TI00065D/06/EN/16.15

71291606

Technical Information **Dosimass**

Coriolis flowmeter

The compact sensor with an ultra-compact transmitter

Application

- Measuring principle operates independently of physical fluid properties such as viscosity or density
- Measurement of liquids in continuous process control and in batching applications

Device properties

- Nominal diameter: DN 8 to 25 (³/₈ to 1")
- Many hygienic process connections, 3A-compliant
- Sensor can be cleaned/sterilized in place (CIP/SIP)
- Robust, ultra-compact transmitter housing
- Pulse/frequency/switch output, Modbus RS485
- Excellent and easy-to-clean transmitter

Your benefits

- High process safety high measuring accuracy for different media in shortest filling time
- Fewer process measuring points multivariable measurement (flow, density, temperature)
- Space-saving installation no in/outlet run needs
- Versatile and time-saving wiring plug connector
- Fast commissioning pre-configured devices
- Automatic recovery of data for servicing

Table of contents

Document information	
Function and system design Measuring principle Measuring system Equipment architecture Safety	• 4 • 4 5
Input Measured variable Measuring range Operable flow range Input signal	.7 .7 .7
Output . Output signal	. 9
Power supply Terminal assignment . Pin assignment, device plug . Supply voltage . Power consumption . Current consumption . Power supply failure . Electrical connection . Potential equalization . Cable specification .	10 11 14 14 14 14 14 15 15
Performance characteristics	15 15 17 17 17 17 17
InstallationMounting locationOrientationInlet and outlet runsSpecial mounting instructions	17 17 18 20 20
Environment . Ambient temperature range . Storage temperature . Degree of protection . Shock resistance . Vibration resistance . Interior cleaning . Electromagnetic compatibility (EMC) .	21 22 22 22 22 22 22 22

Process	22
Medium temperature range	22 22
Density	22
Pressure-temperature ratings	22
Secondary containment pressure rating	24
Flow limit	24 24
Heating	24
Vibrations	24
Mechanical construction	25
Dimensions in SI units	25
Dimensions in US units	29
Weight	32 32
Process connections	32
Operability	33
Local operation	33
Remote operation	33
Certificates and approvals	33
CE mark	33
C-Tick symbol	34 34
Ex approval	34
Pressure Equipment Directive	34
Other standards and guidelines	34
Ordering information	35
Accessories	35
Communication-specific accessories	35
Service-specific accessories	35
Supplementary documentation	36
Standard documentation	36
Supplementary device-dependent documentation	37
Registered trademarks	37

Document information

Symbols used

Electrical symbols

Symbol	Meaning	Symbol	Meaning
	Direct current	\sim	Alternating current
\sim	Direct current and alternating current	Ŧ	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.
	Protective ground connection A terminal which must be connected to ground prior to establishing any other connections.	Ą	Equipotential connection A connection that has to be connected to the plant grounding system: This may be a potential equalization line or a star grounding system depending on national or company codes of practice.

Symbols for certain types of information

Symbol	Meaning
	Permitted Procedures, processes or actions that are permitted.
	Preferred Procedures, processes or actions that are preferred.
\mathbf{X}	Forbidden Procedures, processes or actions that are forbidden.
i	Tip Indicates additional information.
Ĩ	Reference to documentation
	Reference to page
	Reference to graphic
	Visual inspection

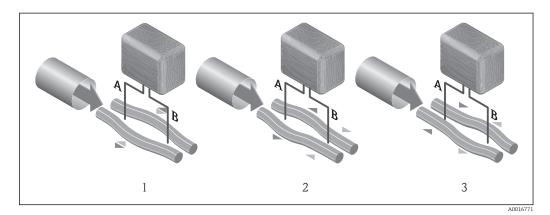
Symbols in graphics

Symbol	Meaning	Symbol	Meaning
1, 2, 3,	Item numbers	1. , 2. , 3	Series of steps
A, B, C,	Views	A-A, B-B, C-C,	Sections
EX	Hazardous area	×	Safe area (non-hazardous area)
≈→	Flow direction		

Function and system design

Measuring principle

The measuring principle is based on the controlled generation of Coriolis forces. These forces are always present in a system when both translational and rotational movements are superimposed.


 $F_c = 2 \cdot \Delta m (v \cdot \omega)$

- $F_c =$ Coriolis force
- $\Delta m = moving mass$
 - ω = rotational velocity
 - v = radial velocity in rotating or oscillating system

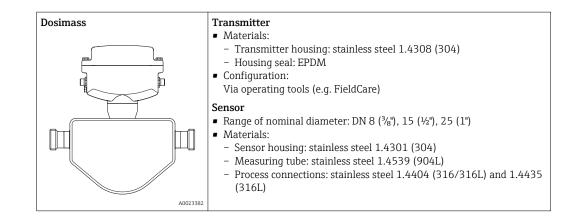
The amplitude of the Coriolis force depends on the moving mass Δm , its velocity v in the system and thus on the mass flow. Instead of a constant rotational velocity ω , the sensor uses oscillation.

In the sensor, two parallel measuring tubes containing flowing fluid oscillate in antiphase, acting like a tuning fork. The Coriolis forces produced at the measuring tubes cause a phase shift in the tube oscillations (see illustration):

- At zero flow (when the fluid is at a standstill) the two tubes oscillate in phase (1).
- Mass flow causes deceleration of the oscillation at the inlet of the tubes (2) and acceleration at the outlet (3).

The phase difference (A-B) increases with increasing mass flow. Electrodynamic sensors register the tube oscillations at the inlet and outlet. System balance is ensured by the antiphase oscillation of the two measuring tubes. The measuring principle operates independently of temperature, pressure, viscosity, conductivity and flow profile.

Density measurement

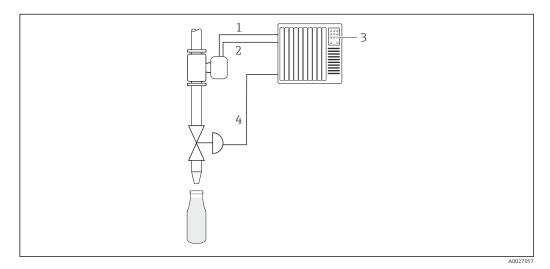

The measuring tube is continuously excited at its resonance frequency. A change in the mass and thus the density of the oscillating system (comprising measuring tube and fluid) results in a corresponding, automatic adjustment in the oscillation frequency. Resonance frequency is thus a function of medium density. The microprocessor utilizes this relationship to obtain a density signal.

Temperature measurement

The temperature of the measuring tube is determined in order to calculate the compensation factor due to temperature effects. This signal corresponds to the process temperature and is also available as an output signal.

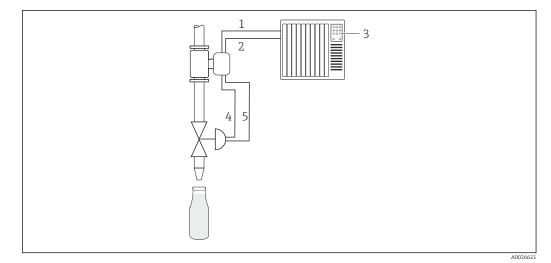
Measuring systemThe device consists of a transmitter and a sensor.The device is available as a compact version:

The transmitter and sensor form a mechanical unit.



Equipment architecture

Device version: Two pulse/frequency/switch outputs


The device version has two pulse/frequency/switch outputs $\rightarrow \cong 10$.

- 1 Options for integration into a system for batching processes
- 1 Pulse/frequency/current output 1
- Pulse/frequency/current output 2 2
- 3 Automation system (e.g. PLC)
- 4 Control of valve (by automation system)

Device version: Modbus RS485, one or two switch outputs (Batch) and one status input

Device versions with MODBUS RS485 have one or two switch outputs for valve control for the regulation of batching processes $\rightarrow \square 10$.

Options for integration into a system for batching processes

- 1 MODBUS RS485: Measured value (to the automation system)
- 2 Status input: Control of batching process (by the automation system)
- 3 Automation system (e.g. PLC)
- 4 Switch output 1 (batch): valve control, level 1
- 5 Switch output 2 (batch): valve control, level 2

Integrated batching functions

The following parameters can be used to configure and monitor batching processes.

Configuration

- Measured variable: mass or volume flow
- Unit
- Batch quantity
- Fixed compensation quantity
- Select batch profile
- Drip correction mode: Off, low flow cut off or fixed time
- Measuring time drip quantity
- Filter depth drip median (3, 5 or 7)
- Average drip correction quantity
- Batch levels: One-level, two-level or one-level and blow out
- Start and stop level 2
- Blow out delay and duration
- Maximum batch time
- Maximum flow
- Disable time pressure shock suppression

Display

- Total amount measured from last batching process (incl. drip quantity)
- Duration of last batching process (incl. measurement of drip quantity)
- Switch-off time: From time of switch-off to when measurement of the drip quantity is complete
- Current drip correction quantity (drip correction quantity for next batching process)
- Sum of all batching processes measured
- Number of batching processes.

The batching process (start batch, stop batch etc.) is controlled by the automation system via the status input or the Modbus RS485 .

IT security

We only provide a warranty if the device is installed and used as described in the Operating Instructions. The device is equipped with security mechanisms to protect it against any inadvertent changes to the device settings.

IT security measures in line with operators' security standards and designed to provide additional protection for the device and device data transfer must be implemented by the operators themselves.

Safety

Input

	•
Measured variable	Direct measured variables
	Mass flowDensityTemperature
	Calculated measured variables
	Volume flow
Measuring range	Flow values in SI units

DN	Measuring range full scale values $\dot{m}_{min(F)}$ to $\dot{m}_{max(F)}$
[mm]	[kg/h]
8	0 to 2 000
15	0 to 6 500
25	0 to 18000

Flow values in US units

DN	Measuring range full scale values $\dot{m}_{min(F)}$ to $\dot{m}_{max(F)}$
[in]	[lb/min]
3/8	0 to 73.50
42	0 to 238.9
1	0 to 661.5

To calculate the measuring range, use the *Applicator* product selection tool $\rightarrow \cong 35$

Recommended measuring range

"Flow limit" section \rightarrow 🗎 24

Operable flow range	Over 1000 : 1. Flow rates above the preset full scale value are not overridden by the electronics unit, with the result that the totalizer values are registered correctly.		
Input signal	Available only for device versions using the Modbus RS485 communication method $\rightarrow \square$ 10.		
	Status input		
	The batching process is controlled by the automation system via the device's status input.		
	Maximum input values	 DC 30 V 6 mA 	
	Response time	Adjustable: 10 to 200 ms	
	Input signal level	 Low level: 0 to 1.5 V High level: 3 to 30 V 	
	Assignable functions	 Off Start batching process Start and stop batching process Reset totalizers 1-3 separately Reset all totalizers 	

Flow override

Output

Output	signal

Pulse/frequency/switch output

True ation	Can be get to:
Function	Can be set to: • Pulse
	Quantity-proportional pulse with pulse width to be configured.
	 Automatic pulse Quantity-proportional pulse with on/off ratio of 1:1
	Frequency
	Flow-proportional frequency output with on/off ratio of 1:1
	 Switch Contact for displaying a status
Channel 2	Redundant output of pulse output: 0°, 90° or 180°
Version	Passive, open emitter
Maximum input values	 DC 30 V 25 mA
Voltage drop	At 25 mA: ≤ DC 2 V
Pulse output	
Pulse width	Adjustable: 0.05 to 3.75 ms
Maximum pulse rate	10 000 Impulse/s
Pulse value	Adjustable
Assignable measured variables	Mass flowVolume flow
Frequency output	
Output frequency	Adjustable: 0 to 10 000 Hz
Damping	Adjustable: 0 to 999.9 s
Pulse/pause ratio	1:1
Assignable measured	Mass flow
variables	Volume flowDensity
	 Temperature
Switch output	
Switching behavior	Binary, conductive or non-conductive
Number of switching cycles	Unlimited
Assignable functions	• Off
	OnDiagnostic behavior
	 Diagnostic benavior Alarm
	 Alarm and warning
	 Warning Limit value
	- Mass flow
	- Volume flow
	– Density – Temperature
	 Flow direction monitoring
	 Status Dartially filled nine detection
	 Partially filled pipe detection Low flow cut off

Modbus RS485

Physical interface	In accordance with EIA/TIA-485-A standard
--------------------	---

Switch output (batch: valve control)

• Only available for device version with Modbus RS485 $\rightarrow \square$ 10.

• Depending on the device version, the device has one or two switch outputs.

Switch output		
Version	Active, open emitter	
Maximum input values	 DC 30 V 500 mA 	
Switching behavior	Binary, conductive or non-conductive	
Number of switching cycles	Unlimited	
Assignable functions	OpenClosedBatching	

Signal on alarm

Depending on the interface, failure information is displayed as follows:

Pulse/frequency/switch output

Pulse output

Failure mode	Choose from:
	Actual value
	 No pulses

Frequency output

Failure mode	Choose from: • Actual value • 0 Hz • Defined value: 0 to 10 000 Hz
	 Defined value: 0 to 10 000 Hz

Switch output

Failure mode	Choose from:
	Current status
	 Open Closed
	- closed

Modbus RS485

Failure mode	Choose from:
	NaN value instead of current valueLast valid value

Low flow cut off	The switch points for low flow cut off are user-selectable.	
Galvanic isolation	 Device version: 2 pulse/frequency/switch outputs Order code for "Output, input", option 3: Pulse/frequency/switch outputs galvanically isolated from supply potential. Pulse/frequency/switch outputs not galvanically isolated from each other. Device version: Modbus RS485, 1 switch output (batch), 1 status input (Order code for "Output, input": option 4) Switch outputs (batch) and status input on supply potential Device version: Modbus RS485, 2 switch outputs (batch), 1 status input (Order code for "Output, input", option 5:) Switch outputs (batch) on supply potential. Status input, galvanically isolated. 	

Protocol-specific data

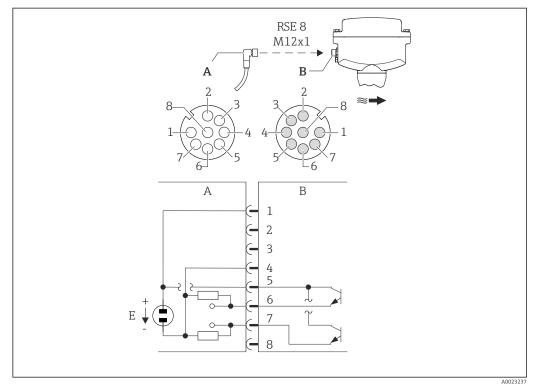
Modbus RS485

Protocol	Modbus Applications Protocol Specification V1.1			
Device type	Slave			
Slave address range	1 to 247			
Broadcast address range	0			
Function codes	 03: Read holding register 04: Read input register 06: Write single registers 08: Diagnostics 16: Write multiple registers 23: Read/write multiple registers 43: Read device identification 			
Broadcast messages	Supported by the following function codes: 06: Write single registers 16: Write multiple registers 23: Read/write multiple registers 			
Supported baud rate	 1200 BAUD 2400 BAUD 4800 BAUD 9600 BAUD 19200 BAUD 38400 BAUD 57600 BAUD 115200 BAUD 			
Data transfer mode	ASCII RTU			
Data access	Each device parameter can be accessed via Modbus RS485. For Modbus register information $\rightarrow \square 36$			

Power supply

Terminal assignment

Connection is solely by means of device plug:


There are different device versions available:

Order code for "Output, input":	Device plug
Option 3: 2 pulse/frequency/switch outputs	→ 🖺 11
Option 4: Modbus RS485, 1 switch output (batch), 1 status input	→ 🗎 12
Option 5: Modbus RS485, 2 switch outputs (batch), 1 status input	→ 🖺 13

Pin assignment, device plug

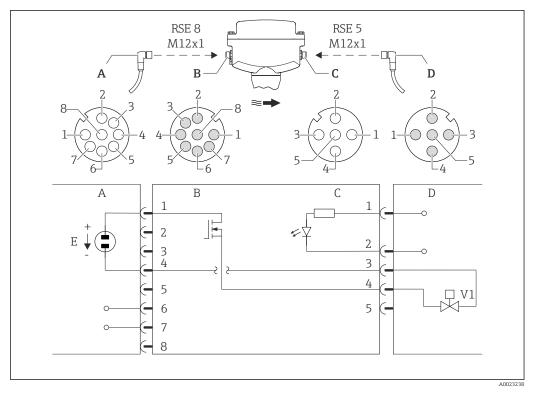
Device version: 2 pulse/frequency/switch outputs

Order code for "Output, input", option 3: 2 Pulse/frequency/switch output

🛃 3 Connection to device

- Α Coupling: Supply voltage, pulse/freq./switch output
- Connector: Supply voltage, pulse/freq./switch output PELV or SELV power supply В
- Ε
- 1 to Pin assignment
- 8

Pin assignment


Connection: Coupling (A) – Connector (B)				
Pin	Assignm	Assignment		
1	L+	Supply voltage		
2	+	Service interface RX		
3	+	Service interface TX		
4	L-	Supply voltage		
5	+	Pulse/frequency/switch output		
6	-	Pulse/frequency/switch output 1		
7	-	Pulse/frequency/switch output 2		
8	-	Service interface GND		

1 Observe cable specifications $\rightarrow \square$ 15.

Device version: Modbus RS485, status output and status input

Order code for "Output, input", option 4:

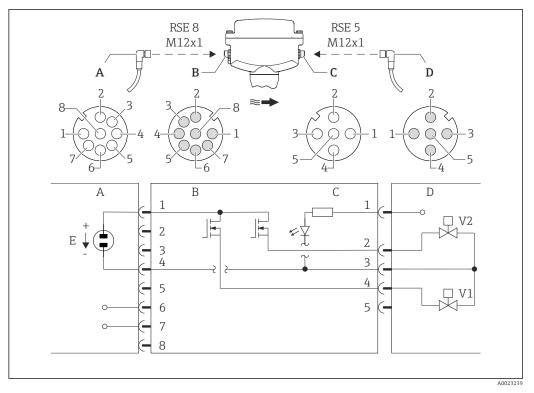
- Modbus RS485
- 1 switch output (batch)
- 1 status input

€ 4 Connection to device

- Α Coupling: Supply voltage, Modbus RS485
- В Connector: Supply voltage, Modbus RS485
- С *Coupling: Switch output (batch), status input*
- Connector: Switch output (batch), status input D
- PELV or SELV power supply Valve 1 (batch) Ε
- V1
- 1 to Pin assignment
- 8

Pin assignment

Connection: Coupling (A) – Connector (B)		Connection: Coupling (C) – Connector (D)		Coupling (C) – Connector (D)	
Pin	in Assignment		Pin	Assignm	nent
1	L+	Supply voltage	1	+	Status input
2	+	Service interface RX	2	-	Status input
3	+	Service interface TX	3	-	Switch output (batch)
4	L-	Supply voltage	4	+	Switch output (batch)
5 Not assigned		5		Not assigned	
6	A	Modbus RS485			
7	В	Modbus RS485			
8	-	Service interface GND			



Observe cable specifications $\rightarrow \square$ 15.

Device version: Modbus RS485 , 2 status outputs and status input

Order code for "Output, input", option 5:

- Modbus RS485
- 2 switch outputs (batch)
- 1 status input

☑ 5 Connection to device

- A Coupling: Supply voltage, Modbus RS485
- *B* Connector: Supply voltage, Modbus RS485
- *C Coupling: Switch outputs (batch), status input*
- D Connector: Switch outputs (batch), status input
- E PELV or SELV power supply
- V1 Valve (batch), level 1
- V2 Valve (batch), level 2
- 1 to Pin assignment
- 8

Pin assignment

Connection: Coupling (A) – Connector (B)		Connection: Coupling (C) – Connector (D)			
Pin	Assignment		Pin	Assignm	ient
1	L+	Supply voltage	1	+	Status input
2	+	Service interface RX	2	+	Switch output (batch) 2
3	+	Service interface TX	3	-	Switch outputs, status input
4	L-	Supply voltage	4	+	Switch output (batch) 1
5 Not assigned		5		Not assigned	
6	A	Modbus RS485			
7	В	Modbus RS485			
8	-	Service interface GND			

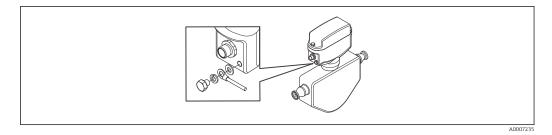
Observe cable specifications \rightarrow 🗎 15.

Supply voltage

DC 24 V (nominal voltage: DC 20 to 30 V)

• The power unit must be tested to ensure that it meets safety requirements (e.g. PELV, SELV).
 The supply voltage must not exceed a maximum short-circuit current of 50 A.

Power consumption	3.5 W			
Current consumption	Order code for "Output, input":	Maximum Current consumption		
	Option 3: 2 pulse/frequency/switch outputs	175 mA		
	Option 4 : Modbus RS485, 1 switch output (batch), 1 status input	175 mA + 500 mA ¹⁾		
	Option 5 : Modbus RS485, 2 switch outputs (batch), 1 status input	175 mA + 1000 mA ¹		
	1) Additional 500 mA per switch output (batch) used.			
	Switch-on current: max. 1 A (< 6 ms)			
Power supply failure	 Totalizers stop at the last value measured. Error messages (incl. total operated hours) are stored. 			
Electrical connection	Connection is solely by means of device plug:			


A, C Coupling B, D Plug

There are different device versions available:

Order code for "Output, input":	Device plug
Option 3 : 2 pulse/frequency/switch outputs	→ 🗎 11
Option 4: Modbus RS485, 1 switch output (batch), 1 status input	→ 🗎 12
Option 5 : Modbus RS485, 2 switch outputs (batch), 1 status input	→ 🗎 13

Grounding

Grounding is by means of a cable socket.

Potential equalization	Requirements			
	No special measures for potential equalization are required.			
	For devices intended for use in hazardous locations, please observe the guidelines in the Ex documentation (XA).			
Cable specification	Permitted temperature range			
	 -40 °C (-40 °F) to +80 °C (+176 °F) Minimum requirement: cable temperature range ≥ ambient temperature +20 K 			
	Signal cable			
	Cables are not included in the scope of delivery; they can be ordered as an accessory $\rightarrow \square$ 35.			
	Pulse/frequency/switch output			
	Standard installation cable is sufficient.			
	Status input and switch output (batch)			
	Standard installation cable is sufficient.			
	Modbus RS485			
	 The electrical connection of the shield to the device housing must be properly implemented (e.g. using a knurled nut). Please note the following with regard to cable loading: Voltage drop due to the cable length and cable type. Valve performance. 			
	Total length of cable in the Modbus network \leq 50 m			
	Use a shielded cable.			
	<i>Example:</i> Terminated device connector with cable: Lumberg RKWTH 8-299/10			
	Total length of cable in the Modbus network > 50 m			
	Use shielded twisted pair cable for RS485 applications.			
	 Example: Cable: Belden item no. 9842 (for 4-wire version, the same cable can be used for the power supply) Terminated device plug: Lumberg RKCS 8/9 (shieldable version) 			
	Performance characteristics			
Reference operating conditions	 Error limits based on ISO 11631 Water at +15 to +45 °C (+59 to +113 °F) at2 to 6 bar (29 to 87 psi) Specifications as per calibration protocol Accuracy based on accredited calibration rigs that are traced to ISO 17025. 			
	To obtain measured errors, use the <i>Applicator</i> sizing tool $\rightarrow \square$ 35			
Maximum measured error	o.r. = of reading; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = medium temperature			
	Base accuracy			
	Maga flour and valume flour (liquida)			

Mass flow and volume flow (liquids)

- ±0.15 % o.r.
- ±0.30 % ± [(zero point stability : measured value) · 100] % o.r.
 ±5 % ± [(zero point stability : measured value) · 100] % o.r.

Density (liquids)

- Reference operating conditions: ±0.0005 g/cm³
- Field density calibration: ±0.0005 g/cm³ (after field density calibration under process conditions)
- Standard density calibration: ±0.02 g/cm³ (valid over the entire temperature range and density range)

Temperature

±0.5 °C ± 0.005 · T °C (±0.9 °F ± 0.003 · (T – 32) °F)

Zero point stability

DN		Zero point stability	
[mm]	[in]	[kg/h]	[lb/min]
8	3⁄8	0.20	0.007
15	1/2	0.65	0.024
25	1	1.80	0.066

Flow values

Flow values as turndown parameter depending on nominal diameter.

SI units

DN	1:1	1:10	1:20	1:50	1:100	1:500
[mm]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]
8	2 000	200	100	40	20	4
15	6500	650	325	130	65	13
25	18000	1800	900	360	180	36

US units

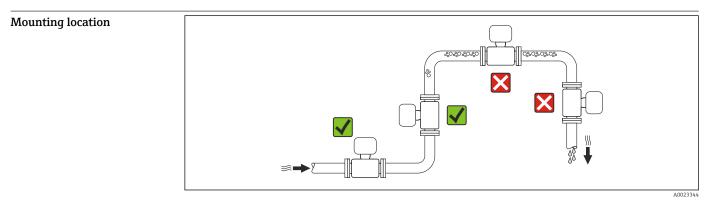
DN	1:1	1:10	1:20	1:50	1:100	1:500
[inch]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]
3/8	73.50	7.350	3.675	1.470	0.735	0.147
1/2	238.9	23.89	11.95	4.778	2.389	0.478
1	661.5	66.15	33.08	13.23	6.615	1.323

Accuracy of outputs

In the case of analog outputs, the output accuracy must also be considered for the measured error, in contrast, this need not be considered in the case of fieldbus outputs (Modbus RS485).

The outputs have the following base accuracy specifications.

Pulse/frequency output

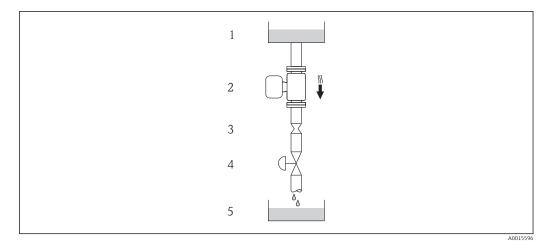

o.r. = of reading

Accuracy	Max. ± 50 ppm o.r. (across the entire ambient temperature range)
----------	--

Repeatability	Base repeatability			
	Dosing time [s] Standard deviation [%]		
	≥ 0.75	0.2		
	≥ 1.5	0.1		
	≥ 3.0	0.05		
	Density (liquids) ±0.00025 g/cm ³ Temperature ±0.25 °C ± 0.0025 · T °C (±0.45 °F ± 0.0015 · (T−32) °F)			
Response time	The response time depends on the configuration (damping).			
influence of ambient comperature	Pulse/frequency output			
	Temperature coefficient	No additional effect. Included in accuracy.		
temperature, the t		ss flow ere is a differential between the temperature during zero point adjustment and the process perature, the typical measured error of the sensor is ±0.0003 % of the full scale value/°C 00015 % of the full scale value/°F).		
	Temperature $\pm 0.005 \cdot T \circ C (\pm 0.005 \cdot (T - 32) \circ F)$			
Influence of medium pressure	A difference between the calibration pressure and process pressure does not affect accuracy.			

Installation

No special measures such as supports are necessary. External forces are absorbed by the construction of the device.


To prevent measuring errors arising from accumulation of gas bubbles in the measuring tube, avoid the following mounting locations in the pipe:

Highest point of a pipeline.

• Directly upstream of a free pipe outlet in a down pipe.

Installation in down pipes

However, the following installation suggestion allows for installation in an open vertical pipeline. Pipe restrictions or the use of an orifice with a smaller cross-section than the nominal diameter prevent the sensor running empty while measurement is in progress.

■ 6 Installation in a down pipe (e.g. for batching applications)

1 Supply tank

2 Sensor

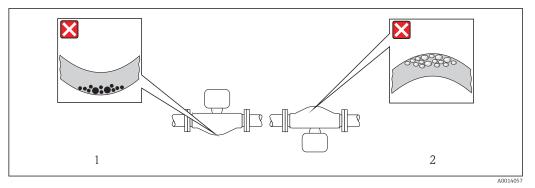
3 Orifice plate, pipe restriction

4 Valve

5 Batching tank

DN		Ø orifice plate, pipe restriction	
[mm]	[in]	[mm]	[in]
8	3⁄8	6	0.24
15	1/2	10	0.40
25	1	14	0.55

Orientation


The direction of the arrow on the sensor nameplate helps you to install the sensor according to the flow direction (direction of medium flow through the piping).

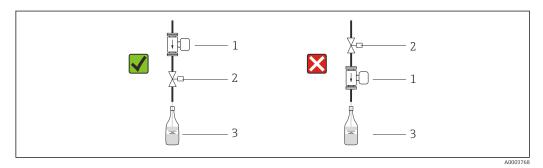
	Orientation		
A	Vertical orientation	A0015591	
В	Horizontal orientation, transmitter head up	A0015589	Exception: $\rightarrow \bigcirc 7, \bigcirc 19$
С	Horizontal orientation, transmitter head down	A0015590	Exception: $\rightarrow \square 7, \square 19$
D	Horizontal orientation, transmitter head at side	A0015592	×

1) Applications with low process temperatures may reduce the ambient temperature. To maintain the minimum ambient temperature for the transmitter, this orientation is recommended.

2) Applications with high process temperatures may increase the ambient temperature. To maintain the maximum ambient temperature for the transmitter, this orientation is recommended.

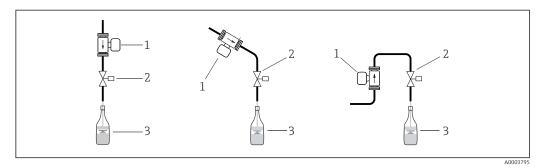
If a sensor is installed horizontally with a curved measuring tube, match the position of the sensor to the fluid properties.

₽ 7 Orientation of sensor with curved measuring tube


- Avoid this orientation for fluids with entrained solids: Risk of solids accumulating. 1
- 2 Avoid this orientation for outgassing fluids: Risk of gas accumulating.

Valves

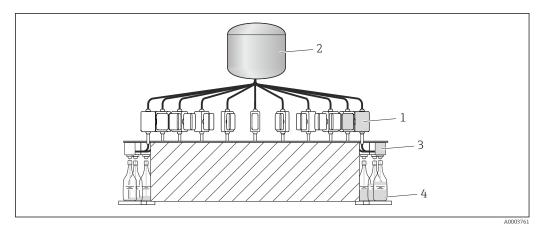
Never install the sensor downstream from a filling valve. If the sensor is completely empty this corrupts the measured value.


Correct measurement is only possible if the pipe is completely full. Perform sample fillings before commencing filling in production.

- Measuring device 1
- 2 3 Filling valve
- Container

Filling systems

The pipe system must be completely full to ensure optimum measurement.



₽8 Filling system

- Measuring device 1
- 2 Filling valve
- 3 Container

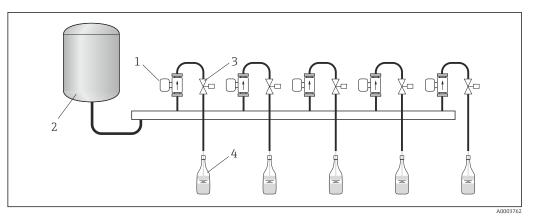

High temperatures

	Image: Second content of the event of strong heat formation
	To prevent the electronics from overheating in the event of strong heat formation (e.g. CIP or SIP cleaning process), install the measuring device with the transmitter part pointing downwards.
Inlet and outlet runs	No special precautions need to be taken for fittings which create turbulence, such as valves, elbows or T-pieces, as long as no cavitation occurs .
Special mounting instructions	Information for filling systems Correct measurement is possible only if the piping is completely filled. We therefore recommend that some test batches be carried out prior to production batching. <i>Circular filling system</i>

- Measuring device Tank 1 2 3 4
- Batching valve Vessel

Linear filling system

- 1 Measuring device
- 2 Tank
- 3 Batching valve
- 4 Vessel

Zero point adjustment

The Sensor adjustment submenu contains parameters required for zero point adjustment.

NOTICE

All Dosimass measuring devices are calibrated in accordance with state-of-the-art technology. Calibration takes place under reference conditions .

Therefore, a zero point adjustment is generally not required for the Dosimass!

- Experience shows that a zero point adjustment is advisable only in special cases.
- ▶ When maximum accuracy is required and flow rates are very low.
- Under extreme process or operating conditions (e.g. very high process temperatures or very highviscosity fluids).

■ Detailed information on reference conditions → 15

Environment

Ambient temperature range	Transmitter	-40 to +60 °C (-40 to +140 °F)
	Sensor	-40 to +60 °C (-40 to +140 °F)

Temperature tables

The following interdependencies between the permitted ambient and fluid temperatures apply when operating the device in hazardous areas:

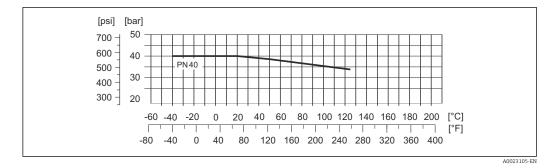
Ex nA

SI units

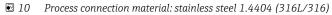
Ta	Maximum medium temperature T _m					
[°C]	T5 [100 °C]	T4 [135 ℃]	T3 [200 ℃]	T2 [300 °C]	T1 [450 °C]	
60	90	125	125	125	125	

US units

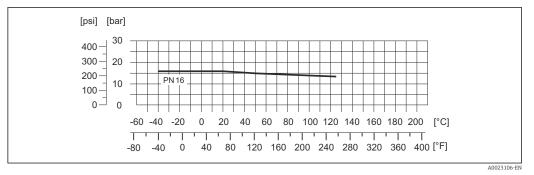
T _a	Maximum medium temperature T _m					
[°F]	T5 [212 °F]	T4 [275 °F]	T3 [392 °F]	T2 [572 °F]	T1 [842 °F]	
140	194	257	257	257	257	


The minimum temperature of the medium is –40 $^\circ\!C$ (–40 $^\circ\!F).$

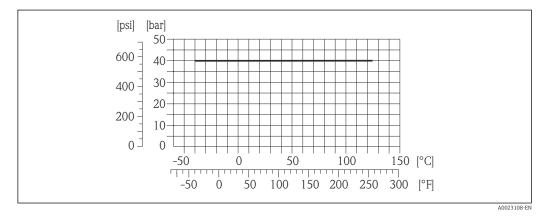
The minimum	ambient	temperature	is -40	°C (-40 °F	7).
-------------	---------	-------------	--------	------------	-----

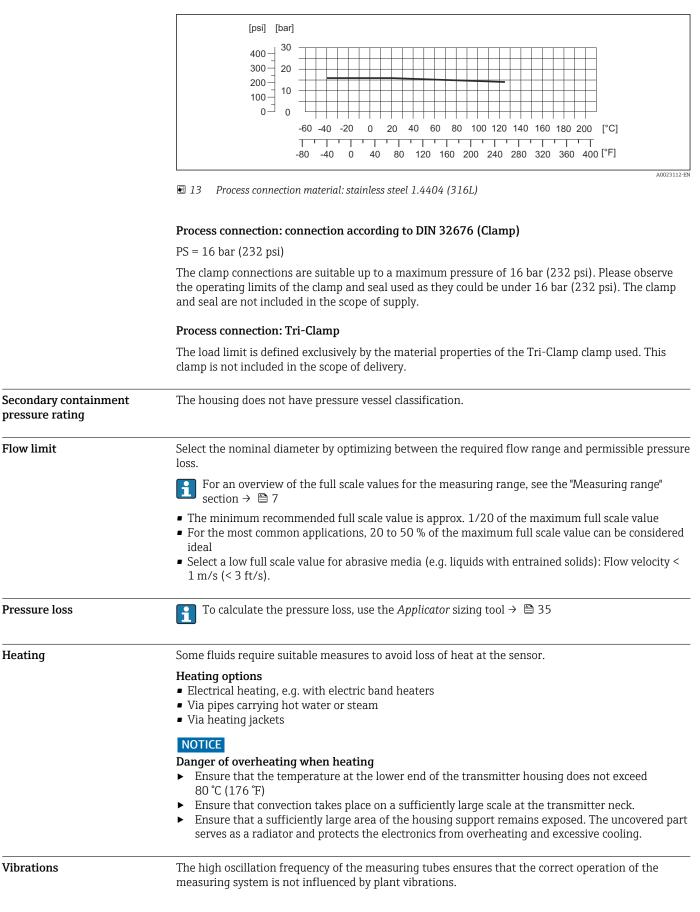

Storage temperature	-40 to +80 °C (-40 to +176 °F), preferably at +20 °C (+68 °F)
Degree of protection	As standard: IP67, type 4X enclosure
Shock resistance	As per IEC/EN 60068-2-31
Vibration resistance	Acceleration up to 1 g, 10 to 150 Hz, based on IEC/EN 60068-2-6
Interior cleaning	 Cleaning in place (CIP) Sterilization in place (SIP)
	Observe the maximum medium temperatures $\rightarrow \square 22$
Electromagnetic	According to IEC/EN 61326
compatibility (EMC)	For details, refer to the Declaration of Conformity.

Process

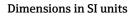

Medium temperature range	Sensor -40 to +125 °C (-40 to +257 °F)
	Cleaning +150 °C (+302 °F) / 60 min for CIP and SIP processes
	Seals No internal seals
Medium pressure range (nominal pressure)	max. 40 bar (580 psi), depending on process connection
Density	0 to 5 000 kg/m ³ (0 to 312 lb/cf)
Pressure-temperature ratings	The following pressure-temperature ratings refer to the entire device and not just the process connection.

Process connection: flange connection according to EN 1092-1 (DIN 2501)

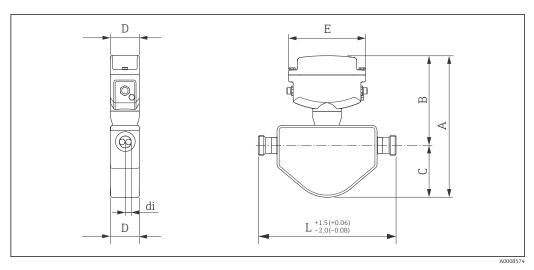



☑ 11 Process connection material: stainless steel 1.4404 (316L)

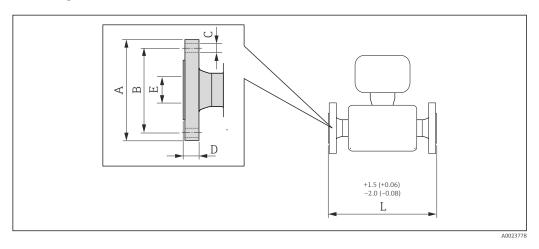
Process connection: coupling according to DIN 11864-1



■ 12 Process connection material: stainless steel 1.4404 (316L)

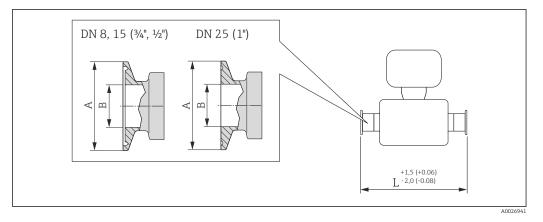

Process connection: coupling according to ISO 2853

Mechanical construction


Compact version

DN [mm]	L [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	di [mm]
8	1)	253	160	93	54	146	5.35
15	1)	267	162	105	54	146	8.30
25	1)	273	167	106	54	146	12.00

1) Depending on the process connection in question


Fixed flange

Fixed flange as per EN 1092-1 (DIN 2501 ¹⁾): PN 40 1.4404 (316L): Order code for "Process connection", option D2S						
DN L A B C D E [mm] [mm] [mm] [mm] [mm] [mm]						
8	232	95	65	4 × Ø 14	16	17.3
15	279	95	65	4 × Ø 14	16	17.3
25	329	115	85	4 × Ø 14	18	28.5

1) flange with groove as per EN 1092-1 Form D (DIN 2512N) available

Tri-Clamp

1/2" Tri-Clamp BS4825-3

1.4404 (316L): Order code for "Process connection", option FUW

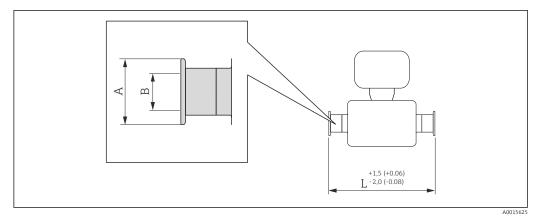
DN [mm]	L [mm]	A [mm]	B [mm]
8	229	25.0	9.5
15	273	25.0	9.5

Surface roughness (3A version):

Mechanically polished: Ra_{max} 0.76 µm/150 grit; order code for "Process connection", option FUA
 Electropolished: Ra_{max} 0.38 µm/240 grit; order code for "Process connection", option FUD

³4" Tri-Clamp 1.4404 (316L): order code for "Process connection", option FWW					
DN L A B [mm] [mm] [mm] [mm]					
8	229	25.0	16		
15	273	25.0	16		
Courte an annual an an 12 A annua	:).				

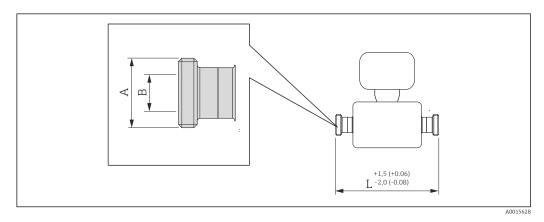
Surface roughness (3A version):


Mechanically polished: Ra_{max} 0.76 μ m/150 grit; order code for "Process connection", option FWA

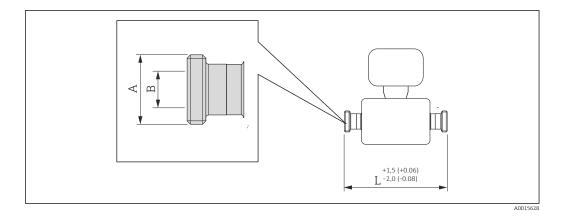
1" Tri-Clamp 1.4404 (316L): order code for "Process connection", option FTS					
DN [mm]	L [mm]	A [mm]	B [mm]		
8	229	50.4	22.1		
15	273	50.4	22.1		
25	324	50.4	22.1		

Surface roughness (3A version): • Mechanically polished: Ra_{max} 0.76 µm/150 grit; order code for "Process connection", option FTA

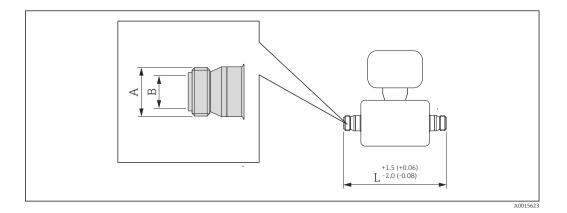
Electropolished: Ra_{max} 0.38 µm/240 grit; order code for "Process connection", option FTD


Clamp connection

1" clamp DIN 32676 1.4404 (316L): order code for "Process connection", option FDD					
DN [mm]	L [mm]	A [mm]	B [mm]		
8	229	34.0	16		
15	273	34.0	16		
25	324	50.5	26		

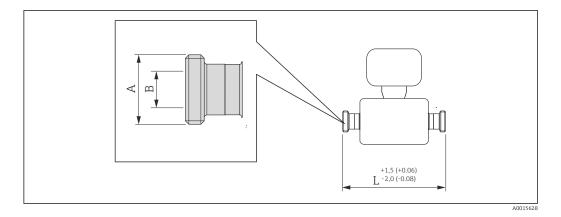

Electropolished: $Ra_{max} 0.38 \ \mu m/240 \ grit$

Threaded adapter


Threaded hygienic connection DIN 11864-1 Form A 1.4404 (316L): order code for "Process connection", option FLW						
DN [mm]	L [mm]	A [mm]	B [mm]			
8	229	Rd 28 × 1/8"	10			
15	273	Rd 34 × 1/8"	16			
25 324 Rd 52 × 1/6" 26						
Surface roughness (3A ve	rsion).	· · · · · · · · · · · · · · · · · · ·				

Surface roughness (3A version): Mechanically polished: Ra_{max} 0.76 μ m/150 grit; order code for "Process connection", option FLA

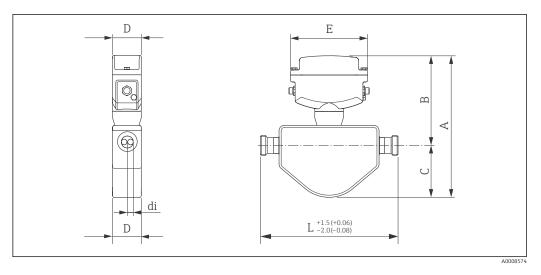
Sanitary connection DIN 11851 1.4404 (316L): order code for "Process connection", option FMW				
DN [mm]	L [mm]	A [mm]	B [mm]	
8	229	Rd 34 × 1/8"	16	
15	273	Rd 34 × 1/8"	16	
25	324	Rd 52 × 1/6"	26	
Surface roughness (3A ve	rsion):			


Mechanically polished: $Ra_{max} 0.76 \ \mu m/150 \ grit;$ order code for "Process connection", option FMA

Threaded hygienic connection ISO 2853 1.4404 (316L): order code for "Process connection", option FJW				
DN [mm]	L [mm]	A ¹⁾ [mm]	B [mm]	
8	229	37.13	22.6	
15	273	37.13	22.6	
25 324 37.13 22.6				
Surface roughness (3A vers	Surface roughness (3A version):			

Mechanically polished: Ra_{max} 0.76 μ m/150 grit; order code for "Process connection", option FJA

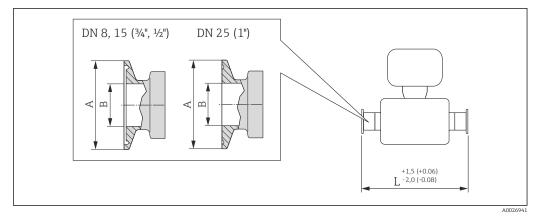
1) Max. thread diameter as per ISO 2853 Annex A


Threaded hygienic connection SMS 1145 1.4404 (316L): order code for "Process connection", option FSW

DN [mm]	L [mm]	A [mm]	B [mm]	
8	229	Rd 40 x 1/6"	22.5	
15	273	Rd 40 x 1/6"	22.5	
25	324	Rd 40 x 1/6"	22.5	
Surface roughness (3A version):				

Mechanically polished: Ra_{max} 0.76 μ m/150 grit; order code for "Process connection", option FSA

Dimensions in US units


Compact version

DN [in]	L [in]	A [in]	B [in]	C [in]	D [in]	E [in]	di [in]
3/8	1)	9.96	6.30	3.66	2.13	5.75	0.21
1/2	1)	10.50	6.38	4.13	2.13	5.75	0.33
1	1)	10.80	6.57	4.17	2.13	5.75	0.47

Depending on the process connection in question 1)

Tri-Clamp

1/2" Tri-Clamp BS4825-3

1.4404 (316 \hat{L}): Order code for "Process connection", option FUW ¹)			
DN [in]	L [in]	A [in]	B [in]
3/8	9.02	0.98	0.37
1/2	10.80	0.98	0.37

Surface roughness (3A version):

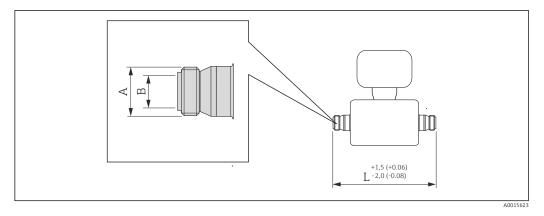
Mechanically polished: Ra_{max} 0.76 µm/150 grit; order code for "Process connection", option FUA
 Electropolished: Ra_{max} 0.38 µm/240 grit; order code for "Process connection", option FUD

1) 3A version available (Ra $\leq 0.8~\mu m/150~grit$ or Ra $\leq 0.4~\mu m/240~grit$)

¾" Tri-Clamp BS4825-3 1.4404 (316L): Order code	for "Process connection", optic	n FUW ¹⁾	
DN [in]	L [in]	A [in]	B [in]
3/8	9.02	0.98	0.63
1/2	10.80	0.98	0.63
Surface roughness (3A ver	sion):		

Mechanically polished: $Ra_{max} 0.76 \ \mu m/150$ grit; order code for "Process connection", option FWA

1) 3A version available (Ra $\leq 0.8 \ \mu m/150 \ grit$)

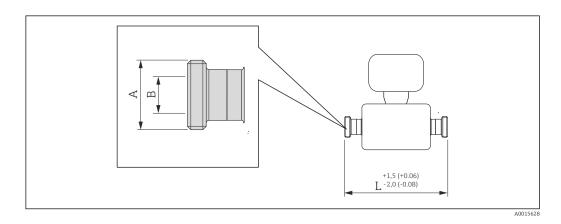

1" Tri-Clamp BS4825-3 1.4404 (316L): order code for "Process connection", option FTS ¹			
DN [in]	L [in]	A [in]	B [in]
3/8	9.02	1.98	0.87
1/2	10.80	1.98	0.87
1	12.80	1.98	0.87

Surface roughness (3A version):

Mechanically polished: Ra_{max} 0.76 µm/150 grit; order code for "Process connection", option FTA
 Electropolished: Ra_{max} 0.38 µm/240 grit; order code for "Process connection", option FTD

3A version available (Ra $\leq 0.8~\mu m/150~grit$ or Ra $\leq 0.4~\mu m/240~grit$) 1)

Threaded adapter



Threaded hygienic connection ISO 2853 1.4404 (316L): order code for "Process connection", option FJW				
DN [in]	L [in]	A ¹⁾ [in]	B [in]	
3/8	9.02	1.46	0.89	
1/2	10.80	1.46	0.89	
1 12.80 1.46 0.89				
Surface roughness (3A vers	ion):			

Surface roughness (3A version):

Mechanically polished: Ra_{max} 0.76 $\mu m/150$ grit; order code for "Process connection", option FJA

Max. thread diameter as per ISO 2853 Annex A 1)

Threaded hygienic connection SMS 1145 1.4404 (316L): order code for "Process connection", option FSW				
DN [in]	L [in]	A [in]	B [in]	
³∕8	9.02	Rd 40 × 1/8"	0.89	
1/2	10.80	Rd 40 × 1/6"	0.89	
1	12.80	Rd 40 × 1/6"	0.89	
Surface roughness (3A v	Surface roughness (3A version).			

Surface roughness (3A version): Mechanically polished: Ra_{max} 0.76 $\mu m/150$ grit; order code for "Process connection", option FSA

Weight

Compact version

Weight in SI units

DN [mm]	Weight [kg]
8	3.5
15	4.0
25	4.5

Weight in US units

DN [in]	Weight [lbs]
3⁄8	7.7
1/2	8.8
1	9.9

Materials

Transmitter housing

- Acid and alkali-resistant outer surface
- Stainless steel 1.4308 (304)

Device plugs

Electrical connection	Material
Plug M12x1	 Socket: Stainless steel, 1.4404 (316L) Contact housing: Polyamide Contacts: Gold-plated brass

Sensor housing

- Acid and alkali-resistant outer surface
- Stainless steel 1.4301 (304)

Measuring tubes

Stainless steel, 1.4539 (904L)

Process connections

- Flanges according to EN (DIN): Stainless steel, 1.4404 (316/316L)
- Flanges according to DIN 32676: Stainless steel, 1.4435 (316L)
- All other process connections: Stainless steel, 1.4404 (316L)
- List of all available process connections $\rightarrow \cong 32$

Surface quality (parts in contact with medium)

- Ra_{max} = 0.4 µm (16 µin)
- Ra_{max} = 0.8 µm (32 µin)

Seals

Welded process connections without internal seals

Process connections

Flanges EN 1092-1 (DIN 2512N) Tri-Clamp (OD tubes) BS4825-3

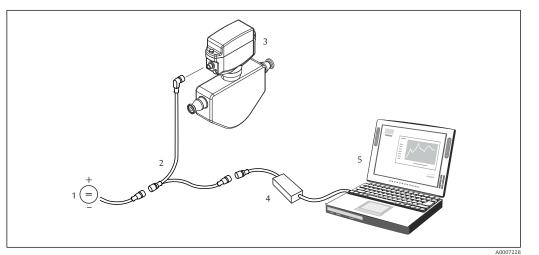
Clamp with compression fitting DIN 32676

Threaded adapter

- DIN 11851
- SMS 1145
- ISO 2853
- DIN 11864-1 Form A

For information on the different materials used in the process connections \rightarrow \cong 32

Operability


Local operation This device cannot be operated locally using a display or operating elements.

Remote operation

Via service adapter and Commubox FXA291

The Endress+Hauser service and configuration software FieldCare or DeviceCare can be used for operation and configuration.

The device is connected by means of a service adapter and a Commubox FXA291 to the computer's USB interface.

- 1 Supply voltage 24 V DC
- 2 Service adapter
- 3 Dosimass
- 4 Commubox FXA291
- 5 Computer with "FieldCare" or "DeviceCare" operating tool

The service adapter, cable and Commubox FXA291 are not included in the delivery. These components can be ordered as accessories $\rightarrow \square 35$.

Certificates and approvals

CE mark

The measuring system is in conformity with the statutory requirements of the applicable EC Directives. These are listed in the corresponding EC Declaration of Conformity along with the standards applied.

Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.

C-Tick symbol	The measuring system meets the EMC requirements of the "Australian Communications and Media Authority (ACMA)".
Ex approval	The measuring device is certified for use in hazardous areas and the relevant safety instructions are provided in the separate "Safety Instructions" (XA) document. Reference is made to this document on the nameplate.
	The separate Ex documentation (XA) containing all the relevant explosion protection data is available from your Endress+Hauser sales center.

ATEX

Currently, the following versions for use in hazardous areas are available:

Ex nA

Category (ATEX)	Type of protection
II3G	Ex nA IIC T5 to T1 Gc

cCSAus

Currently, the following versions for use in hazardous areas are available:

Class I Division 2 Groups ABCD

Hygienic compatibility 3A approval		
Pressure Equipment Directive	 With the PED/G1/x (x = category) marking on the sensor nameplate, Endress+Hauser confirms compliance with the "Essential Safety Requirements" specified in Annex I of the Pressure Equipment Directive 97/23/EC. Devices bearing this marking (PED) are suitable for the following types of medium: Media in Group 1 and 2 with a vapor pressure greater than, or smaller and equal to0.5 bar (7.3 psi) Unstable gases Devices not bearing this marking (PED) are designed and manufactured according to good engineering practice. They meet the requirements of Art.3 Section 3 of the Pressure Equipment Directive 97/23/EC. The range of application is indicated in tables 6 to 9 in Annex II of the Pressure Equipment Directive. 	
Other standards and guidelines	 EN 60529 Degrees of protection provided by enclosures (IP code) EN 61010-1 Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use IEC/EN 61326 Emission in accordance with Class A requirements. Electromagnetic compatibility (EMC requirements). EN 61000-4-3 (IEC 1000-4-3) Operating behavior A with shielded connecting cable possible (shielding connected as short as possible on both sides), otherwise operating behavior B NAMUR NE 21 Electromagnetic compatibility of industrial process and laboratory control equipment CAN/CSA C22.2 No. 61010-1-12 Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use, Par 1: General Requirements	

Ordering information

Detailed ordering information is available from the following sources:

- In the Product Configurator on the Endress+Hauser website: www.endress.com → Select your country → Products → Select measuring technology, software or components → Select the product (picklists: measurement method, product family etc.) → Device support (right-hand column):
- Configure the selected product → The Product Configurator for the selected product opens. From your Endress+Hauser Sales Center: www.addresses.endress.com
- Product Configurator the tool for individual product configuration
- Up-to-the-minute configuration data
 - Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
 - Automatic verification of exclusion criteria
 - Automatic creation of the order code and its breakdown in PDF or Excel output format
 - Ability to order directly in the Endress+Hauser Online Shop

Accessories

Various accessories, which can be ordered with the device or subsequently from Endress+Hauser, are available for the device. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

Communication-specific accessories	Accessories	Description
	FieldCare	FDT-based plant asset management tool from Endress+Hauser. It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition. For details, see Operating Instructions BA00027S and BA00059S
	DeviceCare	Tool for connecting and configuring Endress+Hauser field devices.
		For details, see Innovation brochure IN01047S
	Commubox FXA291	Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop.
		For details, see the "Technical Information" document TI405C/07
	Adapter connection	 Adapter connections for installation on other electrical connections: Adapter FXA291 (order number: 71035809) Adapter RSE8 (order number: 50107169) RSE8 connection jack, 8-pin adapter (RSE8), 24 V DC, pulse, status Adapter RSE5 (order number: 50107168) RSE8 connection jack, 5-pin adapter (RSE5), 24 V DC, pulse, status Adapter RSE4 (order number: 50107167) RSE8 connection jack, 4-pin adapter (RSE4), 24 V DC, pulse
	Connecting cable RSE8	Cable RKWTN8-56/5 P92, length: 5 m (Order number: 50107895)

Service-specific accessories	Accessories	Description
	Applicator	 Software for selecting and sizing Endress+Hauser measuring devices: Calculation of all data required to determine the optimum flowmeter: e.g. nominal diameter, pressure loss, accuracy or process connections. Graphic illustration of the calculation results
		Administration, documentation and access to all project-related data and parameters throughout the entire life cycle of a project.
		Applicator is available:Via the Internet: https://wapps.endress.com/applicatorOn CD-ROM for local PC installation.

W@M	Life cycle management for your plant W@M supports you with a wide range of software applications over the entire process: from planning and procurement, to the installation, commissioning and operation of the measuring devices. All the relevant information is available for every measuring device over time entire life cycle, such as the Device status, spare parts, device-specific documentation. The application already contains the data of your Endress+Hauser device. Endress +Hauser also takes care of maintaining and updating the data records. W@M is available: • Via the Internet: www.endress.com/lifecyclemanagement • On CD-ROM for local PC installation.	
FieldCare	FDT-based plant asset management tool from Endress+Hauser.It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.Image: For details, see Operating Instructions BA00027S and BA00059S	
DeviceCare	Tool for connecting and configuring Endress+Hauser field devices.	
	For details, see Innovation brochure IN01047S	
Commubox FXA291	Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop.	
	For details, see "Technical Information" TI00405C	

Supplementary documentation

- For an overview of the scope of the associated Technical Documentation, refer to the following: The CD-ROM provided for the device (depending on the device version, the CD-ROM might not be part of the delivery!)
 - The *W*@*M* Device Viewer : Enter the serial number from the nameplate (www.endress.com/deviceviewer)
 - The *Endress+Hauser Operations App*: Enter the serial number from the nameplate or scan the 2-D matrix code (QR code) on the nameplate.

Standard documentation

Brief Operating Instructions

Measuring device	Documentation code
Dosimass	KA00043D

Operating Instructions

Measuring device	Documentation code	
	Pulse/frequency/status output Option 3	Modbus RS485 Option 4 and 5
Dosimass	BA00097D	BA01320D

Description of device parameters

Measuring device	Documentation code	
	Pulse/frequency/status output Option 3	Modbus RS485 Option 4 and 5
Dosimass	GP01050D	GP01047D

Supplementary devicedependent documentation

Safety Instructions

Contents	Documentation code
ATEX Ex nA	XA00079D
cCSAus	FES0232

Registered trademarks

Modbus®

Registered trademark of SCHNEIDER AUTOMATION, INC.

TRI-CLAMP®

Registered trademark of Ladish & Co., Inc., Kenosha, USA

Applicator[®], FieldCare[®], DeviceCare[®]

Registered or registration-pending trademarks of the Endress+Hauser Group

www.addresses.endress.com

