software.

www.rockwellautomation.com/solutions/process

Americas:
Rockwell Automation
1201 South Second Street,
Milwaukee, WI 53204-2496 USA
Tel: (1) 414 382 2000
Fax: (1) 414 382 4444

Asia Pacific:
Rockwell Automation
Level 14, Core F, Cyberport 3,
100 Cyberport Road, Hong Kong
Tel: +852 2887 4788
Fax: +852 2508 1846

Europe/Middle East/ Africa:
Rockwell Automation
Vorstlaan/Boulevard du Souverain 36,
1170 Brussels, Belgium
Tel: +32 2 663 0600
Fax: +32 2 663 0640