Technische Information

Deltatop
DO61W, DO62C, DO63C, DO64P, DO65F

Differenzdruck-Durchflussmessung
mit Blenden und Differenzdrucktransmitter Deltabar
Das universelle Messsystem für Dampf, Gase und Flüssigkeiten

Anwendungsbereich
- Durchflussmessung von Gasen, Dampf und Flüssigkeiten
- Rohrdurchmesser von DN 10 (3/8") bis DN 1000 (40")
- Messstoff-Temperaturen von -200 °C (-328 °F) bis 1000 °C (1830 °F)
- Drücke bis 420 bar (6300 psi)
- Konform zu DGRL 97/23/EG
- NACE-konforme Materialien

Differenzdrucktransmitter Deltabar
- Zulassungen für den explosionsgefährdeten Bereich: ATEX, FM, CSA
- Relevante Sicherheitsaspekte: SIL
- Anbindung an alle gängigen Prozessleitsysteme: Profibus, HART, Foundation Fieldbus

Ihre Vorteile
- wählbar nach Anwendung:
 - betriebsbereite Kompakt-Ausführung zur Minimierung des Installationsaufwands
 - modular aufgebaute Getrennt-Ausführung für anspruchsvolle Prozessbedingungen (hohe Temperatur, hoher Druck) und schwierige Einbauverhältnisse
- optimiert auf minimalen Druckverlust, höchste Genauigkeit und maximale Messdynamik
- Messbereich des Differenzdrucktransmitters Deltabar vollständig vorkonfiguriert
- weltweit standardisiertes Messverfahren nach ISO 5167
- optional symmetrische Blende für bidirektionale Messung
- robustes Design; keine beweglichen Teile
Inhaltsverzeichnis

Arbeitsweise und Systemaufbau 5
 Messprinzip .. 5
 Auslegung und Optimierung 6
 Auswahl- und Auslegungstool "Applicator" 7
 Auslegungsblatt – Datenblatt 7
 Auswahl des Differenzdrucktransmitters und der Messzelle . 7
 Temperatur- und Druckkompensation 8
 Split Range (Messbereichserweiterung) 10
 Durchflussmessung in Flüssigkeiten 11
 Durchflussmessung in Gasen 11
 Durchflussmessung in Dampf 12

Einbautalen ... 13
 Ausführungen ... 13
 Durchflussrichtung ... 13
 Gas-Messungen .. 13
 Flüssigkeit-Messungen 14
 Dampf-Messungen ... 15

Einbau- und Prozessbedingungen 16
 Ein- und Auslaufstrecken 16
 Homogenität ... 16
 Temperatur, Druck ... 17
 Reynoldszahl ... 17
 Temperaturgrenzen der Werkstoffe 18
 Druck-/Temperaturzuordnung für Flansche nach EN1092-1:2001 .. 20
 Druck-Temperatur-Zuordnung für Flansche nach ANSI B16.5-2003 ... 22

Konstruktiver Aufbau .. 24
 Produktübersicht / Entnahmearten 24
 Lage der Entnahmestutzen 26
 Blendenkante ... 28
 Vent/Drain hole ... 29
 Wirkdruckanschluss .. 30

Erläuterungen zu den Produktstrukturen 32

Deltatop DO61W: Messflansch 34
 Typische Konfigurationen 34
 Ausführung ... 34
 Entnahmeart ... 34
 Werkstoffe .. 34
 Abmessungen, Gewicht 35
 Varianten .. 37
 Produktstruktur ... 37

Deltatop DO62C: Eckentnahme 41
 Typische Konfigurationen 41
 Ausführung ... 41
 Entnahmeart ... 41
 Werkstoffe .. 41
 Abmessungen .. 42
 Gewicht ... 44
 Varianten .. 45
 Produktstruktur ... 45

Deltatop DO63C: Eckentnahme Ringkammer 50
 Ausführung ... 50
 Entnahmeart ... 50
 Werkstoffe .. 50
 Abmessungen .. 50
 Varianten .. 51
 Produktstruktur ... 51

Deltatop DO64P: Steckblende 55
 Ausführung ... 55
 Entnahmeart ... 55
 Werkstoffe .. 55
 Abmessungen .. 55
 Varianten .. 57
 Produktstruktur ... 58

Deltatop DO65F: Kleinmessstrecke 59
 Typische Konfigurationen 59
 Ausführung ... 60
 Entnahmeart ... 60
 Werkstoffe .. 60
 Abmessungen, Gewicht 61
 Varianten .. 62
 Produktstruktur ... 62

Zubehör ... 66
 Übersicht .. 66

Deltatop DA61V: Absperrventil (Zubehör) 67
 Abmessungen .. 67
 Gewicht ... 68
 Design ... 68
 Werkstoffe .. 68
 Packung ... 68
 Produktstruktur ... 69

Deltatop DA61C: Kondensatgefäß (Zubehör) 70
 Abmessungen .. 70
 Gewicht ... 70
 Produktstruktur ... 71

Deltatop DA63M: Ventilblock (Zubehör) 72
 Verwendung ... 72
 Ausführung: 3-fach, geschmiedet 73
 Ausführung: 3-fach, gefräst 74
 Ausführung: 5-fach, gefräst, Entlüftung 75
 Ausführung: 5-fach, geschmiedet, Ausblasventil 76
 Ausführung: 5-fach HT, geschmiedet, Ausblasventil 77
 Ausführung: 3-fach, geschmiedet, IEC61518, beidseitig 78
 Ausführung: 5-fach, geschmiedet, IEC61518, beidseitig, Entlüftung ... 79
 Produktstruktur ... 80

Deltatop DA63R: Strömungsgleichrichter (Zubehör) 81
 Verwendung ... 81
 Abmessungen .. 82
Arbeitsweise und Systemaufbau

Messprinzip

In einer Blende ist die Strömungsgeschwindigkeit größer als im übrigen Rohr. Nach der Bernoulli-Gleichung führt dies zu einer Verringerung des statischen Drucks. Die entstehende Druckdifferenz der statischen Drücke vor und hinter der Blende wird mit einem Differenzdrucktransmitter gemessen. Der Wert des entstehenden Differenzdruckes ist sehr stark abhängig vom Durchmesserverhältnis (β) der Innendurchmesser der Blendenöffnung (d) und des Rohres (D).

$\beta = \frac{d}{D}$

Die Blende wird daher auch als Wirkdruckgeber bezeichnet. Der Zusammenhang zwischen Durchfluss (Q) und Differenzdruck (Δp) folgt einer wurzelförmigen Kennlinie:

$Q \sim \sqrt{\Delta p}$

Hinter der Blende steigt der Druck wieder an. Es bleibt nur ein kleiner Druckverlust $\Delta \omega$.

Auslegung und Optimierung

Mit Hilfe unterschiedlicher Durchmesserverhältnisse lässt sich eine Blendenmessung auf eine Vielzahl von Anwendungen optimieren. Die Optimierung wird ebenfalls im Rahmen der Berechnung von Endress+Hauser durchgeführt. Der Anwender kann bei der Bestellung eine der folgenden Optimierungskriterien auswählen.

- **Optimiert durch Endress+Hauser**
 Endress+Hauser berechnet und optimiert die Messstelle hinsichtlich eines auf die angegebenen Prozessdaten abgestimmten optimalen Kompromisses zwischen Differenzdruck, Messzelle, Messdynamik, Messunsicherheit und bleibendem Druckverlust.

- **Maximale Messbereichsspreizung (kleines β)**
 Endress+Hauser berechnet und optimiert die Messstelle auf ein möglichst kleines Durchmesserverhältnis β für größtmögliche Messdynamik und kleinste Messunsicherheit.

- **Geringer Druckverlust (großes β)**
 Endress+Hauser berechnet und optimiert die Messstelle auf ein möglichst großes Durchmesserverhältnis β um den bleibenden Druckverlust so gering wie möglich zu halten.

- **Maximal zulässiger Druckverlust**
 Endress+Hauser berechnet die Messstelle unter Berücksichtigung des maximal zulässigen Druckverlustes im Auslegungspunkt.

- **Festes Durchmesserverhältnis β**
 Die Auslegung erfolgt auf ein vom Anwender festgelegtes Durchmesserverhältnis (β). Endress+Hauser berechnet die Messstelle mit dem gewünschten β.

- **Fester Differenzdruck**
 Die Auslegung erfolgt auf einen vom Anwender festgelegten Differenzdruck. Endress+Hauser berechnet den Wirkdruckgeber so, dass der gewünschte Differenzdruck im Auslegungspunkt erreicht wird.

- **Vorgegebene Berechnung**
 Es liegt bereits eine komplette Auslegung vor. Endress+Hauser überprüft die Berechnung und fertigt den Wirkdruckgeber entsprechend der vorhandenen Auslegung.
Auswahl- und Auslegungstool "Applicator"

Applicator Sizing Flow

Mit dem Modul "Applicator Sizing Flow" können alle notwendigen Daten zum ausgewählten Wirkdruckgeber berechnet werden:
- Differenzdruck
- Druckverlust
- Messunsicherheit
- Durchmesserverhältnis β der Blende
- Ein- und Auslaufstrecken
- Druckstufen
- Mediumsparameter

Zusatzfunktionen
- Auslegungsblatt - Datenblatt
- Berechnungsblatt
- Bestimmung der Montageposition

Auslegungsblatt - Datenblatt

Auswahl des Differenzdrucktransmitters und der Messzelle

Bei gemeinsamer Bestellung besteht die Möglichkeit den zugehörigen Differenzdrucktransmitter Deltabar mit der passenden Messzelle und Kalibration zu bestellen, ohne die fertigen Berechnungsdaten zu kennen. Dazu muß im Bestellcode des Differenzdrucktransmitters für die Messzellenauswahl der Code '78' oder '88' (vorbereitet für Deltatop) ausgewählt werden. Der Bestellcode '88' bei PMD75 ist nur bei statischen Drücken über 160bar auszuwählen. Ebenso muß für die Kalibration der Messzelle der Bestellcode '8' (eingestellt für Deltatop) ausgewählt werden.

In diesem Fall wird automatisch die optimale Messzelle von Endress+Hauser festgelegt, entsprechend der Berechnung des zugehörigen Wirkdruckgebers. Die Messbereichseinstellung erfolgt exakt auf die berechneten Werte. Eine komfortable Bestellung und Inbetriebnahme der Messung ist damit für den Anwender ohne weitere Vorkenntnisse möglich.
Temperatur- und Druckkompensation

Getrennter Prozesseingriff
Zur Temperatur- und Druckkompensation werden zwei zusätzliche Messaufnehmer benötigt:

- **Eine Absolutdrucksensor**
 Nach ISO 5167 muss diese Sonde stets vor der Blende installiert werden.

- **Eine Temperatursonde**
 Damit das Strömungsprofil nicht gestört wird, muss diese Sonde hinter der Blende installiert werden.

Gemeinsamer Prozesseingriff für Absolut- und Differenzdruck
Mit Hilfe eines Adapters (z.B. Ovalflanschadapter PZO, s. Seite 84) kann ein Absolutdruck-Transmitter in den Seitenflansch des Deltabar eingeschraubt werden.
Der Absolutdruck-Transmitter muss an die "+"-Seite des Deltabar angeschlossen werden.

Berechnung des kompensierten Volumen- oder Massendurchflusses

- **für Dampf:**
 über Energiemanager RMS621 von Endress+Hauser;
siehe dazu Technische Information TI092R

- **für Gas oder Dampf:**
 über Durchfluss- und Energiemanager RMC621 von Endress+Hauser;
siehe dazu Technische Information TI098R

- **für Gas oder Dampf:**
 über SPS;
die Kompensationsberechnung muss in diesem Fall selbst programmiert werden.
Berechnungsformel für die Temperatur- und Druckkompensation

Zunächst muss der Ausgangspunkt der Kompensation festgelegt werden. Dieser Ausgangspunkt ist das Berechnungsblatt des zugehörigen Wirkdruckgebers. Dort sind die Auslegungsdaten für einen bestimmten Betriebszustand (Druck und Temperatur) angegeben.

Der Zusammenhang zwischen Durchfluss und Differenzdruck ist eine Wurzelfunktion:

\[Q_m = \sqrt{\frac{Z}{\Delta p} \rho} \] für den Massendurchfluss (Normvolumendurchfluss)

und

\[Q_v = \sqrt{\frac{2 \Delta p}{\rho}} \] für den Volumendurchfluss

mit

\(\rho \) = Dichte des Gases.

Wenn der Stromausgang des Deltabar auf Durchfluss parametriert ist, dann ist die Wurzelfunktion bereits vorhanden. Ansonsten muss die Wurzelfunktion extern berechnet werden (z.B. in der SPS). Es sollte darauf geachtet werden, dass die Wurzel nicht zweimal gezogen wird.

Wenn die realen Betriebsbedingungen von den Bedingungen des Berechnungsblatts abweichen, ändert sich die Dichte des Gases und damit gemäß obiger Formel der Durchfluss.

\[\rho_2 = \frac{P_2 T_1 Z_1}{P_1 T_2 Z_2} \]

mit

\(P \) = absoluer Druck
\(T \) = absolute Temperatur in K
\(Z \) = Kompressibilitätsfaktor
\(1 \) = Betriebszustand aus dem Berechnungsblatt
\(2 \) = gemessener wirklicher Betriebszustand

Die Kompensation ergibt sich daraus wie folgt:

\[Q_2 = Q_1 \frac{P_2 T_1 Z_1}{P_1 T_2 Z_2} \] für den Massendurchfluss (Normvolumendurchfluss)

\[Q_2 = Q_1 \frac{P_2 T_2 Z_2}{P_1 T_1 Z_1} \] für den Volumendurchfluss

Der Kompressibilitätsfaktor \(Z \) kann vernachlässigt werden, wenn der Wert nahe bei 1 liegt. Soll der Kompressibilitätsfaktor mit berücksichtigt werden, so muss der Wert entsprechend der gemessenen Betriebsdaten ermittelt werden. Kompressibilitätsfaktoren können der einschlägigen Literatur entnommen oder berechnet werden, z.B. nach dem Soave-Redlich-Kwong-Verfahren.
Split Range (Messbereichserweiterung)

Zur gemeinsamen Auswertung der Messsignale können folgende Geräte von Endress+Hauser verwendet werden:

- Energiemanager RMS621 (siehe Technische Information TI092R)
- Durchfluss- und Energiemanager RMC621 (siehe Technische Information TI098R)

Hinweis!
Die maximal mögliche Messdynamik ist abhängig vom zur Verfügung stehenden Differenzdruck

Hinweis!
Nach der gleichen Methode können auch redundante Messungen realisiert werden.

Beispiel
Durchflussmessung in Flüssigkeiten

Durchflussmessung in Gasen

Durchflussmessung in Dampf

Funktionsprinzip der Kondensatgefäße

Betriebsbedingungen

- Beide Kondensatgefäße müssen auf gleicher Höhe montiert werden.
- Vor Inbetriebnahme müssen beide Kondensatgefäße vollständig gefüllt sein.
Einbaulagen

Ausführungen

Kompaktausführung

Getrennt-Ausführung

Bei der Getrennt-Ausführung des Deltatop werden die Blende, der Ventilblock, die Absperrventile und der Transmitter getrennt geliefert und müssen vor Ort montiert werden. Diese Ausführung empfiehlt sich:
- bei hohen Prozesstemperaturen, die eine direkte Montage des Transmitters unmöglich machen
- wenn der Transmitter aus Platzgründen nicht direkt an der Blende montiert werden kann.

Durchflussrichtung

- Die Durchflussrichtung ist durch einen Pfeil auf den Fassungsringen (DO62C, DO63C, DO65F) oder durch die Beschriftung des Handgriffs bei Blendenscheiben (DO64P) oder Messflanschen (DO61W) angegeben. Die Beschriftung befindet sich immer auf der angeströmten Seite der Blende (+).
- Montage links oder rechts bezieht sich auf die Strömungsrichtung.
 Bei Kompaktgeräten, die von oben oder unten montiert werden, wird das Gerät so ausgeliefert, dass der Transmitter in Strömungsrichtung gesehen, zur linken bzw. rechten Seite des Rohres ausgerichtet ist. Bei Dampfvarianten, die von der Seite eingebaut werden, sind die Kondensatgefäße und Transmitter auf der linken bzw. rechten Seite der Strömungsrichtung des Rohres angeordnet.
- Bei Kompaktvarianten wird der Transmitter immer so angebaut, dass das Display entsprechend der Einbaulage ablesbar ist und nicht mehr gedreht werden muss.

Gas-Messungen

<table>
<thead>
<tr>
<th>kompakt; vertikal¹</th>
<th>kompakt; horizontal²</th>
<th>getrennt; vertikal</th>
<th>getrennt, horizontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchfluss aufwärts DO6xxxx-CM...</td>
<td>Montage links DO6xxxx-CB...</td>
<td>Stutzen 90° DO6xxxx-BT...</td>
<td>Stutzenwinkel nach DIN DO6xxxx-BF...</td>
</tr>
<tr>
<td>Durchfluss abwärts DO6xxxx-CP...</td>
<td>Montage rechts DO6xxxx-CC...</td>
<td>Stutzen 0° DO6xxxx-BS...</td>
<td>Stutzen 0° DO6xxxx-BE...</td>
</tr>
</tbody>
</table>

¹) empfohlene Gehäuse-Ausführung für Deltabar S: T14 (zum Gebrauch des Deltabar-Displays)
²) empfohlene Gehäuse-Ausführung für Deltabar S: T15 (zum Gebrauch des Deltabar-Displays)
Flüssigkeit-Messungen

<table>
<thead>
<tr>
<th>kompakt; vertikal(^1)</th>
<th>kompakt; horizontal(^2)</th>
<th>getrennt; vertikal</th>
<th>getrennt; horizontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchfluss aufwärts</td>
<td>Montage links</td>
<td>Stutzen 90°</td>
<td>Stutzenwinkel nach DIN</td>
</tr>
<tr>
<td>DO6xxxx-EM...</td>
<td>DO6xxxx-EB...</td>
<td>DO6xxxx-DT...</td>
<td>DO6xxxx-DF...</td>
</tr>
<tr>
<td>Diagramm</td>
<td>Diagramm</td>
<td>Diagramm</td>
<td>Diagramm</td>
</tr>
</tbody>
</table>

Durchfluss abwärts	Montage rechts	Stutzen 0°	Stutzen 0°
DO6xxxx-EP...	DO6xxxx-EC...	DO6xxxx-DS...	DO6xxxx-DE...
[Diagramm](image)	[Diagramm](image)	[Diagramm](image)	[Diagramm](image)

1) empfohlene Gehäuse-Ausführung für Deltabar S: T14 (zum Gebrauch des Deltabar-Displays)
2) empfohlene Gehäuse-Ausführung für Deltabar S: T15 (zum Gebrauch des Deltabar-Displays)
Dampf-Messungen

<table>
<thead>
<tr>
<th>kompakt; vertikal<sup>1)</sup></th>
<th>kompakt; horizontal<sup>1)</sup></th>
<th>getrennt; vertikal</th>
<th>getrennt; horizontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchfluss aufwärts DO6xxxx-GM...</td>
<td>Montage links DO6xxxx-GB...</td>
<td>Stutzen 90°; Durchfluss aufwärts DO6xxxx-FN...</td>
<td>Stutzen 180° DO6xxxx-FG...</td>
</tr>
<tr>
<td>Durchfluss abwärts DO6xxxx-GP...</td>
<td>Montage rechts DO6xxxx-GC...</td>
<td>Stutzen 90°; Durchfluss abwärts DO6xxxx-FR...</td>
<td></td>
</tr>
<tr>
<td>Stutzen 0°, Durchfluss aufwärts DO6xxxx-FM...</td>
<td></td>
<td></td>
<td>Stutzen 0°; Montage links DO6xxxx-FB...</td>
</tr>
<tr>
<td>Stutzen 0°; Durchfluss abwärts DO6xxxx-FP...</td>
<td></td>
<td></td>
<td>Stutzen 0°; Montage rechts DO6xxxx-FC...</td>
</tr>
</tbody>
</table>

1) empfohlene Gehäuse-Ausführung für Deltabar S: T15 (zum Gebrauch des Deltabar-Displays)
Einbau- und Prozessbedingungen

Ein- und Auslaufstrecken

Um ein gleichmäßiges Strömungsprofil zu gewährleisten, muss die Blende in ausreichendem Abstand von Rohrbiegungen oder Rohrverengungen angebracht werden. Die erforderlichen Einlaufstrecken bei verschiedenen Einbaustörungen sind in folgender Tabelle zusammengefasst. Genauere Anforderungen können ISO 5167-2 entnommen werden.

Beispiele (schematisch)

Hinweis!
Die Anforderungen aus ISO 5167 an die Rohrleitungen müssen erfüllt sein (Schweißnähte, Rauheit usw.).

Hinweis!
Die erforderliche Einlaufstrecke kann durch einen Strömungsgleichrichter verkürzt werden (siehe Seite 81). Einzelheiten dazu sind in ISO 5167-2 festgelegt.

Homogenität
Das Fluid muss homogen sein. Es darf kein Wechsel des Aggregatzustandes (Flüssigkeit/Gas/Dampf) stattfinden. Das Messrohr muss stets vollständig gefüllt sein.
Temperatur, Druck

<table>
<thead>
<tr>
<th>Kompakt-Ausführung</th>
<th>Getrennt-Ausführung</th>
</tr>
</thead>
<tbody>
<tr>
<td>max. Temperatur</td>
<td>max. Temperatur</td>
</tr>
<tr>
<td>● bei Gasen und Flüssigkeiten: 200°C (390 °F)</td>
<td>● bei Standard-Material: ca. 500 °C (930 °F)</td>
</tr>
<tr>
<td>● bei Dampf: 300 °C (570 °F)</td>
<td>● bei Sondermaterial: ca. 1000 °C (1830 °F)</td>
</tr>
<tr>
<td>max. Druck</td>
<td>420 bar (6000 psi)</td>
</tr>
</tbody>
</table>

Temperatur und Druck dürfen **keinen großen Schwankungen** unterworfen sein. Bei Gasen und Dampf ist gegebenenfalls eine **Temperatur- und Druckkompensation** vorzusehen (siehe S. 8).

Reynoldszahl

Für eine zuverlässige Messung dürfen die folgenden Werte der Reynoldszahl nicht unterschritten werden.

<table>
<thead>
<tr>
<th>Blendentyp</th>
<th>ungefähre minimale Reynoldszahl<sup>1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>scharf</td>
<td>5000</td>
</tr>
<tr>
<td>1/4-Kreis</td>
<td>500</td>
</tr>
<tr>
<td>Einlaufkonus</td>
<td>80</td>
</tr>
<tr>
<td>Segmentblende</td>
<td>5000</td>
</tr>
<tr>
<td>Bidirektional</td>
<td>5000</td>
</tr>
</tbody>
</table>

1) Die genauen Bedingungen hängen von der Art der Druckentnahme und vom Öffnungsverhältnis β ab.

Hinweis!

Die Reynoldszahl und die Anwendungsgrenzen werden bei der Auslegung im Applicator berechnet.
Temperaturgrenzen der Werkstoffe

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Kurzbezeichnung</th>
<th>Werkstoff-Nr.</th>
<th>max. Einsatztemperatur</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stähle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HII (Kesselblech)</td>
<td>P265 GH</td>
<td>1.0425</td>
<td>400 °C (750 °F)</td>
<td>DIN EN10222-2(^1)</td>
</tr>
<tr>
<td>C22.8</td>
<td>P250 HG</td>
<td>1.0460</td>
<td>480 °C (890 °F)</td>
<td>DIN EN10222-2(^1)</td>
</tr>
<tr>
<td>Wärmebeständige Stähle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Mo 3</td>
<td></td>
<td>1.5415</td>
<td>530 °C (980 °F)</td>
<td>DIN EN10222-2(^2)</td>
</tr>
<tr>
<td>13 CrMo 4-5</td>
<td></td>
<td>1.7335</td>
<td>570 °C (1050 °F)</td>
<td>DIN EN10222-2(^2)</td>
</tr>
<tr>
<td>10 CrMo 9-10</td>
<td></td>
<td>1.7380</td>
<td>600 °C (1110 °F)</td>
<td>DIN EN10222-2(^2)</td>
</tr>
<tr>
<td>X10 CrMoV 9-1</td>
<td></td>
<td>1.4903</td>
<td>670 °C (1230 °F)</td>
<td>DIN EN10222-2(^2)</td>
</tr>
<tr>
<td>Edelstähle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X 5 CrNi 18-10</td>
<td></td>
<td>1.4301</td>
<td>500 °C (930 °F)</td>
<td>DIN EN10222-5(^2)</td>
</tr>
<tr>
<td>X 5 CrNiMo17-12-2</td>
<td></td>
<td>1.4401</td>
<td>350 °C (660 °F)</td>
<td>DIN EN10222-5(^2)</td>
</tr>
<tr>
<td>X 2 CrNiMo 17-12-2</td>
<td></td>
<td>1.4404</td>
<td>500 °C (930 °F)</td>
<td>DIN EN10222-5(^2)</td>
</tr>
<tr>
<td>X 6 CrNiMoTi 17-12-2</td>
<td></td>
<td>1.4571</td>
<td>500 °C (930 °F)</td>
<td>DIN EN10222-5(^2)</td>
</tr>
<tr>
<td>Duplex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X 2 CrNiMoN 22-5-3</td>
<td></td>
<td>1.4462</td>
<td>280 °C (530 °F)</td>
<td>VdTÜV-Werkstoffblatt 418</td>
</tr>
<tr>
<td>X 1 NiCrMoCuN 22-20-5</td>
<td></td>
<td>1.4539</td>
<td>400 °C (750 °F)</td>
<td>Herstellerangabe</td>
</tr>
</tbody>
</table>

\(^1\) Werte für Schmiedestücke: Maximale Temperaturangaben zur Zeitstandfestigkeit und 1% Zeitdehngrenze
\(^2\) Werte für Schmiedestücke: Maximale Temperaturangaben zur Zugfestigkeit bei erhöhten Temperaturen.

Sonstige

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Kurzbezeichnung</th>
<th>Werkstoff-Nr.</th>
<th>max. Einsatztemperatur</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monel 400</td>
<td>(S-)NiCu 30 Fe</td>
<td>2.4360</td>
<td>425 °C (790 °F)</td>
<td>VdTÜV-Werkstoffblatt 263</td>
</tr>
<tr>
<td>Hastelloy C4</td>
<td>NiMo 16 Cr 16 Ti</td>
<td>2.4610</td>
<td>400 °C (750 °F)</td>
<td>VdTÜV-Werkstoffblatt 424</td>
</tr>
<tr>
<td>Hastelloy C276</td>
<td>NiMo 16 Cr 15 W</td>
<td>2.4819</td>
<td>450 °C (840 °F)</td>
<td>VdTÜV-Werkstoffblatt 400</td>
</tr>
<tr>
<td>Alloy 625</td>
<td>NiCr 22 Mo 9 Nb</td>
<td>2.4856</td>
<td>ca. 900 °C (1650 °F)</td>
<td>Stahlschlüssel(^1)</td>
</tr>
<tr>
<td>Alloy 825</td>
<td>NiCr 21 Mo</td>
<td>2.4858</td>
<td>450 °C (840 °F)</td>
<td>VdTÜV-Werkstoffblatt 432</td>
</tr>
</tbody>
</table>

\(^1\) Werte für Schmiedestücke: Maximale Temperaturangaben zur Zeitstandfestigkeit und 1% Zeitdehngrenze
ASME/AISI/ASTM

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Kurzbezeichnung</th>
<th>Werkstoff-Nr.</th>
<th>max. Einsatztemperatur</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stähle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-Si</td>
<td>A105</td>
<td>K03504</td>
<td>425 °C (790 °F)</td>
<td>ASME B16.5¹</td>
</tr>
<tr>
<td>Wärmeanteile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-1/2Mo</td>
<td>A182 Gr. F1</td>
<td>K12822</td>
<td>465°C (860 °F)</td>
<td>ASME B16.5¹</td>
</tr>
<tr>
<td>1 1/4Cr-1/2Mo-Si</td>
<td>A 182 Gr. F11 Cl.2</td>
<td>K11572</td>
<td>590 °C (1090 °F)</td>
<td>ASME B16.5¹</td>
</tr>
<tr>
<td>2 1/4Cr-1Mo</td>
<td>A 182 Gr. F22 Cl.3</td>
<td>K21590</td>
<td>590 °C (1090 °F)</td>
<td>ASME B16.5¹</td>
</tr>
<tr>
<td>Edelstähle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18Cr-8Ni</td>
<td>A 182 Gr. F304</td>
<td>S30400</td>
<td>538 °C (1000 °F)</td>
<td>ASME B16.5¹</td>
</tr>
<tr>
<td>16Cr-12Ni-2Mo</td>
<td>A 182 Gr. F316</td>
<td>S31600</td>
<td>538 °C (1000 °F)</td>
<td>ASME B16.5¹</td>
</tr>
<tr>
<td>16Cr-12Ni-2Mo</td>
<td>A 182 Gr. F316L</td>
<td>S31603</td>
<td>450 °C (840 °F)</td>
<td>ASME B16.5¹</td>
</tr>
<tr>
<td>22Cr-5Ni-3Mo-N</td>
<td>A 182 Gr. F51</td>
<td>S31803</td>
<td>315 °C (600 °F)</td>
<td>ASME B16.5¹</td>
</tr>
<tr>
<td></td>
<td>A 182 Gr. F904L</td>
<td>N08904</td>
<td>375 °C (700 °F)</td>
<td>ASME B16.5¹</td>
</tr>
</tbody>
</table>

1) Werte für Flansche: Maximale empfohlene Temperatur für dauerhaften Einsatz oder maximale Temperaturangabe in der Druck-Temperatur-Zuordnungsstabelle

Kunststoffe

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Kurzbezeichnung</th>
<th>Werkstoff-Nr.</th>
<th>max. Einsatztemperatur</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>Polyvinylchlorid</td>
<td></td>
<td>bis ca. 20 °C (70 °F)</td>
<td>Herstellerangabe</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylen</td>
<td></td>
<td>bis ca. 90 °C (190 °F)</td>
<td>Herstellerangabe</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylen</td>
<td></td>
<td>bis ca. 80 °C (170 °F)</td>
<td>Herstellerangabe</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidenfluorid</td>
<td></td>
<td>bis ca. 130 °C (260 °F)</td>
<td>Herstellerangabe</td>
</tr>
<tr>
<td>PTFE</td>
<td>Polytetrafluorethylen</td>
<td></td>
<td>bis ca. 150 °C (300 °F)</td>
<td>Herstellerangabe</td>
</tr>
</tbody>
</table>

Hinweis! Alle Temperaturangaben sind als Richtwerte zu verstehen. Im Einzelfall sind die Temperaturgrenzen anwendungsbezogen zu prüfen und können je nach Druck und Medium stark von diesen Werten abweichen.
Druck-/Temperaturzuordnung für Flansche nach EN1092-1:2001

PN100 / PN63

PN40 / PN25
Hinweis!
Für 316L sind die Werte für die 0,2%-Dehngrenze angegeben.
Druck-Temperatur-Zuordnung für Flansche nach ANSI B16.5-2003

Class 2500 / Class 1500

P (bar)

T (°C)

Class 900 / Class 600

P (bar)

T (°C)
Hinweis!
Für 316L sind die Werte für die 0,2%-Dehngrenze angegeben.
Konstruktiver Aufbau

Produktübersicht / Entnahmearten

Die Art der Differenzdruckentnahme ist entscheidend für die Konstruktion der Blende und den Einbau in die Rohrleitung. Die Produktfamilie Deltatop umfasst alle in der ISO5167 beschriebenen Entnahmearten.

Flanschentnahme

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Bemerkungen</th>
<th>Beispiel</th>
</tr>
</thead>
</table>
| DO61W | - Flanschentnahme
 - Einschließlich Vorschweißflanschen zum Einschweißen in die Rohrleitung
 - Steckblende austauschbar | ![Flanschentnahme DO61W](image1) |

Eckentnahme mit Einzelanbohrung

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Bemerkungen</th>
<th>Beispiel</th>
</tr>
</thead>
</table>
| DO62C | - Eckentnahme mit Einzelanbohrung
 - Einteilige Normblende; Fassungsringe und Blende aus einem Stück
 - Montage zwischen zwei Flansche | ![Eckentnahme DO62C](image2) |
Eckentnahme mit Ringkammer

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Bemerkungen</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO63C</td>
<td>Eckentnahme mit Ringkammer
Dreiteilige Normblende; Fassungsringe und Blende getrennt
Austauschbare Blendenscheibe
Montage zwischen zwei Flansche</td>
<td></td>
</tr>
<tr>
<td>DO65F</td>
<td>Eckentnahme mit Ringkammer
Einschließlich Ein- und Auslaufstrecken
Unabhängig vom exakten Innendurchmesser des Rohres
Mit Endflanschen zum Einbau in die Rohrleitung
Nasskalibration möglich</td>
<td></td>
</tr>
</tbody>
</table>

D-D/2 Entnahme

Rohrentnahme

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Bemerkungen</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO64P</td>
<td>Steckblende zur Montage zwischen zwei Flansche
Alle Entnahmearten möglich; ideal bei D-D/2 und Rohrentnahme und als Austausch bei Flanschentnahme</td>
<td></td>
</tr>
<tr>
<td>DN (mm)</td>
<td>PN6</td>
<td>PN10</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>32</td>
<td>135°</td>
<td>135°</td>
</tr>
<tr>
<td>40</td>
<td>135°</td>
<td>135°</td>
</tr>
<tr>
<td>50</td>
<td>135°</td>
<td>135°</td>
</tr>
<tr>
<td>65</td>
<td>135°</td>
<td>135°</td>
</tr>
<tr>
<td>80</td>
<td>135°</td>
<td>90°</td>
</tr>
<tr>
<td>100</td>
<td>135°</td>
<td>90°</td>
</tr>
<tr>
<td>125</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>150</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>200</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>250</td>
<td>60°</td>
<td>60°</td>
</tr>
<tr>
<td>300</td>
<td>60°</td>
<td>60°</td>
</tr>
<tr>
<td>350</td>
<td>60°</td>
<td>45°</td>
</tr>
<tr>
<td>400</td>
<td>45°</td>
<td>45°</td>
</tr>
<tr>
<td>450</td>
<td>45°</td>
<td>36°</td>
</tr>
<tr>
<td>500</td>
<td>36°</td>
<td>36°</td>
</tr>
<tr>
<td>600</td>
<td>36°</td>
<td>36°</td>
</tr>
<tr>
<td>700</td>
<td>30°</td>
<td>30°</td>
</tr>
<tr>
<td>800</td>
<td>30°</td>
<td>30°</td>
</tr>
<tr>
<td>900</td>
<td>30°</td>
<td>26°</td>
</tr>
<tr>
<td>1000</td>
<td>26°</td>
<td>26°</td>
</tr>
</tbody>
</table>

1) in Anlehnung an DIN19205-1
Entnahmestutzen für Flansche nach ASME B16.5 und ASME B16.47 in Anlehnung an DIN19205-1 (Bestellcode F)

<table>
<thead>
<tr>
<th>DN (inch)</th>
<th>Cl. 150</th>
<th>Cl. 300</th>
<th>Cl. 600</th>
<th>Cl. 900</th>
<th>Cl. 1500</th>
<th>Cl. 2500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2"</td>
<td>135°</td>
<td>135°</td>
<td>135°</td>
<td>135°</td>
<td>135°</td>
<td>135°</td>
</tr>
<tr>
<td>2"</td>
<td>135°</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>2 1/2"</td>
<td>135°</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>3"</td>
<td>135°</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>4"</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>5"</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>6"</td>
<td>90°</td>
<td>60°</td>
<td>60°</td>
<td>60°</td>
<td>60°</td>
<td>90°</td>
</tr>
<tr>
<td>8"</td>
<td>90°</td>
<td>60°</td>
<td>60°</td>
<td>60°</td>
<td>60°</td>
<td>90°</td>
</tr>
<tr>
<td>10"</td>
<td>60°</td>
<td>45°</td>
<td>45°</td>
<td>45°</td>
<td>60°</td>
<td>60°</td>
</tr>
<tr>
<td>12"</td>
<td>60°</td>
<td>45°</td>
<td>36°</td>
<td>36°</td>
<td>45°</td>
<td>60°</td>
</tr>
<tr>
<td>14"</td>
<td>60°</td>
<td>36°</td>
<td>36°</td>
<td>36°</td>
<td>45°</td>
<td></td>
</tr>
<tr>
<td>16"</td>
<td>45°</td>
<td>36°</td>
<td>36°</td>
<td>36°</td>
<td>45°</td>
<td></td>
</tr>
<tr>
<td>18"</td>
<td>45°</td>
<td>30°</td>
<td>36°</td>
<td>36°</td>
<td>45°</td>
<td></td>
</tr>
<tr>
<td>20"</td>
<td>36°</td>
<td>30°</td>
<td>30°</td>
<td>36°</td>
<td>45°</td>
<td></td>
</tr>
<tr>
<td>24"</td>
<td>36°</td>
<td>30°</td>
<td>30°</td>
<td>30°</td>
<td>45°</td>
<td></td>
</tr>
<tr>
<td>28"</td>
<td>26°</td>
<td>26°</td>
<td>26°</td>
<td>26°</td>
<td>36°</td>
<td></td>
</tr>
<tr>
<td>32"</td>
<td>26°</td>
<td>26°</td>
<td>26°</td>
<td>26°</td>
<td>36°</td>
<td></td>
</tr>
<tr>
<td>36"</td>
<td>22,5°</td>
<td>22,5°</td>
<td>26°</td>
<td>26°</td>
<td>36°</td>
<td></td>
</tr>
<tr>
<td>40"</td>
<td>20°</td>
<td>22,5°</td>
<td>22,5°</td>
<td>30°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Blendenkante

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Blendenkante</th>
<th>min. Reynoldszahl</th>
<th>Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>scharf</td>
<td>Re ≥ 5000</td>
<td>Standard; sollte bei ausreichender Reynoldszahl immer verwendet werden.</td>
</tr>
<tr>
<td>2</td>
<td>Bidirektional</td>
<td>Re ≥ 5000</td>
<td>einsetzen, wenn Strömungen in beide Richtungen gemessen werden sollen</td>
</tr>
<tr>
<td>3</td>
<td>1/4 Kreis</td>
<td>Re ≥ 500</td>
<td>nur bei Re ≤ 5000</td>
</tr>
<tr>
<td>4</td>
<td>Einlaufkonus</td>
<td>Re ≥ 80</td>
<td>nur bei Re ≤ 500</td>
</tr>
</tbody>
</table>
| 5 | Segmentblende| Re ≥ 5000 | • bei Flüssigkeiten mit Gasanteil (Blendenöffnung oben)
| | | | • bei Flüssigkeiten mit Feststoffanteil (Blendenöffnung unten) |

Hinweis:
- Die Blendenkante wird in Merkmal 80 der jeweiligen Produktstruktur ausgewählt.
Vent/Drain hole

1: Blende mit vent hole; 2: Blende mit drain hole

- Blenden mit vent hole werden verwendet für Flüssigkeiten mit Gasbildung. Gas kann durch das vent hole die Blende passieren.
- Blenden mit drain hole werden verwendet für Gase mit Kondensatbildung. Kondensat kann durch das drain hole die Blende passieren.

Hinweis:
- Blenden mit vent oder drain hole können nur in horizontalen Leitungen eingesetzt werden.
- Vent und drain hole sind nicht erhältlich für Ringkammerblenden (DO63C) und Kleinmessstrecken (DO65F).
- Vent hole oder drain hole werden in Merkmal 90 der jeweiligen Produktstruktur ausgewählt.

Abmessungen

Der Durchmesser des vent hole bzw. drain hole hängt vom Durchmesser der Blendenöffnung ab:

<table>
<thead>
<tr>
<th>Durchmesser der Blendenöffnung [mm (inch)]</th>
<th>Durchmesser des vent bzw. drain hole [mm (inch)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>25,4 - 88,9 (1.000 - 3.500)</td>
<td>2,4 (3/32)</td>
</tr>
<tr>
<td>89,0 - 104,8 (3.501 - 4.125)</td>
<td>3,2 (1/8)</td>
</tr>
<tr>
<td>104,9 - 127,0 (4.126 - 5.000)</td>
<td>4,0 (5/32)</td>
</tr>
<tr>
<td>127,1 - 152,4 (5.001 - 6.000)</td>
<td>4,8 (3/16)</td>
</tr>
<tr>
<td>152,4 - 171,5 (6.000 - 6.750)</td>
<td>5,6 (7/32)</td>
</tr>
<tr>
<td>171,5 - 190,5 (6.751 - 7.500)</td>
<td>6,4 (1/4)</td>
</tr>
<tr>
<td>190,6 - 212,7 (7.501 - 8.375)</td>
<td>7,1 (9/32)</td>
</tr>
<tr>
<td>212,8 - 235,0 (8.376 - 9.250)</td>
<td>8,0 (5/16)</td>
</tr>
<tr>
<td>235,1 - 254,0 (9.251 - 10.000)</td>
<td>8,7 (11/32)</td>
</tr>
<tr>
<td>254,0 - 276,2 (10.001 - 10.875)</td>
<td>9,5 (3/8)</td>
</tr>
<tr>
<td>276,3 - 295,3 (10.876 - 11.625)</td>
<td>10,3 (13/32)</td>
</tr>
<tr>
<td>295,3 - 317,5 (11.626 - 12.500)</td>
<td>11,1 (7/16)</td>
</tr>
<tr>
<td>317,5 - 336,6 (12.501 - 13.250)</td>
<td>11,9 (15/32)</td>
</tr>
<tr>
<td>> 336,6 (> 13.251)</td>
<td>12,7 (1/2)</td>
</tr>
</tbody>
</table>
Wirkdruckanschluss für die Getrennt-Ausführung

Bei der Getrennt-Ausführung stehen für die Verbindung der Wirkdruckleitungen zwischen den einzelnen Komponenten folgende Anschlüsse zur Verfügung:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Ausgang (vom Wirkdruckgeber)</th>
<th>Eingang (zum Zubehörteil)</th>
<th>Verwendung/Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schweißanschluss 14/21,3/24 mm</td>
<td>Schweißanschluss 14/21,3/24 mm</td>
<td>für höchste Ansprüche; nicht lösfarbar</td>
</tr>
<tr>
<td>2</td>
<td>G½ DIN 19207</td>
<td>G½ DIN 19207 + 2 Flansche¹</td>
<td>lösbare Verbindung; speziell für Dampf</td>
</tr>
<tr>
<td>3</td>
<td>MNPT½</td>
<td>FNPT½</td>
<td>einfache Montage; nicht bei Dampf</td>
</tr>
<tr>
<td>4</td>
<td>Rohr 12 mm</td>
<td>Schnellring (Ermeto 12S)</td>
<td>einfache Montage; leicht lösfarbar; nicht bei Dampf</td>
</tr>
</tbody>
</table>

¹) Die Flansche sind im Lieferumfang des Zubehörteils enthalten.
Wirkdruckanschluss für die Kompakt-Ausführung (IEC61518)

Abmessungen in mm (inch)

Hinweis!
Der Typ des Wirkdruckanschlusses wird in Merkmal 100 der Produktstruktur festgelegt.
Erläuterungen zu den Produktstrukturen

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Name</th>
<th>Hinweise</th>
<th>gültig für</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DO61W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DO62C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DO63C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DO64P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DO65F</td>
</tr>
</tbody>
</table>

Wirkdruckgeber

| 10 | Anwendung; Ausführung | Anwendung: "Gas", "Flüssigkeit" oder "Dampf"
Ausführung: "Getrennt" oder "Kompakt"
Siehe Kapitel "Einbauten", Seite 13.
Für DO64P: Festlegung der Entnahmeart (für die Berechnung) | x x x x x |

| 20 | Rohrleitung; Orientierung | Rohrleitung: "Horizontal", "Vertikal"
Orientierung:
 - "link", "rechts", "oben/unten" bei horizontalen Leitungen
 - "aufwärts", "abwärts", "aufwärts/abwärts" bei vertikalen Leitungen
Außerdem wird der Winkel der Entnahmestutzen angegeben
Siehe Kapitel Einbauten, Seite 13.
Für Stutzenwinkel nach DIN siehe Seite 26. | x x x x |

| 30 | Blende | Gibt an:
 - die Druckstufe der Blendenscheibe
 - den Werkstoff der Blendenscheibe
Für die Temperaturgrenzen der Werkstoffe siehe Seite 18. | x |

| 40 | Prozessanschluss; Blende | Gibt an:
 - die Druckstufe des Montageflansches/des Fassungsringes
 - den Werkstoff des Flansches bzw. Fassungsringes
 - den Werkstoff der Blendenkante
Für die Temperaturgrenzen der Werkstoffe siehe Seite 18.
Beispiel:
Auswahl: BAN -> PN6 B1, C22.8; 316L
heiße:
PN6: Druckstufe des Flansches/Fassungsringes
B1: Form der Dichtfläche
C22.8: Werkstoff des Flansches/Fassungsringes
316L: Werkstoff der Blendenkante | x x x x |

| 50 | Baustärke | Gibt die Baustärke der Blendenscheibe an. | x |

| 60 | Einbautiefe; Werkstoff | Gibt an:
 - die Dicke des Fassungsringes (Maß L auf Seite 42)
 - den Werkstoff des Trägerrings | x x |

| 70 | Dichtung | Gibt die Art der Dichtung an
 - zwischen Blendenscheibe und Flansch (für DO61W)
 - zwischen Blendenscheibe und Fassungsring (für DO63C und DO65F) | x x x |

| 80 | Blendenscheibe | Gibt die Form der Blendenscheibe an (siehe Seite 28) | x x x x x |

| 90 | Vent/Drain | Gibt an, ob ein Vent- oder Drain-Hole vorhanden ist (siehe Seite 29) | x x x x x |

<p>| 100 | Wirkdruckanschluss; Dichtung | Gibt an:
 - Die Art des Wirkdruckanschlusses (siehe Seite 30)
 - Den Werkstoff der Dichtung am Wirkdruckanschluss | x x x x |</p>
<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Name</th>
<th>Hinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zubehör: Kondensatgefäß</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 200 | 2x Kondensatgefäß Werkstoff; Volumen; PN | Gibt an:
- den Werkstoff der Kondensatgefäße
- das Volumen der Kondensatgefäße
- die Druckstufe der Kondensatgefäße
Für Einzelheiten siehe Seite 70.
Hinweis!
Bei der Auswahl "nicht gewählt" werden keine Kondensatgefäße bestellt. In den Merkmalen 210 bis 230 ist dann zu wählen "nicht benötigt". |
| 210 | Befüllstutzen Kondensatgefäß | Gibt die Art des Befüllstutzens an (siehe Seite 70). |
| 220 | Eingang | Gibt den Eingang (vom Prozess) des Kondensatgefäuses an (siehe Seite 30). |
| 230 | Ausgang | Gibt den Ausgang des Kondensatgefäuses an (siehe Seite 30). |
| **Zubehör: Absperrarmatur** | | |
| 250 | 2 x Absperrarmatur; Packung | Gibt an:
- die Art der Absperrarmatur
- den Werkstoff der Ventilpackung
Für Einzelheiten siehe Seite 67.
Hinweis!
Bei der Auswahl "nicht gewählt" wird keine Absperrarmatur bestellt. In den Merkmalen 260 bis 280 ist dann zu wählen "nicht benötigt". |
| 260 | Werkstoff Absperrarmatur | Gibt den Werkstoff der Absperrarmatur an.
Für die Temperaturgrenzen der Werkstoffe siehe Seite 18. |
| 270 | Eingang Absperrarmatur | Gibt den Eingang (vom Prozess) der Absperrarmatur an (siehe Seite 30). |
| 280 | Ausgang Absperrarmatur | Gibt den Ausgang der Absperrarmatur an (siehe Seite 30). |
| **Zubehör: Ventilblock** | | |
| 300 | Ventilblock Ausführung | Gibt die Ausführung der Ventilblocks an (siehe Seite 72 ff.)
Hinweis!
Bei der Auswahl "nicht gewählt" wird kein Ventilblock bestellt. In den Merkmalen 310 bis 330 ist dann zu wählen "nicht benötigt". |
| 310 | Packung Ventilblock | Gibt den Werkstoff der Ventilblock-Packung an.
Für die Temperaturgrenzen der Werkstoffe siehe Seite 18. |
| 320 | Prozessanschluss Ventilblock | Gibt den Prozessanschluss des Ventilblocks an (siehe Seite 30). |
| 330 | Dichtungen Ventilblock, Schrauben | Gibt an:
- Den Dichtungswerkstoff zwischen Ventilblock und Transmitter
- Größe der Ventilblock-Schrauben
Für die Temperaturgrenzen der Werkstoffe siehe Seite 18.
Achtung!
Die Schrauben müssen passend zum Differenzdrucktransmitter Deltabar gewählt werden. |
| **Differenzdrucktransmitter** | | |
| 450 | DP-Transmitter Deltabar | Gibt an, ob ein Differenzdrucktransmitter Deltabar mitbestellt wird. |
| **Zusatzausstattung** | | |
| 500 | Zusatzausstattung Blende | Mit diesen Merkmalen lassen sich weitere Eigenschaften (z.B. Werkstoff-Abnahmeprüfzeugnisse) der jeweiligen Komponenten wählen.
Die Merkmale sind optional, das heißt: |
| 520 | Zusatzausstattung Kondensatgefäß |
- Es ist nicht notwendig, in diesen Merkmalen eine Auswahl zu treffen.
- Es können in jedem dieser Merkmale beliebig viele Ausprägungen gewählt werden. |
| 530 | Zusatzausstattung Absperrarmatur |
- Es ist nicht notwendig, in diesen Merkmalen eine Auswahl zu treffen.
- Es können in jedem dieser Merkmale beliebig viele Ausprägungen gewählt werden. |
| 540 | Zusatzausstattung Ventilblock | |
| 550 | Zusatzausstattung Allgemein | |

Endress+Hauser
Deltatop DO61W: Messflansch

Typische Konfigurationen

Ausführung
Messflansche mit Steckblende als Kompakt- oder Getrennt-Ausführung, einschließlich Zubehör

Entnahmeart
Flanschentnahme

Werkstoffe

<table>
<thead>
<tr>
<th>Werkstoff</th>
<th>C-Stahl-Ausführung (C-22.8, A105)</th>
<th>Edelstahl-Ausführung (316L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flansche DIN</td>
<td>C22.8 (1.0460)</td>
<td>316L (1.4404)</td>
</tr>
<tr>
<td>Flansche ASME</td>
<td>A105</td>
<td>316L</td>
</tr>
<tr>
<td>Blendenscheibe</td>
<td>316L (1.4404)</td>
<td>316L (1.4404)</td>
</tr>
<tr>
<td>Dichtung</td>
<td>• Standard (Klingersil oder Graphit, je nach Anwendung) • Spiraldichtung: 316L/Graphit</td>
<td></td>
</tr>
</tbody>
</table>
Abmessungen, Gewicht

<table>
<thead>
<tr>
<th>Variante</th>
<th>D (mm)</th>
<th>L [mm (inch)]</th>
<th>E1) [mm (inch)]</th>
<th>Gewicht2) [kg (lbs)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PN10</td>
<td>PN16</td>
<td>PN25</td>
<td>PN40</td>
<td>PN64</td>
</tr>
<tr>
<td>DO61W50</td>
<td>50</td>
<td>133 (5.24)</td>
<td>135 (5.31)</td>
<td>135 (5.31)</td>
</tr>
<tr>
<td>DO61W65</td>
<td>65</td>
<td>133 (5.24)</td>
<td>139 (5.47)</td>
<td>139 (5.47)</td>
</tr>
<tr>
<td>DO61W80</td>
<td>80</td>
<td>140 (5.51)</td>
<td>148 (5.83)</td>
<td>148 (5.83)</td>
</tr>
<tr>
<td>DO61W1H</td>
<td>100</td>
<td>144 (5.67)</td>
<td>162 (6.38)</td>
<td>162 (6.38)</td>
</tr>
<tr>
<td>DO61W1Z</td>
<td>125</td>
<td>146 (5.75)</td>
<td>164 (6.46)</td>
<td>164 (6.46)</td>
</tr>
<tr>
<td>DO61W1F</td>
<td>150</td>
<td>146 (5.75)</td>
<td>174 (6.85)</td>
<td>174 (6.85)</td>
</tr>
<tr>
<td>DO61W2H</td>
<td>200</td>
<td>156 (6.14)</td>
<td>180 (7.09)</td>
<td>188 (7.40)</td>
</tr>
<tr>
<td>DO61W2F</td>
<td>250</td>
<td>164 (6.46)</td>
<td>192 (7.56)</td>
<td>217 (8.54)</td>
</tr>
<tr>
<td>DO61W3H</td>
<td>300</td>
<td>164 (6.46)</td>
<td>196 (7.72)</td>
<td>237 (9.33)</td>
</tr>
<tr>
<td>DO61W3F</td>
<td>350</td>
<td>164 (6.46)</td>
<td>257 (10.1)</td>
<td>257 (10.1)</td>
</tr>
<tr>
<td>DO61W4H</td>
<td>400</td>
<td>172 (6.77)</td>
<td>277 (10.9)</td>
<td>277 (10.9)</td>
</tr>
<tr>
<td>DO61W4F</td>
<td>450</td>
<td>3)</td>
<td>3)</td>
<td>3)</td>
</tr>
<tr>
<td>DO61W5H</td>
<td>500</td>
<td>176 (6.93)</td>
<td>289 (11.4)</td>
<td>289 (11.4)</td>
</tr>
<tr>
<td>DO61W6H</td>
<td>600</td>
<td>3)</td>
<td>3)</td>
<td>3)</td>
</tr>
</tbody>
</table>

1) Mindestwerte; genauer Wert wird bei Auslegung festgelegt
2) Das Gewicht hängt vom Innendurchmesser des Rohres ab. Die Angaben in der Tabelle sind als Richtwerte zu verstehen.
3) In Vorbereitung, in Anlehnung an DIN19214
Tabelle: Deltatop DO61W, Flansche nach ASME B16.36

<table>
<thead>
<tr>
<th>Variante</th>
<th>D [inch]</th>
<th>L [mm (inch)]</th>
<th>E1 [mm (inch)]</th>
<th>Gewicht2 [kg (lbs)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cl. 300</td>
<td>Cl. 600</td>
<td>Cl. 900</td>
<td>Cl. 1500</td>
</tr>
<tr>
<td>DO61W25</td>
<td>1</td>
<td>175 (6.9)</td>
<td>175 (6.9)</td>
<td>156 (6.1)</td>
</tr>
<tr>
<td>DO61W40</td>
<td>1½</td>
<td>181 (7.1)</td>
<td>181 (7.1)</td>
<td>175 (6.9)</td>
</tr>
<tr>
<td>DO61W50</td>
<td>2</td>
<td>179 (7.0)</td>
<td>179 (7.0)</td>
<td>213 (8.4)</td>
</tr>
<tr>
<td>DO61W65</td>
<td>2½</td>
<td>184 (7.2)</td>
<td>184 (7.2)</td>
<td>220 (8.7)</td>
</tr>
<tr>
<td>DO61W80</td>
<td>3</td>
<td>184 (7.2)</td>
<td>197 (7.8)</td>
<td>213 (8.4)</td>
</tr>
<tr>
<td>DO61W1H</td>
<td>4</td>
<td>190 (7.5)</td>
<td>222 (8.7)</td>
<td>239 (9.4)</td>
</tr>
<tr>
<td>DO61W1Z</td>
<td>5</td>
<td>207 (8.1)</td>
<td>248 (9.8)</td>
<td>264 (10.4)</td>
</tr>
<tr>
<td>DO61W1F</td>
<td>6</td>
<td>207 (8.1)</td>
<td>254 (10.0)</td>
<td>289 (11.4)</td>
</tr>
<tr>
<td>DO61W2H</td>
<td>8</td>
<td>228 (9.0)</td>
<td>286 (11.3)</td>
<td>334 (13.1)</td>
</tr>
<tr>
<td>DO61W2F</td>
<td>10</td>
<td>241 (9.5)</td>
<td>324 (12.8)</td>
<td>378 (14.9)</td>
</tr>
<tr>
<td>DO61W3H</td>
<td>12</td>
<td>266 (10.5)</td>
<td>330 (13.0)</td>
<td>410 (16.1)</td>
</tr>
<tr>
<td>DO61W3F</td>
<td>14</td>
<td>292 (11.5)</td>
<td>350 (13.8)</td>
<td>435 (17.1)</td>
</tr>
<tr>
<td>DO61W4H</td>
<td>16</td>
<td>301 (11.8)</td>
<td>379 (15.0)</td>
<td>442 (17.4)</td>
</tr>
<tr>
<td>DO61W4F</td>
<td>18</td>
<td>328 (12.9)</td>
<td>391 (15.4)</td>
<td>467 (18.4)</td>
</tr>
<tr>
<td>DO61W5H</td>
<td>20</td>
<td>333 (13.1)</td>
<td>403 (15.9)</td>
<td>502 (19.8)</td>
</tr>
<tr>
<td>DO61W6H</td>
<td>24</td>
<td>345 (13.6)</td>
<td>429 (16.9)</td>
<td>594 (23.4)</td>
</tr>
</tbody>
</table>

1) Mindestwert; genauer Wert wird bei Auslegung festgelegt

2) Das Gewicht hängt vom Innendurchmesser des Rohres ab. Die Angaben in der Tabelle sind als Richtwerte zu verstehen.

3) in Vorbereitung
Varianten

<table>
<thead>
<tr>
<th>Variante</th>
<th>Nennweite</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO61W25</td>
<td>1"</td>
</tr>
<tr>
<td>DO61W40</td>
<td>1-1/2"</td>
</tr>
<tr>
<td>DO61W50</td>
<td>DN50 / 2"</td>
</tr>
<tr>
<td>DO61W65</td>
<td>DN65 / 2-1/2"</td>
</tr>
<tr>
<td>DO61W80</td>
<td>DN80 / 3"</td>
</tr>
<tr>
<td>DO61W1H</td>
<td>DN100 / 4"</td>
</tr>
<tr>
<td>DO61W1Z</td>
<td>DN125 / 5"</td>
</tr>
<tr>
<td>DO61W1F</td>
<td>DN150 / 6"</td>
</tr>
<tr>
<td>DO61W2H</td>
<td>DN200 / 8"</td>
</tr>
<tr>
<td>DO61W2F</td>
<td>DN250 / 10"</td>
</tr>
<tr>
<td>DO61W3H</td>
<td>DN300 / 12"</td>
</tr>
<tr>
<td>DO61W3F</td>
<td>DN350 / 14"</td>
</tr>
<tr>
<td>DO61W4H</td>
<td>DN400 / 16"</td>
</tr>
<tr>
<td>DO61W4F</td>
<td>DN450 / 18"</td>
</tr>
<tr>
<td>DO61W5H</td>
<td>DN500 / 20"</td>
</tr>
<tr>
<td>DO61W6H</td>
<td>DN500 / 20"</td>
</tr>
</tbody>
</table>

Produktstruktur

Anwendung; Ausführung

<table>
<thead>
<tr>
<th>Buchstabe</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Gas; Getrennt</td>
</tr>
<tr>
<td>C</td>
<td>Gas; Kompakt</td>
</tr>
<tr>
<td>D</td>
<td>Flüssigkeit; Getrennt</td>
</tr>
<tr>
<td>E</td>
<td>Flüssigkeit; Kompakt</td>
</tr>
<tr>
<td>F</td>
<td>Dampf; Getrennt</td>
</tr>
<tr>
<td>G</td>
<td>Dampf; Kompakt</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

Rohrleitung; Orientierung

<table>
<thead>
<tr>
<th>Buchstabe</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Horizontal; Links</td>
</tr>
<tr>
<td>C</td>
<td>Horizontal; Rechts</td>
</tr>
<tr>
<td>E</td>
<td>Horizontal; Oben/unten 0°-Stutzen</td>
</tr>
<tr>
<td>F</td>
<td>Horizontal; Oben/unten Stutzenwinkel DIN</td>
</tr>
<tr>
<td>G</td>
<td>Horizontal; 180°-Stutzen</td>
</tr>
<tr>
<td>M</td>
<td>Vertikal aufwärts; 0°-Stutzen</td>
</tr>
<tr>
<td>N</td>
<td>Vertikal aufwärts; 90°-Stutzen</td>
</tr>
<tr>
<td>P</td>
<td>Vertikal abwärts; 0°-Stutzen</td>
</tr>
<tr>
<td>R</td>
<td>Vertikal abwärts; 90°-Stutzen</td>
</tr>
<tr>
<td>S</td>
<td>Vertikal aufwärts/abwärts 0°-Stutzen</td>
</tr>
<tr>
<td>T</td>
<td>Vertikal aufwärts/abwärts 90°-Stutzen</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

Prozessanschluss; Blende

EN-Flansche

<table>
<thead>
<tr>
<th>Flansch</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBN</td>
<td>PN10 B1, C22.8; 316L</td>
</tr>
<tr>
<td>BBS</td>
<td>PN10 B1, 316L; 316L</td>
</tr>
<tr>
<td>BCN</td>
<td>PN16 B1, C22.8; 316L</td>
</tr>
<tr>
<td>BCS</td>
<td>PN16 B1, 316L; 316L</td>
</tr>
<tr>
<td>BDN</td>
<td>PN25 B1, C22.8; 316L</td>
</tr>
<tr>
<td>BDS</td>
<td>PN25 B1, 316L; 316L</td>
</tr>
<tr>
<td>BEN</td>
<td>PN40 B1, C22.8; 316L</td>
</tr>
<tr>
<td>BES</td>
<td>PN40 B1, 316L; 316L</td>
</tr>
<tr>
<td>BFN</td>
<td>PN63 B2, C22.8; 316L</td>
</tr>
<tr>
<td>BFS</td>
<td>PN63 B2, 316L; 316L</td>
</tr>
<tr>
<td>BGN</td>
<td>PN100 B2, C22.8; 316L</td>
</tr>
<tr>
<td>BGS</td>
<td>PN100 B2, 316L; 316L</td>
</tr>
<tr>
<td>BHN</td>
<td>PN160 E, C22.8; 316L</td>
</tr>
<tr>
<td>BHS</td>
<td>PN160 E, 316L; 316L</td>
</tr>
</tbody>
</table>

ANSI-Flansche

<table>
<thead>
<tr>
<th>Flansch</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBQ</td>
<td>Cl.300 RF, 316L; 316L</td>
</tr>
<tr>
<td>FBS</td>
<td>Cl.300 RF, 316L; 316L</td>
</tr>
<tr>
<td>FCQ</td>
<td>Cl.600 RF, A105; 316L</td>
</tr>
<tr>
<td>FCS</td>
<td>Cl.600 RF, 316L; 316L</td>
</tr>
<tr>
<td>FDQ</td>
<td>Cl.900 RF, A105; 316L</td>
</tr>
<tr>
<td>FDS</td>
<td>Cl.900 RF, 316L; 316L</td>
</tr>
<tr>
<td>FEQ</td>
<td>Cl.1500 RF, A105; 316L</td>
</tr>
<tr>
<td>FES</td>
<td>Cl.1500 RF, 316L; 316L</td>
</tr>
<tr>
<td>FFG</td>
<td>Cl.2500 RF, A105; 316L</td>
</tr>
<tr>
<td>FFS</td>
<td>Cl.2500 RF, 316L; 316L</td>
</tr>
</tbody>
</table>
40 Prozessanschluss; Blende

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FK3</td>
<td>Cl.900 RTJ, A105; 316L</td>
<td></td>
</tr>
<tr>
<td>FK5</td>
<td>Cl.900 RTJ, 316L; 316L</td>
<td></td>
</tr>
<tr>
<td>FLO</td>
<td>Cl.1500 RTJ, A105; 316L</td>
<td></td>
</tr>
<tr>
<td>FLS</td>
<td>Cl.1500 RTJ, 316L; 316L</td>
<td></td>
</tr>
<tr>
<td>FMO</td>
<td>Cl.2500 RTJ, A105; 316L</td>
<td></td>
</tr>
<tr>
<td>FMS</td>
<td>Cl.2500 RTJ, 316L; 316L</td>
<td>Y99 Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

70 Dichtung

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spiral, 316L/Graphit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
</tr>
</tbody>
</table>

80 Blendenkante

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Schart, Re>5000</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>1/4 Kreis Düse, Re 500-5000</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>Segmentblende</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Bidirektional</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
</tr>
</tbody>
</table>

90 Vent/Drain

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht gewählt</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Vent hole</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Drain hole</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
</tr>
</tbody>
</table>

100 Wirkdruckanschluss; Dichtung

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>IEC61518; PTFE</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>IEC61518; FKM</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>IEC61518 gekröpft, feuchtes Gas; PTFE</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>IEC61518 gekröpft, feuchtes Gas; FKM</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>FNPT; Ohne</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Schweissan. kompakt (Dampf); Ohne</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Stutzen, MNPT1/2; Ohne</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Stutzen, Rohr 12mm; Ohne</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Schweissan. 21,3mm; Ohne</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Stutzen, G1/2 DIN19207; Ohne</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
</tr>
</tbody>
</table>

200 2x Kondensatgefäßer Werkst.; Volumen; PN

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nicht gewählt</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>HII (265 GH); 300cm³; PN100</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>316L, 300cm³, PN100</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16Mo3, 250cm³, PN250</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
</tr>
</tbody>
</table>

210 Befüllstutzen Kondensatgefäßer

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>NPT1/2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
</tr>
</tbody>
</table>

220 Eingang Kondensatgefäßer

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Schweissan. 21,3mm</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Schweissan. kompakt (Dampf)</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>G1/2 DIN19207 Stahl + 2x Flansch</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>G1/2 DIN19207 rostfr. Stahl + 2x Flansch</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
</tr>
</tbody>
</table>

230 Ausgang Kondensatgefäßer

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Schweissan. 21,3mm</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Schweissan. kompakt (Dampf)</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Stutzen, 12mm</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Stutzen, G1/2 DIN19207</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>IEC61518, PTFE</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>IEC61518, FKM</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
</tr>
</tbody>
</table>

250 2x Absperrarmatur; Packung

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nicht gewählt</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ventil; PTFE Packung <200°C</td>
<td></td>
</tr>
</tbody>
</table>
250 2x Absperrarmatur; Packung

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Ventil; Reingraphit Packung <300°C</td>
</tr>
<tr>
<td>4</td>
<td>Ventil HT; Reingraphit Packung >300°C</td>
</tr>
<tr>
<td>9</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

260 Werkstoff Absperrarmatur

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
</tr>
<tr>
<td>C</td>
<td>C22.8</td>
</tr>
<tr>
<td>D</td>
<td>316Ti</td>
</tr>
<tr>
<td>G</td>
<td>16Mo3</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

270 Eingang Absperrarmatur

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
</tr>
<tr>
<td>B</td>
<td>Ermeto 12S</td>
</tr>
<tr>
<td>C</td>
<td>FNPT 1/2</td>
</tr>
<tr>
<td>E</td>
<td>Schweissen. 21,3mm</td>
</tr>
<tr>
<td>V</td>
<td>G1/2 DIN1920 Stahl + 2x Flansch</td>
</tr>
<tr>
<td>W</td>
<td>G1/2 DIN1920 rostfr. Stahl + 2x Flansch</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

280 Ausgang Absperrarmatur

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
</tr>
<tr>
<td>B</td>
<td>Schneidring (Ermeto 12S)</td>
</tr>
<tr>
<td>C</td>
<td>FNPT1/2</td>
</tr>
<tr>
<td>L</td>
<td>Schweissen. 14mm</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

300 Ventilblock Ausführung

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A11</td>
<td>nicht gewählt</td>
</tr>
<tr>
<td>AA1</td>
<td>3-fach, Stahl, geschmiedet</td>
</tr>
<tr>
<td>AA2</td>
<td>3-fach, 316Ti, geschmiedet</td>
</tr>
<tr>
<td>AB1</td>
<td>3-fach, Stahl, gefräst</td>
</tr>
<tr>
<td>AB2</td>
<td>3-fach, 316L, gefräst</td>
</tr>
<tr>
<td>BB1</td>
<td>5-fach, Stahl, gefräst, Entlüftung</td>
</tr>
<tr>
<td>BB2</td>
<td>5-fach, 316L, gefräst, Entlüftung</td>
</tr>
<tr>
<td>CA1</td>
<td>5-fach, Stahl, geschmiedet, Ausblasventil</td>
</tr>
<tr>
<td>CA2</td>
<td>5-fach, 316Ti, geschmiedet, Ausblasventil</td>
</tr>
<tr>
<td>DA1</td>
<td>5-fach HT, Stahl, 16Mo3, geschmiedet, Ausblasventil</td>
</tr>
<tr>
<td>DA2</td>
<td>5-fach HT, 316Ti, geschmiedet, Ausblasventil</td>
</tr>
<tr>
<td>KA1</td>
<td>3-fach, Stahl, geschmiedet, IEC61518, beidseitig</td>
</tr>
<tr>
<td>KA2</td>
<td>3-fach, 316Ti, geschmiedet, IEC61518, beidseitig</td>
</tr>
<tr>
<td>LA2</td>
<td>5-fach, 316Ti, geschmiedet, IEC61518 beidseitig, Entlüftung</td>
</tr>
<tr>
<td>YA9</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

310 Packung Ventilblock

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
</tr>
<tr>
<td>B</td>
<td>PTFE, 200 °C</td>
</tr>
<tr>
<td>C</td>
<td>PTFE/Reingraphit, HT</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

320 Prozessanschluss Ventilblock

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ohne</td>
</tr>
<tr>
<td>B</td>
<td>FNPT1/2</td>
</tr>
<tr>
<td>C</td>
<td>Schneidring (Ermeto 12S)</td>
</tr>
<tr>
<td>D</td>
<td>Schweissen. 14mm</td>
</tr>
<tr>
<td>E</td>
<td>IEC61518</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

330 Dichtungen Ventilblock; Schrauben

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
</tr>
<tr>
<td>B</td>
<td>PTFE; UNF7/16, max PN420</td>
</tr>
<tr>
<td>C</td>
<td>PTFE; M10, max PN160</td>
</tr>
<tr>
<td>D</td>
<td>Viton; UNF7/16, max PN420</td>
</tr>
<tr>
<td>E</td>
<td>Viton; M10, max PN160</td>
</tr>
<tr>
<td>F</td>
<td>Viton; M12, max PN420</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

450 DP-Transmitter Deltabar

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Mitgeliefert, extra Position</td>
</tr>
<tr>
<td>W</td>
<td>nicht mitgeliefert</td>
</tr>
</tbody>
</table>
| 500 | Zusatzausstattung Blende
(\textit{optional; Mehrfachauswahl möglich}) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>EN10204-3.1 Material (mittelberührt) Abnahmeprüfung</td>
</tr>
<tr>
<td>A2</td>
<td>EN10204-3.1 Material, NACE MR0175 (mittelberührt) Abnahmeprüfung</td>
</tr>
<tr>
<td>A3</td>
<td>EN10204-3.2 Material (mittelberührt) Abnahmeprüfung</td>
</tr>
<tr>
<td>A4</td>
<td>PMI-Test</td>
</tr>
<tr>
<td>A5</td>
<td>Gereinigt von Öl+Fett</td>
</tr>
<tr>
<td>A6</td>
<td>O2-Anwendung</td>
</tr>
<tr>
<td>A7</td>
<td>Gereinigt für LABS freie Anwendung</td>
</tr>
</tbody>
</table>

| 520 | Zusatzausstattung Kondensatgefäß
(\textit{optional; Mehrfachauswahl möglich}) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>EN10204-3.1 Material (mittelberührt) Abnahmeprüfung</td>
</tr>
<tr>
<td>C2</td>
<td>EN10204-3.1 Material, NACE MR0175 (mittelberührt) Abnahmeprüfung</td>
</tr>
<tr>
<td>C3</td>
<td>EN10204-3.2 Material (mittelberührt) Abnahmeprüfung</td>
</tr>
<tr>
<td>C4</td>
<td>PMI-Test</td>
</tr>
</tbody>
</table>

| 530 | Zusatzausstattung Absperrarmatur
(\textit{optional; Mehrfachauswahl möglich}) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>EN10204-3.1 Material (mittelberührt) Abnahmeprüfung</td>
</tr>
<tr>
<td>D2</td>
<td>EN10204-3.1 Material, NACE MR0175 (mittelberührt) Abnahmeprüfung</td>
</tr>
<tr>
<td>D3</td>
<td>EN10204-3.2 Material (mittelberührt) Abnahmeprüfung</td>
</tr>
<tr>
<td>D4</td>
<td>PMI-Test</td>
</tr>
<tr>
<td>D5</td>
<td>Gereinigt von Öl+Fett</td>
</tr>
<tr>
<td>D6</td>
<td>O2-Anwendung</td>
</tr>
<tr>
<td>D7</td>
<td>Gereinigt für LABS freie Anwendung</td>
</tr>
</tbody>
</table>

| 540 | Zusatzausstattung Ventilblock
(\textit{optional; Mehrfachauswahl möglich}) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>EN10204-3.1 Material (mittelberührt) Abnahmeprüfung</td>
</tr>
<tr>
<td>E2</td>
<td>EN10204-3.1 Material, NACE MR0175 (mittelberührt) Abnahmeprüfung</td>
</tr>
<tr>
<td>E3</td>
<td>EN10204-3.2 Material (mittelberührt) Abnahmeprüfung</td>
</tr>
<tr>
<td>E4</td>
<td>PMI-Test</td>
</tr>
<tr>
<td>E5</td>
<td>Gereinigt von Öl+Fett</td>
</tr>
<tr>
<td>E6</td>
<td>O2-Anwendung</td>
</tr>
<tr>
<td>E7</td>
<td>Gereinigt für LABS freie Anwendung</td>
</tr>
</tbody>
</table>

| 550 | Zusatzausstattung Allgemein
(\textit{optional; Mehrfachauswahl möglich}) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F8</td>
<td>Drucktest + Zeugnis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>895</th>
<th>Kennzeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1</td>
<td>Messstelle (TAG), siehe Zusatzspez.</td>
</tr>
</tbody>
</table>
Deltatop DO62C: Eckentnahme

Typische Konfigurationen

Für Flüssigkeiten und Gase in horizontalen Leitungen; Maße in mm (inch)

Für Flüssigkeiten und Gase in vertikalen Leitungen; Maße in mm (inch)

Für Dampf in horizontalen Leitungen; Maße in mm (inch)

Für Dampf in vertikalen Leitungen; Maße in mm (inch)

Ausführung

Einteilige Normblende mit Fassungsring als Kompakt- oder Getrennt-Ausführung; einschließlich Zubehör

Entnahmeart

Eckentnahme mit Einzelanbohrung

Werkstoffe

<table>
<thead>
<tr>
<th></th>
<th>C-Stahl-Ausführung</th>
<th>Edelstahl-Ausführung</th>
<th>Hochtemperatur-Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fassungsring DIN</td>
<td>C22.8 (1.0460)</td>
<td>316L (1.4404)</td>
<td>16Mo3 (1.5415)</td>
</tr>
<tr>
<td>Fassungsring ASME</td>
<td>C22.8</td>
<td>316L</td>
<td>A182 Gr. F1</td>
</tr>
<tr>
<td>Blendenscheibe</td>
<td>316L (1.4404)</td>
<td>316L (1.4404)</td>
<td>316L (1.4404)</td>
</tr>
</tbody>
</table>

Endress+Hauser
Abmessungen

Maße in mm (inch)

DO62C/DO63C
Flansche nach DIN EN

<table>
<thead>
<tr>
<th>Variante</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D [mm]</td>
<td>PN61</td>
<td>PN101</td>
<td>PN161</td>
<td>PN251</td>
<td>PN401</td>
<td>PN631</td>
</tr>
<tr>
<td>25 25</td>
<td>64 (2.52)</td>
<td>71 (2.80)</td>
<td>71 (2.80)</td>
<td>82 (3.23)</td>
<td>82 (3.23)</td>
<td>3 (0.118)</td>
</tr>
<tr>
<td>40 40</td>
<td>86 (3.39)</td>
<td>92 (3.62)</td>
<td>92 (3.62)</td>
<td>103 (4.02)</td>
<td>103 (4.02)</td>
<td>3 (0.118)</td>
</tr>
<tr>
<td>50 50</td>
<td>96 (3.78)</td>
<td>107 (4.21)</td>
<td>107 (4.21)</td>
<td>112 (4.41)</td>
<td>119 (4.69)</td>
<td>3 (0.118)</td>
</tr>
<tr>
<td>65 65</td>
<td>116 (4.57)</td>
<td>127 (5.00)</td>
<td>127 (5.00)</td>
<td>137 (5.39)</td>
<td>143 (5.63)</td>
<td>3 (0.118)</td>
</tr>
<tr>
<td>80 80</td>
<td>132 (5.20)</td>
<td>142 (5.59)</td>
<td>142 (5.59)</td>
<td>147 (5.79)</td>
<td>153 (6.02)</td>
<td>3 (0.118)</td>
</tr>
<tr>
<td>100 100</td>
<td>152 (5.98)</td>
<td>162 (6.38)</td>
<td>167 (6.57)</td>
<td>173 (6.81)</td>
<td>180 (7.09)</td>
<td>3 (0.118)</td>
</tr>
<tr>
<td>125 125</td>
<td>182 (7.17)</td>
<td>192 (7.56)</td>
<td>193 (7.60)</td>
<td>210 (8.27)</td>
<td>217 (8.54)</td>
<td>3 (0.118)</td>
</tr>
<tr>
<td>150 150</td>
<td>207 (8.15)</td>
<td>217 (8.54)</td>
<td>223 (8.78)</td>
<td>247 (9.72)</td>
<td>257 (10.1)</td>
<td>3 (0.118)</td>
</tr>
<tr>
<td>200 200</td>
<td>262 (10.3)</td>
<td>272 (10.7)</td>
<td>283 (11.1)</td>
<td>290 (11.4)</td>
<td>309 (12.2)</td>
<td>4 (0.157)</td>
</tr>
<tr>
<td>250 250</td>
<td>317 (12.5)</td>
<td>327 (12.9)</td>
<td>340 (13.4)</td>
<td>352 (13.9)</td>
<td>364 (14.3)</td>
<td>4 (0.157)</td>
</tr>
<tr>
<td>300 300</td>
<td>372 (14.6)</td>
<td>377 (14.8)</td>
<td>383 (15.1)</td>
<td>400 (15.7)</td>
<td>417 (16.4)</td>
<td>4 (0.157)</td>
</tr>
<tr>
<td>350 350</td>
<td>422 (16.6)</td>
<td>437 (17.2)</td>
<td>443 (17.4)</td>
<td>457 (18.0)</td>
<td>474 (18.7)</td>
<td>4 (0.157)</td>
</tr>
<tr>
<td>400 400</td>
<td>472 (18.6)</td>
<td>488 (19.2)</td>
<td>495 (19.5)</td>
<td>514 (20.2)</td>
<td>546 (21.5)</td>
<td>4 (0.157)</td>
</tr>
<tr>
<td>450 450</td>
<td>527 (20.7)</td>
<td>538 (21.2)</td>
<td>557 (21.9)</td>
<td>565 (22.2)</td>
<td>4 (0.157)</td>
<td></td>
</tr>
<tr>
<td>500 500</td>
<td>577 (22.7)</td>
<td>593 (23.3)</td>
<td>617 (24.3)</td>
<td>625 (24.6)</td>
<td>628 (24.7)</td>
<td>6 (0.236)</td>
</tr>
<tr>
<td>600 600</td>
<td>678 (26.7)</td>
<td>695 (27.4)</td>
<td>734 (28.9)</td>
<td>731 (28.8)</td>
<td>747 (29.4)</td>
<td>6 (0.236)</td>
</tr>
<tr>
<td>700 700</td>
<td>783 (30.8)</td>
<td>810 (31.9)</td>
<td>804 (31.7)</td>
<td>833 (32.8)</td>
<td>8 (0.315)</td>
<td></td>
</tr>
<tr>
<td>800 800</td>
<td>890 (35.0)</td>
<td>917 (36.1)</td>
<td>911 (35.9)</td>
<td>942 (37.1)</td>
<td>8 (0.315)</td>
<td></td>
</tr>
<tr>
<td>900 900</td>
<td>990 (39.0)</td>
<td>1017 (40.0)</td>
<td>1011 (39.8)</td>
<td>1042 (41.0)</td>
<td>8 (0.315)</td>
<td></td>
</tr>
<tr>
<td>1000 1000</td>
<td>1090 (42.9)</td>
<td>1124 (44.3)</td>
<td>1128 (44.4)</td>
<td>1154 (45.4)</td>
<td>10 (0.394)</td>
<td></td>
</tr>
</tbody>
</table>

1) nach EN 1092-1
2) nach DIN 2638

Deltatop DO61W, DO62C, DO63C, DO64P, DO65F

Endress+Hauser
<table>
<thead>
<tr>
<th>Variante</th>
<th>D [inch]</th>
<th>d₄ [mm (inch)]</th>
<th>E [mm (inch)]</th>
<th>d₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO62C25</td>
<td>1</td>
<td>67 (2.6)</td>
<td>73 (2.9)</td>
<td>79 (3.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1 mm = 0.0394")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO62C40</td>
<td>1½</td>
<td>86 (3.4)</td>
<td>95 (3.7)</td>
<td>95 (3.7)</td>
</tr>
<tr>
<td>DO62C50</td>
<td>2</td>
<td>105 (4.1)</td>
<td>111 (4.4)</td>
<td>111 (4.4)</td>
</tr>
<tr>
<td>DO62C65</td>
<td>2½</td>
<td>124 (4.9)</td>
<td>130 (5.1)</td>
<td>130 (5.1)</td>
</tr>
<tr>
<td>DO62C80</td>
<td>3</td>
<td>137 (5.4)</td>
<td>149 (5.9)</td>
<td>149 (5.9)</td>
</tr>
<tr>
<td>DO62C1H</td>
<td>4</td>
<td>175 (6.9)</td>
<td>181 (7.1)</td>
<td>194 (7.6)</td>
</tr>
<tr>
<td>DO62C1Z</td>
<td>5</td>
<td>197 (7.8)</td>
<td>216 (8.5)</td>
<td>241 (9.5)</td>
</tr>
<tr>
<td>DO62C1F</td>
<td>6</td>
<td>222 (8.8)</td>
<td>251 (9.9)</td>
<td>267 (10.5)</td>
</tr>
<tr>
<td>DO62C2H</td>
<td>8</td>
<td>279 (11.0)</td>
<td>308 (12.1)</td>
<td>321 (12.6)</td>
</tr>
<tr>
<td>DO62C2F</td>
<td>10</td>
<td>340 (13.3)</td>
<td>362 (14.3)</td>
<td>400 (15.7)</td>
</tr>
<tr>
<td>DO62C3H</td>
<td>12</td>
<td>410 (16.1)</td>
<td>422 (16.6)</td>
<td>457 (18.0)</td>
</tr>
<tr>
<td>DO62C3F</td>
<td>14</td>
<td>451 (17.8)</td>
<td>486 (19.1)</td>
<td>492 (19.4)</td>
</tr>
<tr>
<td>DO62C4H</td>
<td>16</td>
<td>514 (20.3)</td>
<td>540 (21.3)</td>
<td>565 (22.2)</td>
</tr>
<tr>
<td>DO62C4F</td>
<td>18</td>
<td>549 (21.6)</td>
<td>597 (25.5)</td>
<td>613 (24.1)</td>
</tr>
<tr>
<td>DO62C5H</td>
<td>20</td>
<td>606 (23.9)</td>
<td>654 (25.7)</td>
<td>683 (26.9)</td>
</tr>
<tr>
<td>DO62C6H</td>
<td>24</td>
<td>718 (27.9)</td>
<td>775 (30.5)</td>
<td>791 (31.1)</td>
</tr>
<tr>
<td>DO62C7H</td>
<td>28</td>
<td>832 (32.8)</td>
<td>898 (35.4)</td>
<td>915 (36.0)</td>
</tr>
<tr>
<td>DO62C8H</td>
<td>32</td>
<td>940 (37.0)</td>
<td>1006 (39.6)</td>
<td>1022 (40.2)</td>
</tr>
<tr>
<td>DO62C9H</td>
<td>36</td>
<td>1048 (41.3)</td>
<td>1118 (44.0)</td>
<td>1130 (44.5)</td>
</tr>
<tr>
<td>DO62C1T</td>
<td>40</td>
<td>1162 (45.7)</td>
<td>1114 (43.9)</td>
<td>1156 (45.5)</td>
</tr>
<tr>
<td>Variante</td>
<td>Gewicht(^1) [kg (lbs)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L = 25 mm (0.98")</td>
<td>L = 40 mm (1.57")</td>
<td>L = 65 mm (2.56")</td>
<td></td>
</tr>
<tr>
<td>DO62C25</td>
<td>4 (8)</td>
<td>6 (13)</td>
<td>10 (22)</td>
<td></td>
</tr>
<tr>
<td>DO62C40</td>
<td>4,2 (9)</td>
<td>6,3 (14)</td>
<td>10,5 (23)</td>
<td></td>
</tr>
<tr>
<td>DO62C50</td>
<td>4,8 (10)</td>
<td>7,2 (16)</td>
<td>12 (26)</td>
<td></td>
</tr>
<tr>
<td>DO62C65</td>
<td>5,2 (11)</td>
<td>7,8 (17)</td>
<td>13 (29)</td>
<td></td>
</tr>
<tr>
<td>DO62C80</td>
<td>5,6 (12)</td>
<td>8,4 (18)</td>
<td>14 (31)</td>
<td></td>
</tr>
<tr>
<td>DO62C1F</td>
<td>6 (13)</td>
<td>9 (20)</td>
<td>15 (33)</td>
<td></td>
</tr>
<tr>
<td>DO62C2H</td>
<td>7,2 (16)</td>
<td>10,8 (24)</td>
<td>18 (40)</td>
<td></td>
</tr>
<tr>
<td>DO62C2F</td>
<td>8,8 (19)</td>
<td>13,2 (29)</td>
<td>22 (49)</td>
<td></td>
</tr>
<tr>
<td>DO62C3H</td>
<td>10,8 (24)</td>
<td>16,2 (36)</td>
<td>27 (60)</td>
<td></td>
</tr>
<tr>
<td>DO62C3F</td>
<td>12,4 (27)</td>
<td>18,6 (41)</td>
<td>31 (68)</td>
<td></td>
</tr>
<tr>
<td>DO62C4H</td>
<td>13,2 (29)</td>
<td>19,8 (44)</td>
<td>33 (73)</td>
<td></td>
</tr>
<tr>
<td>DO62C4F</td>
<td>2)</td>
<td>3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO62C5H</td>
<td>14,8 (33)</td>
<td>22,2 (49)</td>
<td>37 (82)</td>
<td></td>
</tr>
<tr>
<td>DO62C6H</td>
<td>18 (40)</td>
<td>27 (60)</td>
<td>45 (99)</td>
<td></td>
</tr>
<tr>
<td>DO62C7H</td>
<td>22,8 (50)</td>
<td>34,2 (75)</td>
<td>57 (126)</td>
<td></td>
</tr>
<tr>
<td>DO62C8H</td>
<td>26,8 (59)</td>
<td>40,2 (88)</td>
<td>67 (148)</td>
<td></td>
</tr>
<tr>
<td>DO62C9H</td>
<td>30,8 (68)</td>
<td>46,2 (102)</td>
<td>77 (170)</td>
<td></td>
</tr>
<tr>
<td>DO62C1T</td>
<td>35,2 (77)</td>
<td>52,8 (116)</td>
<td>88 (194)</td>
<td></td>
</tr>
</tbody>
</table>

1) Das Gewicht hängt vom Innendurchmesser des Rohres ab. Die Angaben in der Tabelle sind als Richtwerte zu verstehen.

2) in Vorbereitung
Varianten

<table>
<thead>
<tr>
<th>Variante</th>
<th>Nennweite</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO62C2S</td>
<td>DN25 / 1"</td>
</tr>
<tr>
<td>DO62C4D</td>
<td>DN40 / 1-1/2"</td>
</tr>
<tr>
<td>DO62C50</td>
<td>DN50 / 2"</td>
</tr>
<tr>
<td>DO62C65</td>
<td>DN65 / 2-1/2"</td>
</tr>
<tr>
<td>DO62C80</td>
<td>DN80 / 3"</td>
</tr>
<tr>
<td>DO62C10H</td>
<td>DN100 / 4"</td>
</tr>
<tr>
<td>DO62C12Z</td>
<td>DN125 / 5"</td>
</tr>
<tr>
<td>DO62C13F</td>
<td>DN150 / 6"</td>
</tr>
<tr>
<td>DO62C15H</td>
<td>DN200 / 8"</td>
</tr>
<tr>
<td>DO62C15F</td>
<td>DN250 / 10"</td>
</tr>
<tr>
<td>DO62C18H</td>
<td>DN300 / 12"</td>
</tr>
<tr>
<td>DO62C18F</td>
<td>DN350 / 14"</td>
</tr>
<tr>
<td>DO62C20H</td>
<td>DN400 / 16"</td>
</tr>
<tr>
<td>DO62C20F</td>
<td>DN450 / 18"</td>
</tr>
<tr>
<td>DO62C25H</td>
<td>DN500 / 20"</td>
</tr>
<tr>
<td>DO62C25F</td>
<td>DN600 / 24"</td>
</tr>
<tr>
<td>DO62C30H</td>
<td>DN700 / 28"</td>
</tr>
<tr>
<td>DO62C30F</td>
<td>DN800 / 32"</td>
</tr>
<tr>
<td>DO62C35H</td>
<td>DN900 / 36"</td>
</tr>
<tr>
<td>DO62C35F</td>
<td>DN1000 / 40"</td>
</tr>
</tbody>
</table>

Produktstruktur

10 Anwendung; Ausführung

- **B**: Gas; Getrennt
- **C**: Gas; Kompakt
- **D**: Flüssigkeit; Getrennt
- **E**: Flüssigkeit; Kompakt
- **F**: Dampf; Getrennt
- **G**: Dampf; Kompakt
- **Y**: Sonderausführung, zu spezifizieren

20 Rohrleitung; Orientierung

- **B**: Horizontal; Links
- **C**: Horizontal; Rechts
- **E**: Horizontal; Oben/ unten 0Grad Stutzen
- **F**: Horizontal; Oben/ unten Stutzenwinkel DIN
- **G**: Horizontal; 180Grad Stutzen
- **M**: Vertikal aufwärts; 0Grad Stutzen
- **N**: Vertikal aufwärts; 90Grad Stutzen
- **P**: Vertikal abwärts; 0Grad Stutzen
- **R**: Vertikal abwärts; 90Grad Stutzen
- **S**: Vertikal aufwärts/abwärts; 0Grad Stutzen
- **T**: Vertikal aufwärts/abwärts; 90Grad Stutzen
- **Y**: Sonderausführung, zu spezifizieren

40 Fassungsring; Blende

EN-Flansche

- **BAN**: PN6 B1, C22.8; 316L
- **BAS**: PN6 B1, 316L; 316L
- **BAU**: PN6 B1, 16Mo3; 316L
- **BBN**: PN10 B1, C22.8; 316L
- **BBS**: PN10 B1, 316L; 316L
- **BBU**: PN10 B1, 16Mo3; 316L
- **BCN**: PN16 B1, C22.8; 316L
- **BCS**: PN16 B1, 316L; 316L
- **BCU**: PN16 B1, 16Mo3; 316L
- **BDN**: PN25 B1, C22.8; 316L
- **BDS**: PN25 B1, 316L; 316L
- **BDU**: PN25 B1, 16Mo3; 316L
- **BEN**: PN40 B1, C22.8; 316L
- **BES**: PN40 B1, 316L; 316L
- **BEU**: PN40 B1, 16Mo3; 316L
- **BFIN**: PN63 B2, C22.8; 316L
- **BFS**: PN63 B2, 316L; 316L
- **BFU**: PN63 B2, 16Mo3; 316L
- **BGN**: PN100 B2, C22.8; 316L
- **BGS**: PN100 B2, 316L; 316L
- **BGU**: PN100 B2, 16Mo3; 316L
<table>
<thead>
<tr>
<th>40</th>
<th>Fassungsring, Blende</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHN</td>
<td>PN160 E, C22.8; 316L</td>
</tr>
<tr>
<td>BHS</td>
<td>PN160 E, 316L; 316L</td>
</tr>
<tr>
<td>BHI</td>
<td>PN160 E, 16Mo3; 316L</td>
</tr>
<tr>
<td>ANSI-Flansche</td>
<td></td>
</tr>
<tr>
<td>FAN</td>
<td>CL.150 RF, C22.8; 316L</td>
</tr>
<tr>
<td>FAS</td>
<td>CL.150 RF, 316L; 316L</td>
</tr>
<tr>
<td>FAW</td>
<td>CL.150 RF, A182 Gr.F1; 316L</td>
</tr>
<tr>
<td>FBN</td>
<td>CL.300 RF, C22.8; 316L</td>
</tr>
<tr>
<td>FBS</td>
<td>CL.300 RF, 316L; 316L</td>
</tr>
<tr>
<td>FBW</td>
<td>CL.300 RF, A182 Gr.F1; 316L</td>
</tr>
<tr>
<td>FCN</td>
<td>CL.600 RF, C22.8; 316L</td>
</tr>
<tr>
<td>FCS</td>
<td>CL.600 RF, 316L; 316L</td>
</tr>
<tr>
<td>FCW</td>
<td>CL.600 RF, A182 Gr.F1; 316L</td>
</tr>
<tr>
<td>FDN</td>
<td>CL.900 RF, C22.8; 316L</td>
</tr>
<tr>
<td>FDS</td>
<td>CL.900 RF, 316L; 316L</td>
</tr>
<tr>
<td>FDW</td>
<td>CL.900 RF, A182 Gr.F1; 316L</td>
</tr>
<tr>
<td>FEN</td>
<td>CL.1500 RF, C22.8; 316L</td>
</tr>
<tr>
<td>FES</td>
<td>CL.1500 RF, 316L; 316L</td>
</tr>
<tr>
<td>FEW</td>
<td>CL.1500 RF, A182 Gr.F1; 316L</td>
</tr>
<tr>
<td>FEN</td>
<td>CL.2500 RF, C22.8; 316L</td>
</tr>
<tr>
<td>FFS</td>
<td>CL.2500 RF, 316L; 316L</td>
</tr>
<tr>
<td>FFW</td>
<td>CL.2500 RF, A182 Gr.F1; 316L</td>
</tr>
<tr>
<td>FKN</td>
<td>CL.900 RTJ, C22.8; 316L</td>
</tr>
<tr>
<td>FKS</td>
<td>CL.900 RTJ, 316L; 316L</td>
</tr>
<tr>
<td>FKW</td>
<td>CL.900 RTJ, A182 Gr.F1; 316L</td>
</tr>
<tr>
<td>FLN</td>
<td>CL.1500 RTJ, C22.8; 316L</td>
</tr>
<tr>
<td>FLS</td>
<td>CL.1500 RTJ, 316L; 316L</td>
</tr>
<tr>
<td>FLW</td>
<td>CL.1500 RTJ, A182 Gr.F1; 316L</td>
</tr>
<tr>
<td>FMN</td>
<td>CL.2500 RTJ, C22.8; 316L</td>
</tr>
<tr>
<td>FMS</td>
<td>CL.2500 RTJ, 316L; 316L</td>
</tr>
<tr>
<td>FMW</td>
<td>CL.2500 RTJ, A182 Gr.F1; 316L</td>
</tr>
<tr>
<td>Y99</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>60</th>
<th>Einbaulänge, Werkstoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>25mm, C22.8</td>
</tr>
<tr>
<td>A2</td>
<td>25mm, 316L</td>
</tr>
<tr>
<td>A3</td>
<td>25mm, 16Mo3</td>
</tr>
<tr>
<td>B1</td>
<td>40mm, C22.8</td>
</tr>
<tr>
<td>B2</td>
<td>40mm, 316L</td>
</tr>
<tr>
<td>B3</td>
<td>40mm, 16Mo3</td>
</tr>
<tr>
<td>C1</td>
<td>65mm, C22.8</td>
</tr>
<tr>
<td>C2</td>
<td>65mm, 316L</td>
</tr>
<tr>
<td>C3</td>
<td>65mm, 16Mo3</td>
</tr>
<tr>
<td>Y9</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>80</th>
<th>Blendenkante</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Scharf, Re=5000</td>
</tr>
<tr>
<td>S</td>
<td>1/4 Kreis Düse, Re=500-5000</td>
</tr>
<tr>
<td>T</td>
<td>Einlaufkonus, Re=50-500</td>
</tr>
<tr>
<td>U</td>
<td>Segmentblende</td>
</tr>
<tr>
<td>W</td>
<td>Bidirektional</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>90</th>
<th>Vent/Drain</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht gewählt</td>
</tr>
<tr>
<td>B</td>
<td>Vent hole</td>
</tr>
<tr>
<td>C</td>
<td>Drain hole</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>100</th>
<th>Wirkdruckanschluss, Dichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>IEC61518; PTFE</td>
</tr>
<tr>
<td>C</td>
<td>IEC61518; FKM</td>
</tr>
<tr>
<td>D</td>
<td>IEC61518 gekröpft, feuchtes Gas; PTFE</td>
</tr>
<tr>
<td>E</td>
<td>IEC61518 gekröpft, feuchtes Gas; FKM</td>
</tr>
<tr>
<td>G</td>
<td>Schweissan. kompakt (Dampf); Ohne</td>
</tr>
<tr>
<td>H</td>
<td>Stutzen, MNPT1/2; Ohne</td>
</tr>
<tr>
<td>K</td>
<td>Stutzen, Rohr 12mm; Ohne</td>
</tr>
<tr>
<td>L</td>
<td>Schweissan. 21,3mm; Ohne</td>
</tr>
<tr>
<td>M</td>
<td>Stutzen, Schweissan. 17,2mm; Ohne</td>
</tr>
<tr>
<td>T</td>
<td>Stutzen, G1/2 DIN19207; Ohne</td>
</tr>
<tr>
<td>100</td>
<td>Wirbeldruckanschluss; Dichtung</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>200</th>
<th>2x Kondensatgefaß Werkst.; Volumen; PN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nicht gewählt</td>
</tr>
<tr>
<td>2</td>
<td>HII (265 GH); 300 cm³; PN100</td>
</tr>
<tr>
<td>3</td>
<td>316L, 300 cm³; PN100</td>
</tr>
<tr>
<td>5</td>
<td>16Mo3, 250 cm³; PN250</td>
</tr>
<tr>
<td>9</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>210</th>
<th>Befüllstutzen Kondensatgefaß</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
</tr>
<tr>
<td>B</td>
<td>NPT 1/2</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>220</th>
<th>Eingang Kondensatgefaß</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
</tr>
<tr>
<td>E</td>
<td>Schweissan. 21,3mm</td>
</tr>
<tr>
<td>H</td>
<td>Schweissan. kompakt (Dampf)</td>
</tr>
<tr>
<td>K</td>
<td>Stutzen, Schweissan. 17,2mm</td>
</tr>
<tr>
<td>V</td>
<td>G1/2 DIN19207 Stahl + 2x Flansch</td>
</tr>
<tr>
<td>W</td>
<td>G1/2 DIN19207 rostst. Stahl + 2x Flansch</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>230</th>
<th>Ausgang Kondensatgefaß</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
</tr>
<tr>
<td>E</td>
<td>Schweissan. 21,3mm</td>
</tr>
<tr>
<td>H</td>
<td>Schweissan. kompakt (Dampf)</td>
</tr>
<tr>
<td>M</td>
<td>Stutzen, 12mm</td>
</tr>
<tr>
<td>N</td>
<td>Stutzen, G1/2 DIN19207</td>
</tr>
<tr>
<td>R</td>
<td>IEC61518, PTFE</td>
</tr>
<tr>
<td>S</td>
<td>IEC61518, FKM</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>250</th>
<th>2x Absperrarmatur; Packung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nicht gewählt</td>
</tr>
<tr>
<td>2</td>
<td>Ventil; PTFE Packung <200°C</td>
</tr>
<tr>
<td>3</td>
<td>Ventil; Reichgrapht Packung <300°C</td>
</tr>
<tr>
<td>4</td>
<td>Ventil HT; Reichgrapht Packung >300°C</td>
</tr>
<tr>
<td>9</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>260</th>
<th>Werkstoff Absperrarmatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
</tr>
<tr>
<td>C</td>
<td>C22.8</td>
</tr>
<tr>
<td>D</td>
<td>316Ti</td>
</tr>
<tr>
<td>G</td>
<td>16Mo3</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>270</th>
<th>Eingang Absperrarmatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
</tr>
<tr>
<td>B</td>
<td>Ermeto 125</td>
</tr>
<tr>
<td>C</td>
<td>FNPT 1/2</td>
</tr>
<tr>
<td>E</td>
<td>Schweissan. 21,3mm</td>
</tr>
<tr>
<td>K</td>
<td>Stutzen, Schweissan. 17,2mm</td>
</tr>
<tr>
<td>V</td>
<td>G1/2 DIN19207 Stahl + 2x Flansch</td>
</tr>
<tr>
<td>W</td>
<td>G1/2 DIN19207 rostst. Stahl + 2x Flansch</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>280</th>
<th>Ausgang Absperrarmatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
</tr>
<tr>
<td>B</td>
<td>Schneidring (Ermeto 125)</td>
</tr>
<tr>
<td>C</td>
<td>FNPT 1/2</td>
</tr>
<tr>
<td>L</td>
<td>Schweissan. 14mm</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>300</th>
<th>Ventilblock Ausführung</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>nicht gewählt</td>
</tr>
<tr>
<td>AA1</td>
<td>3-fach, Stahl, geschmiedet</td>
</tr>
<tr>
<td>AA2</td>
<td>3-fach, 316Ti, geschmiedet</td>
</tr>
<tr>
<td>AB1</td>
<td>3-fach, Stahl, gefräst</td>
</tr>
<tr>
<td>AB2</td>
<td>3-fach, 316L, gefräst</td>
</tr>
<tr>
<td>BB1</td>
<td>5-fach, Stahl, gefräst, Entlüftung</td>
</tr>
<tr>
<td>BB2</td>
<td>5-fach, 316L, gefräst, Entlüftung</td>
</tr>
<tr>
<td>300</td>
<td>Ventilblock Ausführung</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
</tr>
<tr>
<td>CA1</td>
<td>5-fach, Stahl, geschmiedet, Ausblasventil</td>
</tr>
<tr>
<td>CA2</td>
<td>5-fach, 316Ti, geschmiedet, Ausblasventil</td>
</tr>
<tr>
<td>DA1</td>
<td>5-fach HT, Stahl, 16Mo3, geschmiedet, Ausblasventil</td>
</tr>
<tr>
<td>DA2</td>
<td>5-fach HT, 316Ti, geschmiedet, Ausblasventil</td>
</tr>
<tr>
<td>KA1</td>
<td>3-fach, Stahl, geschmiedet, IEC61518, beidseitig</td>
</tr>
<tr>
<td>KA2</td>
<td>3-fach, 316Ti, geschmiedet, IEC61518, beidseitig</td>
</tr>
<tr>
<td>LA2</td>
<td>5-fach, 316Ti, geschmiedet, IEC61518 beidseitig, Entlüftung</td>
</tr>
<tr>
<td>YV9</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>310</th>
<th>Packung Ventilblock</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>PTFE, 200 °C</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>PTFE/Reingraphit, HT</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>320</th>
<th>Prozessanschluss Ventilblock</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ohne</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>FNPT1/2</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Schneidring (Ermeto 12S)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Schweinan. 14mm</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>IEC61518</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>330</th>
<th>Dichtungen Ventilblock; Schrauben</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>PTFE; UNF7/16, max PN420</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>PTFE; M10, max PN160</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Viton; UNF7/16, max PN420</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Viton; M10, max PN160</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Viton; M12, max PN420</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>450</th>
<th>DP-Transmitter Deltabar</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Mitgeliefert, extra Position</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>nicht mitgeliefert</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>500</th>
<th>Zusatzausstattung Blende (optional; Mehrfachauswahl möglich)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>EN10204-3.1 Material (mediumberührt) Abnahmeprüfzeugnis</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>EN10204-3.1 Material, NACE MR0175 (mediumberührt) Abnahmeprüfzeugnis</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>EN10204-3.2 Material (mediumberührt) Abnahmeprüfzeugnis</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>PMI-Test</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>Gereinigt von Öl+Fett</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>O2-Anwendung</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>Gereinigt für LABS freie Anwendung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>520</th>
<th>Zusatzausstattung Kondensatgefäß (optional; Mehrfachauswahl möglich)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>EN10204-3.1 Material (mediumberührt) Abnahmeprüfzeugnis</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>EN10204-3.1 Material, NACE MR0175 (mediumberührt) Abnahmeprüfzeugnis</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>EN10204-3.2 Material (mediumberührt) Abnahmeprüfzeugnis</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>PMI-Test</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>530</th>
<th>Zusatzausstattung Absperrarmatur (optional; Mehrfachauswahl möglich)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>EN10204-3.1 Material (mediumberührt) Abnahmeprüfzeugnis</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>EN10204-3.1 Material, NACE MR0175 (mediumberührt) Abnahmeprüfzeugnis</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>EN10204-3.2 Material (mediumberührt) Abnahmeprüfzeugnis</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>PMI-Test</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>Gereinigt von Öl+Fett</td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>O2-Anwendung</td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>Gereinigt für LABS freie Anwendung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>540</th>
<th>Zusatzausstattung Ventilblock (optional; Mehrfachauswahl möglich)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>EN10204-3.1 Material (mediumberührt) Abnahmeprüfzeugnis</td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>EN10204-3.1 Material, NACE MR0175 (mediumberührt) Abnahmeprüfzeugnis</td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>EN10204-3.2 Material (mediumberührt) Abnahmeprüfzeugnis</td>
<td></td>
</tr>
<tr>
<td>E4</td>
<td>PMI-Test</td>
<td></td>
</tr>
<tr>
<td>E5</td>
<td>Gereinigt von Öl+Fett</td>
<td></td>
</tr>
<tr>
<td>E6</td>
<td>O2-Anwendung</td>
<td></td>
</tr>
<tr>
<td>E7</td>
<td>Gereinigt für LABS freie Anwendung</td>
<td></td>
</tr>
<tr>
<td>895</td>
<td>Kennzeichnung</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td>Messstelle (TAG), siehe Zusatzspez.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>550</th>
<th>Zusatzausstattung Allgemein (optional; Mehrfachauswahl möglich)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F8</td>
<td>Drucktest + Zeugnis</td>
</tr>
</tbody>
</table>
Deltatop DO63C: Eckentnahme Ringkammer

Ausführung
Dreiteilige Normblende mit Fassungsringen als Kompakt- oder Getrennt-Ausführung; einschließlich Zubehör

Entnahmeart
Eckentnahme mit Ringkammer

Werkstoffe

<table>
<thead>
<tr>
<th></th>
<th>C-Stahl-Ausführung</th>
<th>Edelstahl-Ausführung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fassungsring DIN</td>
<td>C22.8 (1.0460)</td>
<td>316L (1.4404)</td>
</tr>
<tr>
<td>Fassungsring ASME</td>
<td>C22.8</td>
<td>316L</td>
</tr>
<tr>
<td>Blendenscheibe</td>
<td>316L (1.4404)</td>
<td>316L (1.4404)</td>
</tr>
<tr>
<td>Dichtung zwischen Blende und Fassungsring</td>
<td>• Standard (Klingersil oder Graphit, je nach Anwendung)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Spiraldichtung 316L/Graphit</td>
<td></td>
</tr>
</tbody>
</table>

Abmessungen

![Diagramm](https://www.endress.com/)

Es gelten die Maßtabellen von DO62C (Seite 42).
Varianten

<table>
<thead>
<tr>
<th>Variante</th>
<th>Nennweite</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO63C50</td>
<td>DN50 / 2"</td>
</tr>
<tr>
<td>DO63C65</td>
<td>DN65 / 2-1/2"</td>
</tr>
<tr>
<td>DO63C80</td>
<td>DN80 / 3"</td>
</tr>
<tr>
<td>DO63C1H</td>
<td>DN100 / 4"</td>
</tr>
<tr>
<td>DO63C1Z</td>
<td>DN125 / 5"</td>
</tr>
<tr>
<td>DO63C1F</td>
<td>DN150 / 6"</td>
</tr>
<tr>
<td>DO63C2H</td>
<td>DN200 / 8"</td>
</tr>
<tr>
<td>DO63C2F</td>
<td>DN250 / 10"</td>
</tr>
<tr>
<td>DO63C3H</td>
<td>DN300 / 12"</td>
</tr>
<tr>
<td>DO63C3F</td>
<td>DN350 / 14"</td>
</tr>
<tr>
<td>DO63C4H</td>
<td>DN400 / 16"</td>
</tr>
<tr>
<td>DO63C4F</td>
<td>DN450 / 18"</td>
</tr>
<tr>
<td>DO63C5H</td>
<td>DN500 / 20"</td>
</tr>
<tr>
<td>DO63C6H</td>
<td>DN600 / 24"</td>
</tr>
<tr>
<td>DO63C7H</td>
<td>DN700 / 28"</td>
</tr>
<tr>
<td>DO63C8H</td>
<td>DN800 / 32"</td>
</tr>
<tr>
<td>DO63C9H</td>
<td>DN900 / 36"</td>
</tr>
<tr>
<td>DO63C1T</td>
<td>DN1000 / 40"</td>
</tr>
</tbody>
</table>

Produktstruktur

10 Anwendung; Ausführung

- **B** Gas; Getrennt
- **C** Gas; Kompakt
- **D** Flüssigkeit; Getrennt
- **E** Flüssigkeit; Kompakt
- **F** Dampf; Getrennt
- **G** Dampf; Kompakt
- **Y** Sonderausführung, zu spezifizieren

20 Rohrleitung; Orientierung

- **B** Horizontal; Links
- **C** Horizontal; Rechts
- **E** Horizontal; Ober-/unteren 0°-Stutzen
- **F** Horizontal; Ober-/unteren Stutzenwinkel DIN
- **G** Horizontal; 180°-Stutzen
- **M** Vertikal aufwärts; 0°-Stutzen
- **N** Vertikal aufwärts; 90°-Stutzen
- **P** Vertikal abwärts; 0°-Stutzen
- **R** Vertikal abwärts; 90°-Stutzen
- **S** Vertikal aufwärts/abwärts 0°-Stutzen
- **T** Vertikal aufwärts/abwärts 90°-Stutzen
- **Y** Sonderausführung, zu spezifizieren

40 Fassungsring; Blende

EN-Flansche

- **BAN** FN6 B1, C22.8; 316L
- **BAS** FN6 B1, 316L; 316L
- **BBN** FN10 B1, C22.8; 316L
- **BBS** FN10 B1, 316L; 316L
- **BCN** FN16 B1, C22.8; 316L
- **BCS** FN16 B1, 316L; 316L
- **BDN** FN25 B1, C22.8; 316L
- **BDS** FN25 B1, 316L; 316L
- **BEN** FN40 B1, C22.8; 316L
- **BES** FN40 B1, 316L; 316L
- **BGN** FN63 B2, C22.8; 316L
- **BGF** FN63 B2, 316L; 316L
- **BGN** FN100 B2, C22.8; 316L
- **BGF** FN100 B2, 316L; 316L

ANSI-Flansche

- **FAN** CL150 RF, C22.8; 316L
- **FAS** CL150 RF, 316L; 316L
- **FBN** CL300 RF, C22.8; 316L
- **FBS** CL300 RF, 316L; 316L
- **FCN** CL600 RF, C22.8; 316L
- **FCS** CL600 RF, 316L; 316L
- **Y99** Sonderausführung, zu spezifizieren
| 60 | Einbaulänge | C | 65mm |
| | | Y | Sonderausführung, zu spezifizieren |
| 70 | Dichtung Ringkammer | 1 | Standard |
| | | 9 | Sonderausführung, zu spezifizieren |
| 80 | Blendenkante | R | Scharf, Re>5000 |
| | | S | 1/4 Kreis Düse, Re 500-5000 |
| | | T | Einlaufkonus, Re 50-500 |
| | | W | Bidirektional |
| | | Y | Sonderausführung, zu spezifizieren |
| 90 | Vent/Drain | A | nicht gewählt |
| | | Y | Sonderausführung, zu spezifizieren |
| 100 | Wirkdruckanschluss; Dichtung | A | IEC61518; PTFE |
| | | B | IEC61518; FKM |
| | | C | IEC61518 gekröpft, feuchtes Gas; PTFE |
| | | D | IEC61518 gekröpft, feuchtes Gas; FKM |
| | | E | Schweissan. kompakt (Dampf); Ohne |
| | | F | Schweissan. kompakt (Dampf) |
| | | G | Schweissan. kompakt (Dampf); PTFE |
| | | H | Schweissan. kompakt (Dampf); FKM |
| | | I | Stutzen, MNPT1/2; Ohne |
| | | J | Stutzen, Rohr 12mm; Ohne |
| | | K | Schweissan. 21,3mm; Ohne |
| | | L | Schweissan. 21,3mm; Ohne |
| | | M | Schweissan. 21,3mm; Ohne |
| | | N | Schweissan. 21,3mm; Ohne |
| | | O | Schweissan. kompakt (Dampf); Ohne |
| | | P | Schweissan. kompakt (Dampf) |
| | | Q | Schweissan. kompakt (Dampf); PTFE |
| | | R | Schweissan. kompakt (Dampf); FKM |
| | | S | Schweissan. kompakt (Dampf); Ohne |
| | | T | Schweissan. kompakt (Dampf) |
| | | U | Schweissan. kompakt (Dampf); PTFE |
| | | V | Schweissan. kompakt (Dampf); FKM |
| | | W | Schweissan. kompakt (Dampf); Ohne |
| | | X | Schweissan. kompakt (Dampf) |
| | | Y | Schweissan. kompakt (Dampf); PTFE |
| | | Z | Schweissan. kompakt (Dampf); FKM |
| 200 | 2x Kondensatgefäß Werkst.; Volumen; PN | 1 | nicht gewählt |
| | | 2 | HI (265 GH); 300cm³, PN100 |
| | | 3 | 316L, 300cm³, PN100 |
| | | 5 | 16Mo3, 250cm³, PN250 |
| | | 9 | Sonderausführung, zu spezifizieren |
| 210 | Befüllstutzen Kondensatgefäß | A | nicht benötigt |
| | | B | NPT1/2 |
| | | Y | Sonderausführung, zu spezifizieren |
| 220 | Eingang Kondensatgefäß | A | nicht benötigt |
| | | E | Schweissan. 21,3mm |
| | | H | Schweissan. kompakt (Dampf) |
| | | V | G1/2 DIN19207 Stahl + 2x Flansch |
| | | W | G1/2 DIN19207 rostfr. Stahl + 2x Flansch |
| | | Y | Sonderausführung, zu spezifizieren |
| 230 | Ausgang Kondensatgefäß | A | nicht benötigt |
| | | E | Schweissan. 21,3mm |
| | | H | Schweissan. kompakt (Dampf) |
| | | M | Stutzen, 12mm |
| | | N | Stutzen, G1/2 DIN19207 |
| | | R | IEC61518, PTFE |
| | | S | IEC61518, FKM |
| | | Y | Sonderausführung, zu spezifizieren |
| 250 | 2x Absperrarmatur; Packung | 1 | nicht gewählt |
| | | 2 | Ventil; PTFE Packung <200°C |
| | | 3 | Ventil; Reingraphit Packung <300°C |
| | | 4 | Ventil HT; Reingraphit Packung >300°C |
| | | 9 | Sonderausführung, zu spezifizieren |
| 260 | Werkstoff Absperrarmatur | A | nicht benötigt |
| | | C | C22.8 |
| | | D | 316Ti |
| | | G | 16Mo3 |
260 Werkstoff Absperrbatterie

Y Sonderausführung, zu spezifizieren

270 Eingang Absperrbatterie

A nicht benötigt
B Ermeto 12S
C FNP1/2
E Schweissan. 21,3mm
V GI/2 DIN19207 Stahl + 2x Flansch
W GI/2 DIN19207 rustf. Stahl + 2x Flansch
Y Sonderausführung, zu spezifizieren

280 Ausgang Absperrbatterie

A nicht benötigt
B Schneidring (Ermeto 12S)
C FNP1/2
L Schweissan. 14mm
Y Sonderausführung, zu spezifizieren

300 Ventilblock Ausführung

| 111 | nicht gewählt
| AA1 | 3-fach, Stahl, geschmiedet
| AA2 | 3-fach, 316Ti, geschmiedet
| AB1 | 3-fach, Stahl, gefräst
| AB2 | 3-fach, 316L, gefräst
| BB1 | 5-fach, Stahl, gefräst, Entlüftung
| BB2 | 5-fach, 316L, gefräst, Entlüftung
| CA1 | 5-fach, Stahl, geschmiedet, Ausblasventil
| CA2 | 5-fach, 316Ti, geschmiedet, Ausblasventil
| DA1 | 5-fach HT, Stahl, 16Mo3, geschmiedet, Ausblasventil
| DA2 | 5-fach HT, 316Ti, geschmiedet, Ausblasventil
| KA1 | 3-fach, Stahl, geschmiedet, IEC61518, beidseitig
| KA2 | 3-fach, 316Ti, geschmiedet, IEC61518, beidseitig
| LA2 | 5-fach, 316Ti, geschmiedet, IEC61518 beidseitig, Entlüftung
| YY9 | Sonderausführung, zu spezifizieren

310 Packung Ventilblock

A nicht benötigt
B PTFE, 200 °C
C PTFE/Reingraphit, HT
Y Sonderausführung, zu spezifizieren

320 Prozessanschluss Ventilblock

A ohne
B FNP1/2
C Schneidring (Ermeto 12S)
D Schweissan. 14mm
E IEC61518
Y Sonderausführung, zu spezifizieren

330 Dichtungen Ventilblock; Schrauben

A nicht benötigt
B PTFE; UNF7/16, max PN420
C PTFE; M10, max PN160
D Viton; UNF7/16, max PN420
E Viton; M10, max PN160
F Viton; M12, max PN420
Y Sonderausführung, zu spezifizieren

450 DP-Transmitter Deltabar

D Mitgeliefert, extra Position
W nicht mitgeliefert

500 Zusatzausstattung Blende

<table>
<thead>
<tr>
<th>(optional; Mehrfachauswahl möglich)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
</tr>
<tr>
<td>A2</td>
</tr>
<tr>
<td>A3</td>
</tr>
<tr>
<td>A4</td>
</tr>
<tr>
<td>A5</td>
</tr>
<tr>
<td>A6</td>
</tr>
<tr>
<td>A7</td>
</tr>
<tr>
<td>Page</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>520</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>530</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>540</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>550</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>895</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Deltatop DO64P: Steckblende

Ausführung
Steckblende zur Montage zwischen zwei Flanschen

Entnahmeart
- Flanschentnahme
- D-D/2-Entnahme

Werkstoff
316L (1.4404)

Abmessungen

<table>
<thead>
<tr>
<th>Variante</th>
<th>D [mm]</th>
<th>PN6</th>
<th>PN10</th>
<th>PN16</th>
<th>PN25</th>
<th>PN40</th>
<th>PN63</th>
<th>PN100</th>
<th>d₁ [mm (inch)]</th>
<th>E [mm (inch)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO64P2S</td>
<td>25</td>
<td>64</td>
<td>71</td>
<td>71</td>
<td>71</td>
<td>71</td>
<td>82</td>
<td>82</td>
<td>3 (0.118)</td>
<td>D + 1 mm</td>
</tr>
<tr>
<td>DO64P40</td>
<td>40</td>
<td>86</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>103</td>
<td>103</td>
<td>3 (0.118)</td>
<td></td>
</tr>
<tr>
<td>DO64P50</td>
<td>50</td>
<td>96</td>
<td>107</td>
<td>107</td>
<td>107</td>
<td>107</td>
<td>112</td>
<td>119</td>
<td>3 (0.118)</td>
<td>D + 1 mm</td>
</tr>
<tr>
<td>DO64P65</td>
<td>65</td>
<td>116</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>137</td>
<td>143</td>
<td>3 (0.118)</td>
<td>D + 1 mm</td>
</tr>
<tr>
<td>DO64P80</td>
<td>80</td>
<td>132</td>
<td>142</td>
<td>142</td>
<td>142</td>
<td>142</td>
<td>147</td>
<td>153</td>
<td>3 (0.118)</td>
<td></td>
</tr>
<tr>
<td>DO64P1H</td>
<td>100</td>
<td>152</td>
<td>162</td>
<td>162</td>
<td>167</td>
<td>167</td>
<td>173</td>
<td>180</td>
<td>3 (0.118)</td>
<td></td>
</tr>
<tr>
<td>DO64P1Z</td>
<td>125</td>
<td>182</td>
<td>192</td>
<td>192</td>
<td>193</td>
<td>193</td>
<td>210</td>
<td>217</td>
<td>3 (0.118)</td>
<td></td>
</tr>
<tr>
<td>DO64P1F</td>
<td>150</td>
<td>207</td>
<td>217</td>
<td>217</td>
<td>223</td>
<td>223</td>
<td>247</td>
<td>257</td>
<td>3 (0.118)</td>
<td>D + 2 mm</td>
</tr>
<tr>
<td>DO64P2H</td>
<td>200</td>
<td>262</td>
<td>272</td>
<td>272</td>
<td>283</td>
<td>290</td>
<td>309</td>
<td>324</td>
<td>4 (0.157)</td>
<td></td>
</tr>
<tr>
<td>DO64P2F</td>
<td>250</td>
<td>317</td>
<td>327</td>
<td>328</td>
<td>340</td>
<td>352</td>
<td>364</td>
<td>391</td>
<td>4 (0.157)</td>
<td></td>
</tr>
<tr>
<td>DO64P3H</td>
<td>300</td>
<td>372</td>
<td>377</td>
<td>383</td>
<td>400</td>
<td>417</td>
<td>424</td>
<td>458</td>
<td>4 (0.157)</td>
<td></td>
</tr>
<tr>
<td>DO64P3F</td>
<td>350</td>
<td>422</td>
<td>437</td>
<td>443</td>
<td>457</td>
<td>474</td>
<td>486</td>
<td>512</td>
<td>4 (0.157)</td>
<td></td>
</tr>
<tr>
<td>DO64P4H</td>
<td>400</td>
<td>472</td>
<td>488</td>
<td>495</td>
<td>514</td>
<td>546</td>
<td>572</td>
<td>6 (0.236)</td>
<td>4 (0.157)</td>
<td>D + 4 mm</td>
</tr>
<tr>
<td>DO64P4F</td>
<td>450</td>
<td>527</td>
<td>538</td>
<td>557</td>
<td>565</td>
<td>565</td>
<td>572</td>
<td>704</td>
<td>6 (0.236)</td>
<td></td>
</tr>
<tr>
<td>DO64P5H</td>
<td>500</td>
<td>577</td>
<td>593</td>
<td>617</td>
<td>625</td>
<td>628</td>
<td>657</td>
<td>704</td>
<td>6 (0.236)</td>
<td></td>
</tr>
<tr>
<td>DO64P6H</td>
<td>600</td>
<td>678</td>
<td>695</td>
<td>734</td>
<td>731</td>
<td>747</td>
<td>764</td>
<td>10 (0.394)</td>
<td>8 (0.315)</td>
<td></td>
</tr>
<tr>
<td>DO64P7H</td>
<td>700</td>
<td>783</td>
<td>810</td>
<td>804</td>
<td>833</td>
<td>833</td>
<td>842</td>
<td>842</td>
<td>8 (0.315)</td>
<td></td>
</tr>
<tr>
<td>DO64P8H</td>
<td>800</td>
<td>890</td>
<td>917</td>
<td>911</td>
<td>942</td>
<td>942</td>
<td>942</td>
<td>942</td>
<td>8 (0.315)</td>
<td></td>
</tr>
<tr>
<td>DO64P9H</td>
<td>900</td>
<td>990</td>
<td>1017</td>
<td>1011</td>
<td>1042</td>
<td>1042</td>
<td>1042</td>
<td>1042</td>
<td>8 (0.315)</td>
<td></td>
</tr>
<tr>
<td>DO64P1T</td>
<td>1000</td>
<td>1090</td>
<td>1124</td>
<td>1128</td>
<td>1154</td>
<td>1154</td>
<td>1154</td>
<td>1154</td>
<td>10 (0.394)</td>
<td></td>
</tr>
</tbody>
</table>

(D = Durchmesser, D₁ = Abstand Flanschflache Flanschflache, 1 mm = 0.0394")

Endress+Hauser 55
<table>
<thead>
<tr>
<th>Variante</th>
<th>D [inch]</th>
<th>Cl. 150</th>
<th>Cl. 300</th>
<th>Cl. 600</th>
<th>Cl. 900</th>
<th>Cl. 1500</th>
<th>Cl. 2500</th>
<th>E [mm (inch)]</th>
<th>d₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO64P2S</td>
<td>1</td>
<td>67 (2.6)</td>
<td>73 (2.9)</td>
<td>73 (2.9)</td>
<td>79 (3.1)</td>
<td>79 (3.1)</td>
<td>86 (3.4)</td>
<td>3 (0,118)</td>
<td></td>
</tr>
<tr>
<td>DO64P40</td>
<td>1½</td>
<td>86 (3.4)</td>
<td>95 (3.7)</td>
<td>95 (3.7)</td>
<td>98 (3.9)</td>
<td>98 (3.9)</td>
<td>117 (4.6)</td>
<td>3 (0,118)</td>
<td></td>
</tr>
<tr>
<td>DO64P50</td>
<td>2</td>
<td>105 (4.1)</td>
<td>111 (4.4)</td>
<td>111 (4.4)</td>
<td>143 (5.6)</td>
<td>143 (5.6)</td>
<td>146 (5.7)</td>
<td>3 (0,118)</td>
<td></td>
</tr>
<tr>
<td>DO64P6S</td>
<td>2½</td>
<td>124 (4.9)</td>
<td>130 (5.1)</td>
<td>130 (5.1)</td>
<td>165 (6.5)</td>
<td>165 (6.5)</td>
<td>168 (6.6)</td>
<td>3 (0,118)</td>
<td></td>
</tr>
<tr>
<td>DO64P80</td>
<td>3</td>
<td>137 (5.4)</td>
<td>149 (5.9)</td>
<td>149 (5.9)</td>
<td>168 (6.6)</td>
<td>175 (6.9)</td>
<td>197 (7.8)</td>
<td>3 (0,118)</td>
<td></td>
</tr>
<tr>
<td>DO64P1H</td>
<td>4</td>
<td>175 (6.9)</td>
<td>181 (7.1)</td>
<td>194 (7.6)</td>
<td>206 (8.1)</td>
<td>210 (8.3)</td>
<td>235 (9.3)</td>
<td>3 (0,118)</td>
<td></td>
</tr>
<tr>
<td>DO64P1Z</td>
<td>5</td>
<td>197 (7.8)</td>
<td>216 (8.5)</td>
<td>241 (9.5)</td>
<td>248 (9.8)</td>
<td>254 (10.0)</td>
<td>279 (11.0)</td>
<td>3 (0,118)</td>
<td></td>
</tr>
<tr>
<td>DO64P1F</td>
<td>6</td>
<td>222 (8.8)</td>
<td>251 (9.9)</td>
<td>267 (10.5)</td>
<td>289 (11.4)</td>
<td>283 (11.1)</td>
<td>318 (12.5)</td>
<td>3 (0,118)</td>
<td></td>
</tr>
<tr>
<td>DO64P2H</td>
<td>8</td>
<td>279 (11.0)</td>
<td>308 (12.1)</td>
<td>321 (12.6)</td>
<td>359 (14.1)</td>
<td>352 (13.8)</td>
<td>387 (15.2)</td>
<td>4 (0,157)</td>
<td></td>
</tr>
<tr>
<td>DO64P2F</td>
<td>10</td>
<td>340 (13.3)</td>
<td>362 (14.3)</td>
<td>400 (15.7)</td>
<td>435 (17.1)</td>
<td>435 (17.1)</td>
<td>476 (18.7)</td>
<td>4 (0,157)</td>
<td></td>
</tr>
<tr>
<td>DO64P3H</td>
<td>12</td>
<td>410 (16.1)</td>
<td>422 (16.6)</td>
<td>457 (18.0)</td>
<td>499 (19.6)</td>
<td>521 (20.5)</td>
<td>549 (21.6)</td>
<td>4 (0,157)</td>
<td></td>
</tr>
<tr>
<td>DO64P3F</td>
<td>14</td>
<td>451 (17.8)</td>
<td>486 (19.1)</td>
<td>492 (19.4)</td>
<td>521 (20.5)</td>
<td>578 (22.8)</td>
<td>4 (0,157)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P4H</td>
<td>16</td>
<td>514 (20.3)</td>
<td>540 (21.3)</td>
<td>565 (22.2)</td>
<td>575 (22.6)</td>
<td>641 (25.2)</td>
<td>4 (0,157)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P4F</td>
<td>18</td>
<td>549 (21.6)</td>
<td>597 (25.5)</td>
<td>613 (24.1)</td>
<td>638 (25.1)</td>
<td>705 (27.8)</td>
<td>4 (0,157)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P5H</td>
<td>20</td>
<td>606 (23.9)</td>
<td>654 (25.7)</td>
<td>683 (26.9)</td>
<td>699 (27.5)</td>
<td>756 (29.8)</td>
<td>6 (0,236)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P6H</td>
<td>24</td>
<td>718 (27.9)</td>
<td>775 (30.5)</td>
<td>791 (31.1)</td>
<td>838 (32.0)</td>
<td>902 (35.5)</td>
<td>6 (0,236)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P7H</td>
<td>28</td>
<td>832 (32.8)</td>
<td>898 (35.4)</td>
<td>915 (36.0)</td>
<td>946 (37.3)</td>
<td>6 (0,236)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P8H</td>
<td>32</td>
<td>940 (37.0)</td>
<td>1006 (39.6)</td>
<td>1022 (40.2)</td>
<td>1073 (42.3)</td>
<td>8 (0,315)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P9H</td>
<td>36</td>
<td>1048 (41.3)</td>
<td>1118 (44.0)</td>
<td>1130 (44.5)</td>
<td>1200 (47.2)</td>
<td>8 (0,315)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P1T</td>
<td>40</td>
<td>1162 (45.7)</td>
<td>1114 (43.9)</td>
<td>1156 (45.5)</td>
<td>1251 (49.3)</td>
<td>10 (0,394)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variante</td>
<td>Nennweite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P25</td>
<td>1"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P40</td>
<td>1-1/2"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P50</td>
<td>DN50 / 2"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P65</td>
<td>DN65 / 2-1/2"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P80</td>
<td>DN80 / 3"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P1H</td>
<td>DN100 / 4"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P1Z</td>
<td>DN125 / 5"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P1F</td>
<td>DN150 / 6"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P2H</td>
<td>DN200 / 8"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P2F</td>
<td>DN250 / 10"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P3H</td>
<td>DN300 / 12"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P3F</td>
<td>DN350 / 14"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P4H</td>
<td>DN400 / 16"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P4F</td>
<td>DN450 / 18"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P5H</td>
<td>DN500 / 20"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P0H</td>
<td>DN600 / 24"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P7H</td>
<td>DN700 / 28"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P8H</td>
<td>DN800 / 32"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P9H</td>
<td>DN900 / 36"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO64P1T</td>
<td>DN1000 / 40"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ausführung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Messblende Flanschentnahme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Messblende Entnahme D + D/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>30</th>
<th>Blende</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAC</td>
<td>EN-Flansche</td>
</tr>
<tr>
<td>BBC</td>
<td>PN10 B1, 316L</td>
</tr>
<tr>
<td>BCC</td>
<td>PN16 B1, 316L</td>
</tr>
<tr>
<td>BDC</td>
<td>PN25 B1, 316L</td>
</tr>
<tr>
<td>BEC</td>
<td>PN40 B1, 316L</td>
</tr>
<tr>
<td>BFC</td>
<td>PN63 B2, 316L</td>
</tr>
<tr>
<td>BGC</td>
<td>PN100 B2, 316L</td>
</tr>
<tr>
<td>FAC</td>
<td>ANSI-Flansche</td>
</tr>
<tr>
<td>FBC</td>
<td>Cl.150 RF, 316L</td>
</tr>
<tr>
<td>FCC</td>
<td>Cl.300 RF, 316L</td>
</tr>
<tr>
<td>FDC</td>
<td>Cl.600 RF, 316L</td>
</tr>
<tr>
<td>FEC</td>
<td>Cl.900 RF, 316L</td>
</tr>
<tr>
<td>FCC</td>
<td>Cl.1500 RF, 316L</td>
</tr>
<tr>
<td>FDC</td>
<td>Cl.2500 RF, 316L</td>
</tr>
<tr>
<td>FKC</td>
<td>Cl.900 RTJ, 316L</td>
</tr>
<tr>
<td>FLC</td>
<td>Cl.1500 RTJ, 316L</td>
</tr>
<tr>
<td>FMC</td>
<td>Cl.2500 RTJ, 316L</td>
</tr>
<tr>
<td>Y99</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>50</th>
<th>Baustärke</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Standard</td>
</tr>
<tr>
<td>9</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>80</th>
<th>Blendenkante</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Scharf, Re=5000</td>
</tr>
<tr>
<td>S</td>
<td>1/4 Kreis Düse, Re 500-500</td>
</tr>
<tr>
<td>T</td>
<td>Einlaufkonus, Re 50-500</td>
</tr>
<tr>
<td>U</td>
<td>Segmentblende</td>
</tr>
<tr>
<td>W</td>
<td>Bidirektionär</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>90</th>
<th>Vent/Drain</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht gewählt</td>
</tr>
<tr>
<td>B</td>
<td>Vent hole</td>
</tr>
<tr>
<td>C</td>
<td>Drain hole</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>550</th>
<th>Zusatzausstattung Allgemein (optional; Mehrfachauswahl möglich)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>EN10204-3.1 Material (mediumberührt) Abnahmeprüfzeugnis</td>
</tr>
<tr>
<td>F2</td>
<td>EN10204-3.1 Material, NACE MR0175 (mediumberührt) Abnahmeprüfzeugnis</td>
</tr>
<tr>
<td>F4</td>
<td>PMI-Test</td>
</tr>
<tr>
<td>F5</td>
<td>Gereinigt von ÖL+Fett</td>
</tr>
<tr>
<td>F6</td>
<td>O2-Anwendung</td>
</tr>
<tr>
<td>F7</td>
<td>Gereinigt für LABS freie Anwendung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>895</th>
<th>Kennzeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1</td>
<td>Messstelle (TAG), siehe Zusatgspez.</td>
</tr>
</tbody>
</table>
Deltatop DO65F: Kleinmessstrecke

Typische Konfigurationen

Für Flüssigkeiten und Gas in horizontalen Leitungen; Maße in mm (inch)

Für Flüssigkeiten und Gas in vertikalen Leitungen; Maße in mm (inch)

Für Dampf in horizontalen Leitungen; Maße in mm (inch)

Für Dampf in vertikalen Leitungen; Maße in mm (inch)
Ausführung

Kleinmessstrecke mit Normblende als Kompakt- oder Getrennt-Ausführung; einschließlich Zubehör

- Bis PN100 / Cl.900 als dreitelige Normblende (geschraubt)
- Ab PN160 / Cl.1500 als vollverschweißte Version

Entnahmeart

Eckentnahme mit Ringkammer

Werkstoffe

<table>
<thead>
<tr>
<th></th>
<th>C-Stahl-Ausführung</th>
<th>Edelstahl-Ausführung</th>
<th>Hochtemperaturversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messstrecke DIN (Rohr)</td>
<td>St35.8 (1.0305)</td>
<td>316L (1.4404)</td>
<td>16Mo3 (1.5415)</td>
</tr>
<tr>
<td>Ringkammer und Endflansche DIN</td>
<td>C22.8 (1.0460)</td>
<td>316L (1.4404)</td>
<td>16Mo3 (1.5415)</td>
</tr>
<tr>
<td>Messstrecke ASME (Rohr)</td>
<td>A106</td>
<td>316L</td>
<td></td>
</tr>
<tr>
<td>Ringkammer ASME</td>
<td>C22.8</td>
<td>316L</td>
<td></td>
</tr>
<tr>
<td>Endflansche ASME</td>
<td>A105</td>
<td>316L</td>
<td></td>
</tr>
<tr>
<td>Blendenscheibe</td>
<td>316L (1.4404)</td>
<td>316L (1.4404)</td>
<td>316L (1.4404)</td>
</tr>
</tbody>
</table>

Dichtung zwischen Blende und Fassungsring

- Standard (Klingersil oder Graphit je nach Anwendung)
- verschweißt

- Standard (Graphit)
- verschweißt
Abmessungen, Gewicht

<table>
<thead>
<tr>
<th>Variante</th>
<th>D</th>
<th>l_1 [mm (inch)]</th>
<th>l_2 [mm (inch)]</th>
<th>Gewicht [kg (lbs)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO65F10</td>
<td>DN10; 3/8"</td>
<td>400 (15.7)</td>
<td>230 (9.06)</td>
<td>ca. 11 (approx. 24)</td>
</tr>
<tr>
<td>DO65F15</td>
<td>DN15; 1/2"</td>
<td>550 (21.7)</td>
<td>380 (14.9)</td>
<td>ca. 12 (approx. 26)</td>
</tr>
<tr>
<td>DO65F20</td>
<td>DN20; 3/4"</td>
<td>700 (27.6)</td>
<td>500 (19.7)</td>
<td>ca. 16 (approx. 35)</td>
</tr>
<tr>
<td>DO65F25</td>
<td>DN25; 1"</td>
<td>900 (35.4)</td>
<td>650 (25.6)</td>
<td>ca. 19 (approx. 42)</td>
</tr>
<tr>
<td>DO65F32</td>
<td>DN32; 1 1/4"</td>
<td>1100 (43.3)</td>
<td>800 (31.5)</td>
<td>ca. 22 (approx. 49)</td>
</tr>
<tr>
<td>DO65F40</td>
<td>DN40; 1 1/2"</td>
<td>1300 (51.2)</td>
<td>1000 (39.4)</td>
<td>ca. 25 (approx. 55)</td>
</tr>
<tr>
<td>DO65F50</td>
<td>DN50; 2"</td>
<td>i)</td>
<td>i)</td>
<td>i)</td>
</tr>
</tbody>
</table>

1) in Vorbereitung

<table>
<thead>
<tr>
<th>Variante</th>
<th>d_5 [mm (inch)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO65F10</td>
<td>i) 75 (2.9) 90 (3.5) 100 (3.9)</td>
</tr>
<tr>
<td>DO65F15</td>
<td>88,9 (3.5) 95,2 (3.75) 90 (3.5) 100 (3.9) 105 (4.1)</td>
</tr>
<tr>
<td>DO65F20</td>
<td>98,6 (3.9) 117,3 (4.6) 90 (3.5) 105 (4.1) 105 (4.1)</td>
</tr>
<tr>
<td>DO65F25</td>
<td>108,0 (4.25) 124,0 (4.9) 100 (3.9) 115 (4.5) 140 (5.5)</td>
</tr>
<tr>
<td>DO65F32</td>
<td>i) 120 (4.7) 140 (5.5) 155 (6.1)</td>
</tr>
<tr>
<td>DO65F40</td>
<td>127,0 (5.0) 155,4 (6.1) 130 (5.1) 150 (5.9) 170 (6.7)</td>
</tr>
<tr>
<td>DO65F50</td>
<td>i) 130 (5.1) 150 (5.9) 170 (6.7)</td>
</tr>
</tbody>
</table>

1) in Vorbereitung
Varianten

<table>
<thead>
<tr>
<th>Variante</th>
<th>Nennweite; Baulänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO65F10</td>
<td>DN10 / 3/8"; 400mm</td>
</tr>
<tr>
<td>DO65F15</td>
<td>DN15 / 1/2"; 500mm</td>
</tr>
<tr>
<td>DO65F20</td>
<td>DN20 / 3/4"; 700mm</td>
</tr>
<tr>
<td>DO65F25</td>
<td>DN25 / 1"; 900mm</td>
</tr>
<tr>
<td>DO65F32</td>
<td>DN32 / 1-1/4"; 1100mm</td>
</tr>
<tr>
<td>DO65F40</td>
<td>DN40 / 1-1/2"; 1300mm</td>
</tr>
<tr>
<td>DO65F50</td>
<td>DN50 / 2"; 1500mm</td>
</tr>
</tbody>
</table>

Produktstruktur

10 Anwendung; Ausführung

<table>
<thead>
<tr>
<th>Anwendung; Ausführung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>Y</td>
</tr>
</tbody>
</table>

20 Rohrleitung; Orientierung

<table>
<thead>
<tr>
<th>Rohrleitung; Orientierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>Y</td>
</tr>
</tbody>
</table>

40 Prozessanschluss; Blende

<table>
<thead>
<tr>
<th>EN-Flansche</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAN</td>
</tr>
<tr>
<td>BAS</td>
</tr>
<tr>
<td>BCN</td>
</tr>
<tr>
<td>BCS</td>
</tr>
<tr>
<td>BEN</td>
</tr>
<tr>
<td>BES</td>
</tr>
<tr>
<td>BFN</td>
</tr>
<tr>
<td>BFS</td>
</tr>
<tr>
<td>BGN</td>
</tr>
<tr>
<td>BGS</td>
</tr>
<tr>
<td>BGU</td>
</tr>
<tr>
<td>BHN</td>
</tr>
<tr>
<td>BHS</td>
</tr>
<tr>
<td>BHU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANSI-Flansche</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAO</td>
</tr>
<tr>
<td>FAS</td>
</tr>
<tr>
<td>FBO</td>
</tr>
<tr>
<td>FBS</td>
</tr>
<tr>
<td>FCQ</td>
</tr>
<tr>
<td>FCS</td>
</tr>
<tr>
<td>FEG</td>
</tr>
<tr>
<td>FES</td>
</tr>
<tr>
<td>FFQ</td>
</tr>
<tr>
<td>FFS</td>
</tr>
<tr>
<td>FLO</td>
</tr>
<tr>
<td>FLS</td>
</tr>
<tr>
<td>FMQ</td>
</tr>
<tr>
<td>FMS</td>
</tr>
<tr>
<td>Y99</td>
</tr>
</tbody>
</table>

70 Dichtung Ringkammer

<table>
<thead>
<tr>
<th>Dichtung Ringkammer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>90</th>
<th>Vent/Drain</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht gewählt</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>100</th>
<th>Wirkdruckanschluss; Dichtung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>IEC61518; PTFE</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>IEC61518; FKM</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>IEC61518 gekröpft, fruchtes Gas; PTFE</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>IEC61518 gekröpft, fruchtes Gas; FKM</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Schweissan. kompakt (Dampf); Ohne</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Stutzen, MNPT1/2; Ohne</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Stutzen, Rohr 12mm; Ohne</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Schweissan. 21,3mm; Ohne</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Stutzen, G1/2 DIN19207; Ohne</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>200</th>
<th>2x Kondensatgefäβ Werkst.; Volumen; PN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nicht gewählt</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>III (265 GH); 300cm³; PN100</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>316L, 300cm³, PN100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>16Mo3, 250cm³, PN250</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>210</th>
<th>Befüllstutzen Kondensatgefäβ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>NPT1/2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>220</th>
<th>Eingang Kondensatgefäβ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Schweissan. 21,3mm</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Schweissan. kompakt (Dampf)</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>G1/2 DIN19207 Stahl + 2x Flansch</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>G1/2 DIN19207 rostfr. Stahl + 2x Flansch</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>230</th>
<th>Ausgang Kondensatgefäβ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Schweissan. 21,3mm</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Schweissan. kompakt (Dampf)</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Stutzen, 12mm</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Stutzen, G1/2 DIN19207</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>IEC61518, PTFE</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>IEC61518, FKM</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>250</th>
<th>2x Absperrarmatur; Packung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nicht gewählt</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ventil; PTFE Packung <200°C</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ventil; Reingraphit Packung <300°C</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ventil HT; Reingraphit Packung >300°C</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>260</th>
<th>Werkstoff Absperrarmatur</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C22.8</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>316Ti</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>16Mo3</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>270</th>
<th>Eingang Absperrarmatur</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nicht benötigt</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Ermeto 125</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>PNPT 1/2</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Schweissan. 21,3mm</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>G1/2 DIN19207 Stahl + 2x Flansch</td>
<td></td>
</tr>
</tbody>
</table>
270 Eingang Absperrarmatur

| W | G1/2 DIN19207 rostf. + 2x Flansch |
| Y | Sonderausführung, zu spezifizieren |

280 Ausgang Absperrarmatur

A	nicht benötigt
B	Schnellring (Ermeto 12S)
C	FNPT1/2
L	Schweissan. 14mm
Y	Sonderausführung, zu spezifizieren

300 Ventilblock Ausführung

111	nicht gewählt
AA1	3-fach, Stahl, geschmiedet
AA2	3-fach, 316Ti, geschmiedet
AB1	3-fach, Stahl, gefräst
AB2	3-fach, 316L, gefräst
BB1	5-fach, Stahl, gefräst, Entlüftung
BB2	5-fach, 316L, gefräst, Entlüftung
CA1	5-fach, Stahl, geschmiedet, Ausblasventil
CA2	5-fach, 316Ti, geschmiedet, Ausblasventil
DA1	5-fach HT, Stahl, 16Mo3, geschmiedet, Ausblasventil
DA2	5-fach HT, 316Ti, geschmiedet, Ausblasventil
KA1	3-fach, Stahl, geschmiedet, IEC61518, beidseitig
KA2	3-fach, 316Ti, geschmiedet, IEC61518, beidseitig
LA1	5-fach, 316Ti, geschmiedet, IEC61518 beidseitig, Entlüftung
Y9	Sonderausführung, zu spezifizieren

310 Packung Ventilblock

A	nicht benötigt
B	PTFE, 200 °C
C	PTFE/Reingraphit, HT
Y	Sonderausführung, zu spezifizieren

320 Prozessanschluss Ventilblock

A	ohne
B	FNPT1/2
C	Schnellring (Ermeto 12S)
D	Schweissan. 14mm
E	IEC61518
Y	Sonderausführung, zu spezifizieren

330 Dichtungen Ventilblock; Schrauben

A	nicht benötigt
B	PTFE, UNF7/16, max PN420
C	PTFE, M10, max PN160
D	Viton; UNF7/16, max PN420
E	Viton; M10, max PN160
F	Viton; M12, max PN420
Y	Sonderausführung, zu spezifizieren

450 DP-Transmitter Deltabar

| D | Mitgeliefert, extra Position |
| W | nicht mitgeliefert |

500 Zusatzausstattung Blende (optional; Mehrfachauswahl möglich)

A1	EN10204-3.1 Material (medizinerührt) Abnahmeprüfzeugnis
A2	EN10204-3.1 Material, NACE MR0175 (medizinerührt) Abnahmeprüfzeugnis
A3	EN10204-3.2 Material (medizinerührt) Abnahmeprüfzeugnis
A4	PMI-Test
A5	Gereinigt von Öl+Fett
A6	O2-Anwendung
A7	Gereinigt für LABS freie Anwendung

520 Zusatzausstattung Kondensatgefäss (optional; Mehrfachauswahl möglich)

C1	EN10204-3.1 Material (medizinerührt) Abnahmeprüfzeugnis
C2	EN10204-3.1 Material, NACE MR0175 (medizinerührt) Abnahmeprüfzeugnis
C3	EN10204-3.2 Material (medizinerührt) Abnahmeprüfzeugnis
C4	PMI-Test
Zusatzausstattung Absperrarmatur (optional; Mehrfachauswahl möglich)

<table>
<thead>
<tr>
<th>Code</th>
<th>Beschreibung</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>EN10204-3.1 Material (mediumberührt) Abnahmeprüfzeugnis</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>EN10204-3.1 Material, NACE MR0175 (mediumberührt) Abnahmeprüfzeugnis</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>EN10204-3.2 Material (mediumberührt) Abnahmeprüfzeugnis</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>PMI-Test</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>Gereinigt von Öl+Fett</td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>O2-Anwendung</td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>Gereinigt für LABS freie Anwendung</td>
<td></td>
</tr>
</tbody>
</table>

Zusatzausstattung Ventilblock (optional; Mehrfachauswahl möglich)

<table>
<thead>
<tr>
<th>Code</th>
<th>Beschreibung</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>EN10204-3.1 Material (mediumberührt) Abnahmeprüfzeugnis</td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>EN10204-3.1 Material, NACE MR0175 (mediumberührt) Abnahmeprüfzeugnis</td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>EN10204-3.2 Material (mediumberührt) Abnahmeprüfzeugnis</td>
<td></td>
</tr>
<tr>
<td>E4</td>
<td>PMI-Test</td>
<td></td>
</tr>
<tr>
<td>E5</td>
<td>Gereinigt von Öl+Fett</td>
<td></td>
</tr>
<tr>
<td>E6</td>
<td>O2-Anwendung</td>
<td></td>
</tr>
<tr>
<td>E7</td>
<td>Gereinigt für LABS freie Anwendung</td>
<td></td>
</tr>
</tbody>
</table>

Zusatzausstattung Allgemein (optional; Mehrfachauswahl möglich)

<table>
<thead>
<tr>
<th>Code</th>
<th>Beschreibung</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE</td>
<td>Nasskalibration</td>
<td></td>
</tr>
<tr>
<td>F8</td>
<td>Drucktest + Zeugnis</td>
<td></td>
</tr>
</tbody>
</table>

Kennzeichnung

<table>
<thead>
<tr>
<th>Code</th>
<th>Beschreibung</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1</td>
<td>Messstelle (TAG), siehe Zusatzspez.</td>
<td></td>
</tr>
</tbody>
</table>
Zubehör

Übersicht

Für die Differenzdruck-Durchflussmessung mit Blenden ist folgendes Zubehör erhältlich:

- DA61V: Absperrventil (s. Seite 67)
- DA61C: Kondensatgefäße (s. Seite 70)
- DA63M: Ventilblock (s. Seite 72)
- DA63R: Strömungsgleichrichter (s. Seite 81)

Deltatop DA61V: Absperrventil (Zubehör)

Abmessungen

A: Eingang FNPT1/2; Ausgang FNPT1/2;
B: Eingang Schneidring; Ausgang Schneidring;
C: Eingang Stutzen DIN19207 und Gewindeflansche; Ausgang Schneidring;
D: Eingang Schweißanschluss; Ausgang Schneidring;
E: Hochtemperatur-Ausführung; Eingang Schweißanschluss; Ausgang Schweißanschluss

A: DA61V-**C...
B: DA61V-**BB...
C: DA61V-**V...
D: DA61V-**E...
E: DA61V-**E...

A: Ø80 (3.15) 90 (3.5) 13,6 (0.54)
B: Ø63 (2.5) 64 (2.5)
C: Ø80 (3.15) 90 (3.5) 22 (0.87)
D: Ø80 (3.15) 90 (3.5)
E: Ø120 (4.7) 65 (2.6) 130 (5.1)
Gewicht

<table>
<thead>
<tr>
<th>Version</th>
<th>Bestellcode</th>
<th>Gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DA61V-*CC</td>
<td>ca. 0,8 kg (1.8 lbs)</td>
</tr>
<tr>
<td>B</td>
<td>DA61V-*BB</td>
<td>ca. 0,47 kg (1.0 lbs)</td>
</tr>
<tr>
<td>C</td>
<td>DA61V-V</td>
<td>ca. 1,45 kg (3.2 lbs)</td>
</tr>
<tr>
<td></td>
<td>DA61V-W</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>DA61V-E</td>
<td>ca. 0,73 kg (1.6 lbs)</td>
</tr>
<tr>
<td></td>
<td>DA61V-*K</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>DA61V-4****</td>
<td>ca. 1,6 kg (3.5 lbs)</td>
</tr>
</tbody>
</table>

1) Siehe Abbildung auf Seite 67

Design

- Gehäuse: Gesenkschmiedestück
- Oberfläche: Stahl, phosphatiert
- Spindelgewinde:
 - innenliegend für DA61V-2..., DA61V-3...
 - außenliegend für DA61V-4...
- Ventilsitz auswechselbar
- rollverdichtete Ventilspindel mit Rückdichtung und eingebördeltem Ventilkegel

Werkstoffe

<table>
<thead>
<tr>
<th>Merkmal 260 "Werkstoff"</th>
<th>C22.8</th>
<th>316Ti</th>
<th>16Mo3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehäuse</td>
<td>1.0460/C22.8</td>
<td>1.4571/316Ti</td>
<td>1.5415/16Mo3</td>
</tr>
<tr>
<td>Ventilspindel</td>
<td>1.4104</td>
<td>1.4571/316Ti</td>
<td>1.4021</td>
</tr>
<tr>
<td>Ventilkegel</td>
<td>1.4122v.</td>
<td>1.4571/316Ti</td>
<td>1.4122v.</td>
</tr>
</tbody>
</table>

Packung

- PTFE
- Reingraphit
Produktstruktur

<table>
<thead>
<tr>
<th>250</th>
<th>Ausführung; Packung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Ventil; PTFE Packung <200°C</td>
</tr>
<tr>
<td>3</td>
<td>Ventil; Reingraphit Packung <300°C</td>
</tr>
<tr>
<td>4</td>
<td>Ventil HT; Reingraphit Packung >300°C</td>
</tr>
<tr>
<td>9</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>260</th>
<th>Werkstoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C22.8</td>
</tr>
<tr>
<td>D</td>
<td>316Ti</td>
</tr>
<tr>
<td>G</td>
<td>16Mo3</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>270</th>
<th>Eingang</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Ermeto 12S</td>
</tr>
<tr>
<td>C</td>
<td>FNPT1/2</td>
</tr>
<tr>
<td>E</td>
<td>Schweissan. 21,3mm</td>
</tr>
<tr>
<td>K</td>
<td>Stutzen, Schweissan. 17,2mm</td>
</tr>
<tr>
<td>V</td>
<td>G1/2 DIN19207 Stahl + 2x Flansch; PN160</td>
</tr>
<tr>
<td>W</td>
<td>G1/2 DIN19207 rostfr. Stahl + 2x Flansch; PN160</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>280</th>
<th>Ausgang</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Schneidring (Ermeto 12S)</td>
</tr>
<tr>
<td>C</td>
<td>FNPT1/2</td>
</tr>
<tr>
<td>L</td>
<td>Schweissan. 14mm</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

Zusatzausstattung

<table>
<thead>
<tr>
<th>550</th>
<th>F1 EN10204-3.1 Material (mediumberührt) Abnahmeprüfzeugnis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F2 EN10204-3.1 Material, NACE MR0175 (mediumberührt) Abnahmeprüfzeugnis</td>
</tr>
<tr>
<td></td>
<td>F3 EN10204-3.2 Material (mediumberührt) Abnahmeprüfzeugnis</td>
</tr>
<tr>
<td></td>
<td>F4 PMI-Test</td>
</tr>
<tr>
<td></td>
<td>F5 Gereinigt von Öl+Fett</td>
</tr>
<tr>
<td></td>
<td>F6 O2-Anwendung</td>
</tr>
<tr>
<td></td>
<td>F7 Gereinigt für LABS freie Anwendung</td>
</tr>
</tbody>
</table>

Kennzeichnung

| 895 | Z1 Messstelle (TAG), siehe Zusatzspez. |

Hinweis!

Deltatop DA61C: Kondensatgefäß (Zubehör)

Abmessungen

Gewicht

<table>
<thead>
<tr>
<th>Werkstoff</th>
<th>Gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>HII (265 GH)</td>
<td>ca. 1,7 kg [3.8 lbs]</td>
</tr>
<tr>
<td>316L</td>
<td>ca. 1,7 kg [3.8 lbs]</td>
</tr>
<tr>
<td>16Mo3</td>
<td>ca. 2,2 kg [4.9 lbs]</td>
</tr>
</tbody>
</table>

Zusätzliches Gewicht bei Flanschen am Eingang (DA61C-**V... und DA61C-**W...): ca. 0,7 kg [1.5 lbs]
<table>
<thead>
<tr>
<th>200</th>
<th>Produktstruktur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Werkstoff; Volumen; PN</td>
</tr>
<tr>
<td>B</td>
<td>B H11 (265 GH); 300cm³; PN100</td>
</tr>
<tr>
<td>C</td>
<td>316L; 300cm³; PN100</td>
</tr>
<tr>
<td>K</td>
<td>16Mo3; 250cm³; PN250</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>210</th>
<th>Befüllstutzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nicht gewählt</td>
</tr>
<tr>
<td>2</td>
<td>NPT1/2</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>220</th>
<th>Eingang</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Schweissan. 21,3mm; Ohne</td>
</tr>
<tr>
<td>K</td>
<td>Stutzen, Schweissan. 17,2mm</td>
</tr>
<tr>
<td>V</td>
<td>G1/2 DIN19207 Stahl + 2x Flansch</td>
</tr>
<tr>
<td>W</td>
<td>G1/2 DIN19207 rostfr. Stahl + 2x Flansch</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>230</th>
<th>Ausgang</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Schweissan. 21,3mm</td>
</tr>
<tr>
<td>M</td>
<td>Stutzen, 12mm</td>
</tr>
<tr>
<td>N</td>
<td>Stutzen, G1/2 DIN19207</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>550</th>
<th>Zusatzausstattung (optional; Mehrfachauswahl möglich)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>EN10204-3.1 Material (medientberührt) Abnahmeprüfzeugnis</td>
</tr>
<tr>
<td>F2</td>
<td>EN10204-3.1 Material, NACE MR0175 (medientberührt) Abnahmeprüfzeugnis</td>
</tr>
<tr>
<td>F3</td>
<td>EN10204-3.2 Material (medientberührt) Abnahmeprüfzeugnis</td>
</tr>
<tr>
<td>F4</td>
<td>PMI-Test</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>895</th>
<th>Kennzeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1</td>
<td>Messstelle (TAG), siehe Zusatzspez.</td>
</tr>
</tbody>
</table>
Deltatop DA63M: Ventilblock (Zubehör)

Verwendung

3-fach Ventilblock

![3-fach Ventilblock](image)

links: gefräste Ausführung (für Gase und Flüssigkeiten); rechts: geschmiedete Ausführung (für Dampf); A: Prozess-Seite; B: Transmitter-Seite

5-fach-Ventilblock

![5-fach-Ventilblock](image)

5-fach-Ventilblock, Entlüftung, gefräste Ausführung (für Gase und Flüssigkeiten); A: Prozess-Seite; B: Transmitter-Seite

![5-fach-Ventilblock Ausblasen](image)

5-fach-Ventilblock, Ausblasen, geschmiedete Ausführung (für Dampf); A: Prozess-Seite; B: Transmitter-Seite
Ausführung: 3-fach, geschmiert

Bauform
- Gehäuse: Gesenkschmiedestück
- Oberfläche: Stahl phosphatiert
- innenliegendes Spindelgewinde
- Ventilsitz auswechselbar
- rollverdichtete Ventilspindel mit Rückdichtung und eingebördeltem Ventilkegel
- Handräder aus Kunststoff
- Eingang:
 - Schneidringverschraubung für Rohr Ø 12 mm, Baureihe S, G 3/8
 - Schweißanschluss für Rohr Ø 14 x 2,5 mm
- Ausgang: IEC61518, Form A
- Gewicht: ca. 3,2 kg (7.0 lbs), incl. 4 Schrauben mit Unterlegscheiben und 2 Dichtungen

Werkstoffe

<table>
<thead>
<tr>
<th>Bauteil</th>
<th>Ausführung "Stahl"</th>
<th>Ausführung "316Ti"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehäuse</td>
<td>1.0460</td>
<td>1.4571</td>
</tr>
<tr>
<td>Spindelführung</td>
<td>1.0501</td>
<td>1.4571</td>
</tr>
<tr>
<td>Ventilsitz</td>
<td>1.4571</td>
<td>1.4571</td>
</tr>
<tr>
<td>Ventilspindel</td>
<td>1.4104</td>
<td>1.4571</td>
</tr>
<tr>
<td>Ventilkegel</td>
<td>1.4122 v.</td>
<td>1.4571</td>
</tr>
<tr>
<td>Packung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTFE (bis 200 °C)</td>
<td></td>
<td>PTFE (bis 200 °C)</td>
</tr>
<tr>
<td>Reingraphit (bis 300 °C)</td>
<td></td>
<td>Reingraphit (bis 300 °C)</td>
</tr>
<tr>
<td>Überwurfmutter</td>
<td>Stahl</td>
<td>1.4571</td>
</tr>
<tr>
<td>Schweißanschluss</td>
<td>1.4515</td>
<td>1.4571</td>
</tr>
</tbody>
</table>
Ausführung: 3-fach, gefräst

Bauform

- Oberfläche: Stahl phosphatiert
- außenliegendes Spindelgewinde
- rollverdichtete Ventilspindel mit Rückdichtung und eingebördeltem Ventilkopf
- Eingang: Muffe 1/2NPT
- Ausgang: IEC61518, Form A
- Gewicht: ca. 2,0kg (4.4 lbs), incl. 4 Schrauben mit Unterlegscheiben und 2 Dichtungen

Werkstoffe

<table>
<thead>
<tr>
<th>Bauteil</th>
<th>Ausführung "Stahl"</th>
<th>Ausführung "316L"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehäuse</td>
<td>1.0460</td>
<td>1.4404 / 316L</td>
</tr>
<tr>
<td>Spindelführung</td>
<td>1.4401 / 316</td>
<td>1.4401 / 316</td>
</tr>
<tr>
<td>Ventilspindel</td>
<td>1.4404</td>
<td>1.4404</td>
</tr>
<tr>
<td>Ventilkopf</td>
<td>1.4122 v.</td>
<td>1.4571</td>
</tr>
<tr>
<td>Packung</td>
<td>PTFE (bis 200 °C)</td>
<td>PTFE (bis 200 °C)</td>
</tr>
<tr>
<td></td>
<td>Reingraphit (bis 550 °C)</td>
<td>Reingraphit (bis 550 °C)</td>
</tr>
<tr>
<td>Spindelmutter</td>
<td>1.4301</td>
<td>1.4301</td>
</tr>
<tr>
<td>Knebelgriff</td>
<td>Edelstahl</td>
<td>Edelstahl</td>
</tr>
</tbody>
</table>
Ausführung: 5-fach, gefräst, Entlüftung

Verwendung
Gas- und Flüssigkeitsanwendungen

Bauform
- Oberfläche: Stahl phosphatiert
- außenliegendes Spindelgewinde
- rollverdichtete Ventilspindel mit Rückdichtung und eingebördeltem Ventilkegel
- Eingang: Muffe 1/2 NPT
- Ausgang: IEC61518, Form A
- Gewicht: ca. 3,3 kg (7.3 lbs), incl. 4 Schrauben mit Unterlegscheiben und 2 Dichtungen

Werkstoffe

<table>
<thead>
<tr>
<th>Bauteil</th>
<th>Ausführung "Stahl"</th>
<th>Ausführung "316L"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehäuse</td>
<td>1.0460</td>
<td>1.4404 / 316L</td>
</tr>
<tr>
<td>Spindelführung</td>
<td>1.4401 / 316</td>
<td>1.4401 / 316</td>
</tr>
<tr>
<td>Ventilspindel</td>
<td>1.4404</td>
<td>1.4404</td>
</tr>
<tr>
<td>Ventilkegel</td>
<td>1.4122 v.</td>
<td>1.4571</td>
</tr>
<tr>
<td>Packung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spindelmutter</td>
<td>1.4301</td>
<td>1.4301</td>
</tr>
<tr>
<td>Knebelgriff</td>
<td>Edelstahl</td>
<td>Edelstahl</td>
</tr>
<tr>
<td>Verschlusschraube</td>
<td>1.0501</td>
<td>1.4404</td>
</tr>
</tbody>
</table>
Ausführung: 5-fach, geschmiedet, Ausblasventil

1: Schneidringverschraubung; 2: Schweißanschluss;
A: Prozess-Seite; B: Transmitter-Seite; C: Ausblasen;
D: PTFE-Packung; E: Reingraphit-Packung

Verwendung

Dampfanwendungen

Bauform

- Gehäuse: Gesenkschmiedestück
- Oberfläche: Stahl phosphatiert
- innenliegendes Spindelgewinde
- Ventilsitz auswechselbar
- rollverdichtete Ventilspindel mit Rückdichtung und eingebördeltem Ventilkegel
- Eingang/Ausblasen:
 - Schneidringverschraubung für Rohr Ø12 mm; Baureihe S, G 3/8
 - Schweißstutzen für Rohr Ø14 x 2,5 mm
- Ausgang: IEC61518, Form A
- Gewicht: ca. 4,6 kg (10.2 lbs), incl. 4 Schrauben mit Unterlegscheiben und 2 Dichtungen

Werkstoffe

<table>
<thead>
<tr>
<th>Bauteil</th>
<th>Ausführung "Stahl"</th>
<th>Ausführung "316Ti"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehäuse</td>
<td>1.0460</td>
<td>1.4571</td>
</tr>
<tr>
<td>Spindelführung</td>
<td>1.0501</td>
<td>1.4571</td>
</tr>
<tr>
<td>Ventilsitz</td>
<td>1.4571</td>
<td>1.4571</td>
</tr>
<tr>
<td>Ventilspindel</td>
<td>1.4104</td>
<td>1.4571</td>
</tr>
<tr>
<td>Ventilkegel</td>
<td>1.4122 v.</td>
<td>1.4571</td>
</tr>
<tr>
<td>Packung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PTFE (bis 200 °C)</td>
<td>PTFE (bis 200 °C)</td>
</tr>
<tr>
<td></td>
<td>Reingraphit (bis 300 °C)</td>
<td>Reingraphit (bis 300 °C)</td>
</tr>
<tr>
<td>Überwurfmutter</td>
<td>Stahl</td>
<td>1.4571</td>
</tr>
</tbody>
</table>
Ausführung: 5-fach HT, geschmiedet, Ausblasventil

Verwendung
Hochtemperatur-Dampfanwendungen

Bauform
- Gehäuse: Gesenkschmiedestück
- Oberfläche: Stahl phosphatiert
- Ventilblock: innenliegendes Spindelgewinde
- Ausblasventile: außenliegendes Spindelgewinde
- Ventilsitz auswechselbar
- rollverdichtete Ventilspindel mit Rückdichtung und eingebördeltem Ventilkegel
- Eingang: Stumpfgeschweißanschluss für Rohr 14 x 2,5 mm
- Ausgang Ventilblock: IEC 61518, Form A
- Ausgang Ausblasventil: Schneidringverschraubung für Rohr Ø12 mm
- Gewicht: ca. 5,6 kg (12.4 lbs), incl. 4 Schrauben mit Unterlegscheiben und 2 Dichtungen

Werkstoffe

<table>
<thead>
<tr>
<th>Bauteil</th>
<th>Ausführung "Stahl"</th>
<th>Ausführung "316Ti"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ventilblock</td>
<td>Ausblasventil</td>
</tr>
<tr>
<td>Gehäuse</td>
<td>1.0460</td>
<td>1.5415</td>
</tr>
<tr>
<td>Spindelführung</td>
<td>1.0501</td>
<td>1.7709</td>
</tr>
<tr>
<td>Ventilsitz</td>
<td>1.4571</td>
<td>1.4021</td>
</tr>
<tr>
<td>Ventilspindel</td>
<td>1.4104</td>
<td>1.4021</td>
</tr>
<tr>
<td>Ventilkegel</td>
<td>1.422 v.</td>
<td>1.422 v.</td>
</tr>
<tr>
<td>Packung</td>
<td>PTFE</td>
<td>Reingraphit</td>
</tr>
<tr>
<td>Überwurfmutter</td>
<td>Stahl</td>
<td>-</td>
</tr>
<tr>
<td>Spindelmutter</td>
<td>-</td>
<td>2.0550</td>
</tr>
</tbody>
</table>
Ausführung: 3-fach, geschmiedet, IEC61518, beidseitig

Verwendung
für die Kompaktausführung des Deltatop

Bauform

- Gehäuse: Gesenkschmiedestück
- Oberfläche: Stahl phosphatiert
- außenliegendes Spindelgewinde
- rollverdichtete Ventilspindel mit Rückdichtung und eingebördeltem Ventilkegel
- Eingang: Eindrehung Ø18,5 nach IEC61518
- Ausgang: IEC61518, Form A
- Gewicht: ca. 2,2 kg (4,9 lbs), incl. 4 Schrauben mit Unterlegscheiben und 2 Dichtungen

Abmessungen

<table>
<thead>
<tr>
<th>Bauteil</th>
<th>Ausführung "Stahl"</th>
<th>Ausführung "316Ti"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehäuse</td>
<td>1.0460</td>
<td>1.4404 / 316L</td>
</tr>
<tr>
<td>Spindelführung</td>
<td>1.4401 / 316</td>
<td>1.4401 / 316</td>
</tr>
<tr>
<td>Ventilspindel</td>
<td>1.4404</td>
<td>1.4404</td>
</tr>
<tr>
<td>Ventilkegel</td>
<td>1.4122 v.</td>
<td>1.4571</td>
</tr>
<tr>
<td>Packung</td>
<td>PTFE (bis 200 °C)</td>
<td>PTFE (bis 200 °C)</td>
</tr>
<tr>
<td></td>
<td>Reingraphit (bis 550 °C)</td>
<td>Reingraphit (bis 550 °C)</td>
</tr>
<tr>
<td>Spindelmutter</td>
<td>1.4301</td>
<td>1.4301</td>
</tr>
<tr>
<td>Knebelgriff</td>
<td>Edelstahl</td>
<td>Edelstahl</td>
</tr>
</tbody>
</table>
Ausführung: 5-fach, geschmiedet, IEC61518, beidseitig, Entlüftung

A: Prozess-Seite; B: Transmitter-Seite; C: Entlüftungs-Ventil; D: PTFE-Packung; E: Reingraphit-Packung 1.0460; F: Reingraphit-Packung 1.4404

Verwendung

für die Kompaktausführung des Deltatop

Bauform

- Gehäuse: Gesenkschmiedestück
- außenliegendes Spindelgewinde
- rollverdichtete Ventilspindel mit Rückdichtung und eingebördeltem Ventilkopf
- Eingang: Eindrehung Φ18,5 nach IEC61518
- Ausgang (zum Transmitter): IEC61518 Form A
- Ausgang (Prüfen/Entlüften): Muffe 1/4NPT mit Verschlussschraube
- Gewicht: ca. 3,3 kg (7,3 lbs), incl. 4 Schrauben mit Unterlegscheiben und 2 Dichtungen

Abmessungen

<table>
<thead>
<tr>
<th>Bauteil</th>
<th>Werkstoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehäuse</td>
<td>1.4404 /316L</td>
</tr>
<tr>
<td>Spindellführung</td>
<td>1.4401 / 316</td>
</tr>
<tr>
<td>Ventilspindel</td>
<td>1.4404</td>
</tr>
<tr>
<td>Ventilkopf</td>
<td>1.4571</td>
</tr>
<tr>
<td>Packung</td>
<td>■ PTFE (bis 200 °C)</td>
</tr>
<tr>
<td></td>
<td>■ Reingraphit (bis 550 °C)</td>
</tr>
<tr>
<td>Spindelmutter</td>
<td>1.4301</td>
</tr>
<tr>
<td>Knebelgriff</td>
<td>Edelstahl</td>
</tr>
<tr>
<td>Verschlussschraube</td>
<td>1.4404</td>
</tr>
</tbody>
</table>
Produktstruktur

<table>
<thead>
<tr>
<th>Code</th>
<th>Ausführung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA1</td>
<td>3-fach, Stahl, geschmiedet</td>
</tr>
<tr>
<td>AA2</td>
<td>3-fach, 316Ti, geschmiedet</td>
</tr>
<tr>
<td>AB1</td>
<td>3-fach, Stahl, gefräst</td>
</tr>
<tr>
<td>AB2</td>
<td>3-fach, 316L, gefräst</td>
</tr>
<tr>
<td>BB1</td>
<td>5-fach, Stahl, gefräst, Entlüftung</td>
</tr>
<tr>
<td>BB2</td>
<td>5-fach, 316L, gefräst, Entlüftung</td>
</tr>
<tr>
<td>CA1</td>
<td>3-fach, Stahl, geschmiedet, Ausblasventil</td>
</tr>
<tr>
<td>CA2</td>
<td>3-fach, 316Ti, geschmiedet, Ausblasventil</td>
</tr>
<tr>
<td>DA1</td>
<td>5-fach HT, Stahl, 16Mo3, geschmiedet, Ausblasventil</td>
</tr>
<tr>
<td>DA2</td>
<td>5-fach HT, 316Ti, geschmiedet, Ausblasventil</td>
</tr>
<tr>
<td>KA1</td>
<td>3-fach, Stahl, geschmiedet, IEC61518, beidseitig</td>
</tr>
<tr>
<td>KA2</td>
<td>3-fach, 316Ti, geschmiedet, IEC61518, beidseitig</td>
</tr>
<tr>
<td>LA2</td>
<td>5-fach, 316Ti, geschmiedet, IEC61518 beidseitig, Entlüftung</td>
</tr>
<tr>
<td>YY9</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Packung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>PTFE, 200°C</td>
</tr>
<tr>
<td>C</td>
<td>PTFE/Reingraphit, HT</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Prozessanschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>FNPT1/2</td>
</tr>
<tr>
<td>C</td>
<td>Schneidring (Ermeto 12S)</td>
</tr>
<tr>
<td>D</td>
<td>Schweissan, 14mm</td>
</tr>
<tr>
<td>E</td>
<td>IEC61518</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Dichtungen; Schrauben</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>PTFE; UNF7/16, max PN420</td>
</tr>
<tr>
<td>C</td>
<td>PTFE; M10, max PN160</td>
</tr>
<tr>
<td>D</td>
<td>Viton; UNF7/16, max PN420</td>
</tr>
<tr>
<td>E</td>
<td>Viton; M10, max PN160</td>
</tr>
<tr>
<td>F</td>
<td>Viton; M12, max PN420</td>
</tr>
<tr>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Zusatzausstattung</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>EN10204-3.1 Material (medierberührt) Abnahmeprüfzeugnis</td>
</tr>
<tr>
<td>E2</td>
<td>EN10204-3.1 Material, NACE MR0175 (medierberührt) Abnahmeprüfzeugnis</td>
</tr>
<tr>
<td>E3</td>
<td>EN10204-3.2 Material (medierberührt) Abnahmeprüfzeugnis</td>
</tr>
<tr>
<td>E5</td>
<td>Gereinigt von Öl+Fett</td>
</tr>
<tr>
<td>E6</td>
<td>O2-Anwendung</td>
</tr>
<tr>
<td>E7</td>
<td>Gereinigt für LABS freie Anwendung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Kennzeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1</td>
<td>Messstelle (TAG), siehe Zusatzspez.</td>
</tr>
</tbody>
</table>
Deltatop DA63R: Strömungsgleichrichter (Zubehör)

Verwendung
Der Strömungsgleichrichter kann zur Reduzierung der erforderlichen Einlaufstrecke zwischen einer Einbau- störung und der Blende verwendet werden.

Einbaubedingungen
- Abstand zwischen Strömungsgleichrichter und Einbau- störung: min. 8,5 D
- Abstand zwischen Strömungsgleichrichter und Blende: min. 7,5 D

\[D: \text{Rohrinnendurchmesser} \]

Druckverlust
Am Strömungsgleichrichter tritt folgender Druckverlust auf:

\[\Delta p = 1,5 \rho v^2 \]

- \(\Delta p \): Druckverlust am Strömungsgleichrichter [Pa]
- \(\rho \): Dichte des Fluids [kg/m\(^3\)]
- \(v \): Strömungsgeschwindigkeit [m/s]
Der Zanker-Lochplatten-Strömungsumformer nach ISO5167-2 besteht aus 32 Bohrungen in einer kreisför-
men, symmetrischen Anordnung. Die Maße der Bohrungen werden abhängig vom Rohrinnendurchmesser
\(D \) festgelegt:

- 4 Bohrungen, Bohrungsdurchmesser 0,141 \(D \), Teilkreisdurchmesser 0,25 \(D \)
- 8 Bohrungen, Bohrungsdurchmesser 0,139 \(D \), Teilkreisdurchmesser 0,56 \(D \)
- 4 Bohrungen, Bohrungsdurchmesser 0,1365 \(D \), Teilkreisdurchmesser 0,75 \(D \)
- 8 Bohrungen, Bohrungsdurchmesser 0,11 \(D \), Teilkreisdurchmesser 0,85 \(D \)
- 8 Bohrungen, Bohrungsdurchmesser 0,077 \(D \), Teilkreisdurchmesser 0,90 \(D \)

Die Plattendicke beträgt \(1/8 D \).
Der Plattendurchmesser ist an den Außendurchmesser des Flansches angepasst (gemäß Merkmal 30 "Blende").
Ausführungen

<table>
<thead>
<tr>
<th>Ausführung</th>
<th>Nennweite</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA63R25</td>
<td>DN25 / 1"</td>
</tr>
<tr>
<td>DA63R40</td>
<td>DN40 / 1-1/2"</td>
</tr>
<tr>
<td>DA63R50</td>
<td>DN50 / 2"</td>
</tr>
<tr>
<td>DA63R65</td>
<td>DN65 / 2-1/2"</td>
</tr>
<tr>
<td>DA63R80</td>
<td>DN80 / 3"</td>
</tr>
<tr>
<td>DA63R1H</td>
<td>DN100 / 4"</td>
</tr>
<tr>
<td>DA63R1Z</td>
<td>DN125 / 5"</td>
</tr>
<tr>
<td>DA63R1F</td>
<td>DN150 / 6"</td>
</tr>
<tr>
<td>DA63R2H</td>
<td>DN200 / 8"</td>
</tr>
<tr>
<td>DA63R2F</td>
<td>DN250 / 10"</td>
</tr>
<tr>
<td>DA63R3H</td>
<td>DN300 / 12"</td>
</tr>
<tr>
<td>DA63R3F</td>
<td>DN350 / 14"</td>
</tr>
<tr>
<td>DA63R4H</td>
<td>DN400 / 16"</td>
</tr>
</tbody>
</table>

Produktstruktur

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Ausführung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>S</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Sonderausführung, zu spezifizieren</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>Strömungsumformer</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>EN-Flansche</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>BAC PN6 B1, 316L</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>BBC PN10 B1, 316L</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>BCC PN16 B1, 316L</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>BDC PN25 B1, 316L</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>BEC PN40 B1, 316L</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>BFC PN63 B2, 316L</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>BGC PN100 B2, 316L</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>BHC PN160 E, 316L</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>ANSI-Flansche</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>FAC Cl.150 RF, 316L</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>FBC Cl.300 RF, 316L</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>FCC Cl.600 RF, 316L</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>FDC Cl.900 RF, 316L</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>FEC Cl.1500 RF, 316L</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>FFC Cl.2500 RF, 316L</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>FKC Cl.900 RTJ, 316L</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>FLC Cl.1500 RTJ, 316L</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>FMC Cl.2500 RTJ, 316L</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Y99 Sonderausführung, zu spezifizieren</td>
</tr>
<tr>
<td>550</td>
<td>1</td>
<td>Zusatzausstattung</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>(optional, mehrere Optionen können gewählt werden)</td>
</tr>
<tr>
<td></td>
<td>F1</td>
<td>EN10204-3.1 Material (mediumberührt) Abnahmeprüfzeugnis</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>EN10204-3.1 Material, NACE MR0175 (mediumberührt) Abnahmeprüfzeugnis</td>
</tr>
<tr>
<td>895</td>
<td>Z1</td>
<td>Kennzeichnung</td>
</tr>
<tr>
<td></td>
<td>Z1</td>
<td>Messstelle (TAG), siehe Zusatzpez.</td>
</tr>
</tbody>
</table>
Ovalflanschadapter PZO für Deltabar S

Abmessungen
![Diagram of Ovalflanschadapter]

Produktstruktur PZO

<table>
<thead>
<tr>
<th>Code</th>
<th>Beschreibung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>010</td>
<td>Zulassung</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Grundausführung</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>EN10204-3.1 Material, Ovalflansch Abnahmeprüfzeugnis</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>gereinigt von Öl+Fett, O2-Anwendung</td>
<td></td>
</tr>
<tr>
<td>020</td>
<td>Prozessanschluss</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>FNPT1/2-14</td>
<td></td>
</tr>
<tr>
<td>030</td>
<td>Werkstoff</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Stahl C22.8</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>316L</td>
<td></td>
</tr>
<tr>
<td>040</td>
<td>Dichtung</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PTFE</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FKM Viton</td>
<td></td>
</tr>
<tr>
<td>050</td>
<td>Befestigungsschraube</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2x Befestigungsschraube M10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2x Befestigungsschraube M12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2x Befestigungsschraube UNF7/16-20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>nicht gewählt</td>
<td></td>
</tr>
</tbody>
</table>
Auslegungsblatt - Datenblatt

Mit * markierte Felder sind zwingend auszufüllen

<table>
<thead>
<tr>
<th>Projekt:</th>
<th>K.-Projektnr.:</th>
<th>Ansprechpartner:</th>
</tr>
</thead>
</table>

Bestellcode

<table>
<thead>
<tr>
<th>Wirldruckgeber</th>
<th>Transmitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestellcode</td>
<td>Auftragsnummer *</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
</tr>
</tbody>
</table>

Tag:

Hauptparameter

<table>
<thead>
<tr>
<th>Medium: *</th>
<th>Status *</th>
<th>Gas</th>
<th>Flüssigkeit</th>
<th>Dampf</th>
</tr>
</thead>
</table>

Prozessbedingungen

<table>
<thead>
<tr>
<th>Druck *</th>
<th>Bei Relativdruck ist die Angabe des Luftdruckes erforderlich, falls von Meereshöhe abweichende Luftdruck:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>absolut</td>
</tr>
</tbody>
</table>

Nur bei Gasen: Die Angaben zum Durchfluß bzw. zur Dichte des Medium beziehen sich auf folgende Bedingungen:

<table>
<thead>
<tr>
<th>Durchfluß *</th>
<th>Dichte *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betrieb</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>minimal</td>
</tr>
</tbody>
</table>

Erf. Durchfluß:

Druck:

Temperatur:

Dichte: 1)

Viskosität: 1)

Z-Faktor: 1,2)

Isentropenexponent: 1,2)

Die Auslegung erfolgt auf maximalen Durchfluß, sowie nominalen Druck und Temperatur. Der maximale Durchfluß entspricht dem Messbereichsende.

1) Bei eindeutig spezifizierten Flüssigkeiten und Gasen (z.B. Wasser oder Luft) sind diese Angaben nicht notwendig.

2) Nur für Gase. Wenn die Werte nicht bekannt sind erfolgt die Auslegung mit Standardwerten oder nach der Idealgasgleichung.

Messgerät

Nennweite: * | Druckstufe: *

Rohrdaten *(rund)

<table>
<thead>
<tr>
<th>Rohr (rund)</th>
<th>Einbauelage s. Blatt 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innendurchmesser (D1):</td>
<td></td>
</tr>
<tr>
<td>Wandstärke (S):</td>
<td></td>
</tr>
<tr>
<td>Isolationsdicke:</td>
<td></td>
</tr>
<tr>
<td>Rohrmaterial:</td>
<td></td>
</tr>
</tbody>
</table>

Die Auslegung erfolgt auf maximalen Durchfluß, sowie nominalen Druck und Temperatur. Der maximale Durchfluß entspricht dem Messbereichsende.

Die Angabe der genauen Innendurchmesser ist zwingend erforderlich.

Zusatzangaben

Optimierungskriterium (nur 1 Feld ankreuzen)

<table>
<thead>
<tr>
<th>Optimiert durch E+H</th>
<th>Maximal zulässiger Druckverlust</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Festes Durchmesserverhältnis β</td>
</tr>
<tr>
<td></td>
<td>Fester Differenzdruck</td>
</tr>
<tr>
<td></td>
<td>Vorgegebene Berechnung (Anhang)</td>
</tr>
</tbody>
</table>

Die Angabe der genauen Innendurchmesser ist zwingend erforderlich.

Auslegungsblatt - Einbautage / Blenden

Nicht für Steckblenden DO64P

Gas:
- kompakt, vertikal
- kompakt, horizontal
- getrennt, vertikal
- getrennt, horizontal

Dampf:
- kompakt, vertikal
- kompakt, horizontal
- getrennt, vertikal
- getrennt, horizontal

Flüssigkeiten:
- kompakt, vertikal
- kompakt, horizontal
- getrennt, vertikal
- getrennt, horizontal

Montage links
Montage rechts
aufwärts
abwärts
auf/ab Stutzen 0°
Stutzen 0°
Stutzen x° (DIN)

Montage links
Montage rechts
aufwärts
abwärts
auf/ab Stutzen 0°
Stutzen 0°
Stutzen x° (DIN)

Montage links
Montage rechts
aufwärts
abwärts
auf/ab Stutzen 0°
Stutzen 0°
Stutzen x° (DIN)

Montage links
Montage rechts
aufwärts
abwärts
auf/ab Stutzen 0°
Stutzen 0°
Stutzen x° (DIN)

Nicht für Steckblenden DO64P
Anleitung zum Ausfüllen des Auslegungsblatts

- Das Auslegungsblatt-Datenblatt kann auch mit dem Auslegungs-Tool Applicator erstellt und ausgedruckt werden. Alle abgefragten Parameter können dort eingegeben oder der Datenbank entnommen werden.
- Alle Felder, die mit * gekennzeichnet sind, müssen ausgefüllt werden. Der Auftrag kann nicht ausgeführt oder mit der Produktion begonnen werden, solange diese Daten nicht vollständig geklärt sind.
- Parameterangaben sind immer mit vollständiger und korrekter Einheit anzugeben (z.B. Durchfluß in Nm³/h bei Normbedingungen und nicht m³/h)

<table>
<thead>
<tr>
<th>Abschnitt</th>
<th>Datenfeld / Parameter</th>
<th>Erläuterung der Angabe</th>
<th>erforderlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projekt</td>
<td>Projekt</td>
<td>Auftragsbezogene Kundeninformationen</td>
<td>A³</td>
</tr>
<tr>
<td></td>
<td>Kunde</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K.-Projektnr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bestellcode</td>
<td>Bestellcode</td>
<td>Bestellcode des ausgewählten Wirkdruckgebers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auftragsnummer*</td>
<td>Auftragsposition, der dieses Datenblatt zuzuordnen ist.</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>Position(en)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmitter</td>
<td>Bestellcode</td>
<td>Ausgewählter Bestellcode des zugehörigen Differenzdrucktransmitters.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auftragsnummer*</td>
<td>Auftragsposition des zugehörigen Differenzdrucktransmitters, der dem Wirkdruckgeber zuzuordnen ist.</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>Position(en)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tag</td>
<td>Tag</td>
<td>Messstellennummer zur Zuordnung von Wirkdruckgeber und Transmitter.</td>
<td></td>
</tr>
<tr>
<td>Hauptparameter</td>
<td>Medium*</td>
<td>Genaue Bezeichnung des Mediums, Name (z.B. Wasser) oder chemische Formel (z.B. CH₄), Art des Fluids bzw. Angabe des Aggregatzustandes des Mediums unter den angegebenen Prozessbedingungen, Gas oder Flüssigkeit, bei Wasserdampf ist Dampf anzukreuzen. Abhängig von der Eingabe sind weitere Daten erforderlich (s. Mediumseigenschaften).</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>Status*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prozessbedingungen</td>
<td>Druck*</td>
<td>Die korrekte Angabe der Prozessbedingungen ist Grundlage der Differenzdruckberechnung. Die Auslegung des Wirkdruckgebers erfolgt üblicherweise auf maximalen Durchfluß bei nominalem Druck und Temperatur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(absolut oder relativ)</td>
<td>Die Bezugsgröße der statischen Druckangaben muß ausgewählt werden. Absolutdruck oder Relativdruck</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>Luftdruck</td>
<td>Für die Differenzdruckberechnung ist ausschließlich der statische Absolutdruck in der Leitung maßgebend. Wird der statische Druck als Relativdruck angegeben ist zusätzlich der mittlere Umgebungsdruck des Einbauortes anzugeben (falls von Meereshöhe abweichend). Alternativ kann auch die Höhe des Einbauortes über NN (Meereshöhe) angegeben werden.</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>Durchfluß*</td>
<td>Nur bei Gasen: Durchfluß- und Dichtewerte können sich auf die aktuellen nominalen Betriebsbedingungen (Druck und Temperatur) beziehen oder auf Normal- oder Standardbedingungen. Die Unterschiede können je nach Druck und Temperatur erheblich sein. Auf korrekte Auswahl ist besonderer Wert zu legen. Zusätzlich sollten die Einheiten für Durchfluß und Dichte entsprechend klar und korrekt angegeben werden (z.B. Durchfluß in Sm³/h bei Standardbedingungen oder kg/Nm³ für Normdichte).</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>Dichte*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Betrieb-/ Normal- / Standardbedingungen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Betrieb</td>
<td>Nur bei Gasen: Die Angaben für Durchfluß oder Dichte beziehen sich auf die nominalen Betriebsbedingungen von Druck und Temperatur</td>
<td>ja</td>
</tr>
<tr>
<td>Abschnitt</td>
<td>Datenfeld / Parameter</td>
<td>Erläuterung der Angabe</td>
<td>erforderlich</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Referenztemp.</td>
<td>Referenztemperatur für Standardbedingungen</td>
<td></td>
<td>ja</td>
</tr>
<tr>
<td>Referenzdruck</td>
<td>Referenzdruck für Standardbedingungen</td>
<td></td>
<td>ja</td>
</tr>
<tr>
<td>Erf. Durchfluss</td>
<td>Angabe des gewünschten Messbereiches (minimal…maximal) sowie des Arbeitspunktes (nominal). Die Messdynamik liegt typischerweise zwischen 1:3 und 1:6 (minimal : maximal). Eine Messdynamik von mehr als 1:10 erfordert in der Regel eine Kaskadierung (split range) von mehreren Differenzdrucktransmittern (s. Seite 10). Eine zu große Dynamik zwischen nominalem und maximalem Durchfluß kann zu erhöhter Messunsicherheit im Arbeitspunkt führen und sollte daher vermieden werden</td>
<td>ja ja</td>
<td></td>
</tr>
<tr>
<td>Druck</td>
<td>Statischer Druck in der Rohrleitung auf der Plusseite (stromaufwärts) des Wirkturzgebers.</td>
<td></td>
<td>ja ja</td>
</tr>
<tr>
<td>Temperatur</td>
<td>Temperatur des Mediums am Wirkturzgeber.</td>
<td></td>
<td>ja ja</td>
</tr>
<tr>
<td>Dichte</td>
<td>Die Mediumsdichte ist ein wesentlicher Bestandteil der Berechnung. Bei Gemischen oder nicht eindeutigen Produktbezeichnungen muß dieses Feld ausgefüllt werden.</td>
<td></td>
<td>ja</td>
</tr>
<tr>
<td>Viskosität</td>
<td>Die Viskosität geht in die Berechnung der Reynoldszahl ein. Hohe Viskositäten (niedrige Reynoldszahl) begrenzen die Einsatzmöglichkeiten von Blenden insbesondere bei Flüssigkeiten.</td>
<td></td>
<td>ja</td>
</tr>
<tr>
<td>Z-Faktor</td>
<td>Nur für Gase:</td>
<td>Der Kompressibilitätsfaktor Z beeinflusst die Dichte des Gases insbesondere bei höheren Drücken und/oder Temperaturen. Wurde die Dichte des Gases als Normdichte oder bei Standardbedingungen angegeben kann die Kompressibilität einen großen Einfluß auf das Berechnungsergebnis haben. Wenn der Wert nicht bekannt ist, wird die Berechnung mit dem Standardwert 1,0 ausgeführt oder bei eindeutig spezifizierten Gemischen aus der Zusammensetzung errechnet oder abgeschätzt.</td>
<td>ja ja ja</td>
</tr>
<tr>
<td>Isentropenexponent</td>
<td>Nur für Gase:</td>
<td>Der Isentropenexponent (auch: Adiabatenexponenten oder Verhältnis der spezifischen Wärme kapa- tätten bei konstantem Druck und konstantem Volumen) wird zur Berechnung des Expansionsfaktors benötigt. Wenn der Wert nicht bekannt ist, wird mit Standardwerten gerechnet: 1,65 für einatomige Gase (z.B Helium He) 1,4 für zweiatomige Gase (z.B. Stickstoff N2) 1,28 für dreiatomige Gase (z.B. Kohlendioxid CO2)</td>
<td>ja ja ja</td>
</tr>
<tr>
<td>Messgerät</td>
<td>Nennweite*</td>
<td>Nennweite der Rohrleitung gemäß der anzuwendenden Norm, z.B DN200 (DIN) oder 8" (ASME)</td>
<td>ja</td>
</tr>
<tr>
<td>Druckstufe*</td>
<td>Druckstufe der gewählten Verbindung (z.B. Flansch) gemäß der anzuwendenden Norm, z.B. PN40 (DIN) oder CL600lbs (ASME).</td>
<td></td>
<td>ja</td>
</tr>
<tr>
<td>Rohrdaten</td>
<td>Rohr (rund)</td>
<td>Blenden können nur bei runden Rohren eingesetzt werden. Eine weitere Auswahl ist hier nicht möglich.</td>
<td>ja</td>
</tr>
</tbody>
</table>
Innendurchmesser (Di)

Wandstärke

Die Angabe der genauen Wandstärke des Rohres erleichtert die Überprüfung der Rohrdaten anhand der gültigen Normen.

Isolationsdicke

Dicke einer eventuellen thermischen Isolierung des Rohres oder anderer äußerlicher Ummantelung. Bei sehr dicken Isolationen müssen ggfs. die Entnahmestutzen oder das Halsstück einer Kompaktvariante verlängert werden.

Rohrmaterial

Zusatzangaben

<table>
<thead>
<tr>
<th>Optimierungskriterium</th>
<th>Erläuterung der Angabe</th>
<th>erforderlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differenzdruckberechnung</td>
<td>Endress+Hauser berechnet und optimiert die Messstelle unter Berücksichtigung des gewünschten Optimierungskriteriums, sofern dies innerhalb des gültigen Standards mit sinnvollem Ergebnis möglich ist.</td>
<td>ja</td>
</tr>
<tr>
<td>Optimiert durch E+H</td>
<td>Endress+Hauser berechnet und optimiert die Messstelle hinsichtlich eines auf die angegebenen Prozeßdaten abgestimmten optimalen Kommunikationsverhältnisses zwischen Differenzdruck, Messzelle, Messdynamik, Messunsicherheit und bleibender Druckverlust.</td>
<td>ja</td>
</tr>
<tr>
<td>Maximale Messbereichspreizung (kleines β)</td>
<td>Endress+Hauser berechnet und optimiert die Messstelle auf ein möglichst kleines Durchmesserverhältnis β für größtmögliche Messdynamik und kleinste Messunsicherheit.</td>
<td>ja</td>
</tr>
<tr>
<td>Geringer Druckverlust (großes β)</td>
<td>Endress+Hauser berechnet und optimiert die Messstelle auf ein möglichst großes Durchmesserverhältnis β um den bleibenden Druckverlust so gering wie möglich zu halten.</td>
<td>ja</td>
</tr>
<tr>
<td>Maximal zulässiger Druckverlust</td>
<td>Die Messung darf einen maximal zulässigen bleibenden Druckverlust nicht überschreiten. Endress+Hauser berechnet die Messstelle unter Berücksichtigung des maximal zulässigen Druckverlustes im Auslegungspunkt. Die Angabe des maximal zulässigen bleibenden Druckverlustes mit der korrekten Einheit ist zwingend erforderlich.</td>
<td>ja</td>
</tr>
<tr>
<td>Festes Durchmesserverhältnis β</td>
<td>Die Auslegung erfolgt auf ein festgelegtes Durchmesserverhältnis β. Endress+Hauser berechnet die Messstelle mit dem gewünschten β. Die Angabe des gewünschten Durchmesserverhältnisses ist zwingend erforderlich.</td>
<td>ja</td>
</tr>
<tr>
<td>Fester Differenzdruck</td>
<td>Die Auslegung erfolgt auf einen vom Anwender festgelegten Differenzdruck. Endress+Hauser berechnet die Messstelle mit dem gewünschten β. Endress+Hauser berechnet den Wirkdruckgeber so, dass der gewünschte Differenzdruck im Auslegungspunkt erreicht wird. Die Angabe des gewünschten Differenzdruckes mit der korrekten Einheit ist zwingend erforderlich.</td>
<td>ja</td>
</tr>
<tr>
<td>Vorgegebene Berechnung (Anhang)</td>
<td>Es liegt bereits eine komplett Auslegung vor. Endres+Hauser überprüft die Berechnung und fertigt den Wirkdruckgeber entsprechend der vorhandenen Auslegung. Die entsprechende Berechnung muß beigefügt sein.</td>
<td>ja</td>
</tr>
</tbody>
</table>

Einbauangaben

<table>
<thead>
<tr>
<th>Einbauangaben</th>
<th>Erläuterung der Angabe</th>
<th>erforderlich</th>
</tr>
</thead>
</table>

1) A: erforderlich zur Differenzdruckberechnung;
B: erforderlich für die Geräteauswahl (Material, Druckstufe etc.);
C: erforderlich zur Auftragsbearbeitung (Gerätezuordnung)
<table>
<thead>
<tr>
<th>Deutschland</th>
<th>Österreich</th>
<th>Schweiz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endress+Hauser</td>
<td>Endress+Hauser</td>
<td>Endress+Hauser</td>
</tr>
<tr>
<td>Messtechnik</td>
<td>Metso AG</td>
<td>Metso AG</td>
</tr>
<tr>
<td>GmbH+Co. KG</td>
<td>Ges.m.b.H.</td>
<td>Ges.m.b.H.</td>
</tr>
<tr>
<td>Colmarer Straße 6</td>
<td>Lehnergasse 4</td>
<td>Lehnergasse 4</td>
</tr>
<tr>
<td>79576 Weil am Rhein</td>
<td>1230 Wien</td>
<td>4153 Reinach</td>
</tr>
<tr>
<td>Tel. 0800 EHVERTRIEB</td>
<td>Tel. +43 1 880 56 0</td>
<td>Tel. +41 61 715 75 75</td>
</tr>
<tr>
<td>Fax 0800 EHFAEXEN</td>
<td>Fax +43 1 880 56 335</td>
<td>Fax +41 61 715 27 75</td>
</tr>
<tr>
<td>Tel. 0800 348 37 87</td>
<td>info@at.endress.com</td>
<td>info@ch.endress.com</td>
</tr>
<tr>
<td>Tel. 0800 347 37 84</td>
<td>service@de.endress.com</td>
<td>www.ch.endress.com</td>
</tr>
<tr>
<td>www.de.endress.com</td>
<td></td>
<td>www.ch.endress.com</td>
</tr>
</tbody>
</table>

Vertrieb
- Beratung
- Information
- Auftrag
- Bestellung

Service
- Help-Desk
- Feldservice
- Ersatzteile/Reparatur
- Kalibrierung

Technische Büros
- Hamburg
- Berlin
- Hannover
- Ratingen
- Frankfurt
- Stuttgart
- München

Endress+Hauser
- Germany
- Austria
- Switzerland

Endress+Hauser
- Messtechnik
- GmbH+Co. KG
- Colmarer Straße 6
- 79576 Weil am Rhein
- Tel. 0800 EHVERTRIEB
- Fax 0800 EHFAEXEN
- www.de.endress.com

Endress+Hauser
- Metso AG
- Kägenstrasse 2
- 4153 Reinach
- Tel. +41 61 715 75 75
- Fax +41 61 715 27 75
- www.ch.endress.com

Endress+Hauser
- Ges.m.b.H.
- Lehnergasse 4
- 1230 Wien
- Tel. +43 1 880 56 0
- Fax +43 1 880 56 335
- info@at.endress.com
- www.at.endress.com

Endress+Hauser
- People for Process Automation

TI422P/00/de/10.07
71062443
FM+SGML 6.0 ProMoDo